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Computational testing of independent component analysis
for linear optics measurements at the NICA Booster
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Abstract

The accelerator complex NICA is at the stage of assembling and commissioning. A series of successful
runs at the injection complex were carried out using various types of ions. It is planned to continue the
linear optics measurements at booster synchrotron, for which several methods are considered. The first
one is based on the analysis of turn-by-turn data of the beam orbit going from beam position monitors.
The independent component analysis is used for the data processing and results to computation of
betatron and synchrotron tunes, beta-functions, phase advances and dispersions. Other methods use
orbit response matrix measured with alternate kicks by dipole correctors. Accuracy of optics restoration
depends on the technical feasibility of betatron tunes and orbit measurements. Various methods should
be firstly accommodated to the accelerator and tested using computational model in order to conclude
their potentials and form requirements for future experiments with the beam. The paper describes
implementation of independent component analysis to the computer model of the NICA Booster.
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1. Introduction

The accelerator complex NICA (JINR, Dubna, Russia) includes two heavy ion synchrotrons
and a two-ring collider [1]. The main task for the accelerator team is boosting the maximal beam
intensity in the collider. In particular, it is necessary to optimize the beam transmission and
acceleration that include optics measurements and corrections. Linear optics measurements
are planned at the first stage of the commissioning and their result should be expressed in
the betatron tunes, beta-functions and dispersions. To solve such tasks, well-known methods
implemented successfully in other accelerator centers are used. Published materials about the
theory supporting the methods are available in [2]. There is no experience in carrying out
such measurements at the accelerators of the NICA complex. Therefore, our initial goal is a
preliminary analysis of the applicability of the methods to the NICA accelerators.

The Booster, being the first circular accelerator in the chain, accelerates light and heavy
ions up to an energy of 570 MeV/nucleon. The Booster’s circumference is 211 m. 24 two-
coordinate Beam Position Monitors (BPMs) are used for the detection of the beam orbit which
can be corrected by 24 two-coordinate dipole correctors. Booster quadrupoles are powered
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from common power supplies that do not allow one to vary fields in each lens independently.
Given this limitation, the analysis of turn-by-turn beam positions for all available BPMs based
on the Independent Component Analysis (ICA) looks as a preferable method for linear optics
measurements.

ICA [3, 4] has been applied many times to calculation of betatron functions of synchrotrons
using turn-by-turn beam positions measured by the BPMs [5–7]. Transverse oscillations of the
beam can be excited by a kicker or by the beam injection error. All the BPMs of a ring are
used for providing turn-by-turn data for further calculation of betatron functions and tunes,
as well as the betatron phase advances, and dispersion functions. The duration of the beam
oscillations is typically determined by decoherence due to the tune chromaticity and the tune
dependence on the betatron amplitudes.

Methods of beta-functions calculation based on usage of the orbit response matrix require
iterative procedure for approximation of measured data by response matrices calculated using
the computer model of the accelerator [8, 9]. The most known technique is LOCO (Linear
Optics from Closed Orbits) [10] that provides not only restoration of linear optics, but also
detection of the system errors leading to such optics. In this study, our task comes down to
linear optics measurement, but not searching for causes of optics distortions. Therefore, LOCO
is not discussed. Note also that the data acquisition for the turn-by-turn measurements is much
faster than the time required for measurements of orbit response matrix which represent serious
practical advantage.

2. Independent component analysis

ICA is a computational method used in signal processing for decomposition of multisource
signal into independent signals. In accelerator physics, ICA is applied for separation of phys-
ical signals (betatron and synchrotron motions, various periodical crosstalk and noises) using
measurements of beam transverse oscillations detected by the BPMs. Let the beam make N
turns in a ring. The beam diagnostic system includes M BPMs. In this case, the measured
matrix of orbit coordinates at all turns has the dimension N ×M . Orbit data at each BPM
can be presented as a column X⃗m = (x1,m, x2,m, . . . , xN,m) , m = 1, 2, . . .,M . The physics
of betatron and synchrotron motions determines that each column data can be presented as a
combination of all signals representing the physical state of the oscillating system with addition
spurious signals and noise. Note that the systematic errors in BPM response may also distort
the signals. Consequently, turn-by-turn data at BPM m is the composition:

x1,m = (s1,1 · am,1 + s1,2 · am,2 + . . .+ s1,M · am,M) (1 + gm) + δm +Noise1,m
x2,m = (s2,1 · am,1 + s2,2 · am,2 + . . .+ s2,M · am,M) (1 + gm) + δm +Noise2,m
. . .

xN,m = (sN,1 · am,1 + sN,2 · am,2 + . . .+ sN,M · am,M) (1 + gm) + δm +NoiseN,m

,

and the beam orbit represented by each BPM at turn n is

xn,1 = (sn,1 · a1,1 + sn,2 · a1,2 + . . .+ sn,M · a1,M) (1 + g1) + δ1 +Noisen,1
xn,2 = (sn,1 · a2,1 + sn,2 · a2,2 + . . .+ sn,M · a2,M) (1 + g2) + δ2 +Noisen,2
. . .

xn,M = (sn,1 · aM,1 + sn,2 · aM,2 + . . .+ sn,M · aM,M) (1 + gM) + δM +Noisen,M

,

where S⃗m = (s1,m, s2,m, . . . , sN,m) — periodical physical signals describing the system state,
gm is addition to orbit reading by BPM m due to an error in its differential response (gain)
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which usually has the value up to several percent, δm is orbit offset at BPM m, A ∈ RM×M is
a mixing matrix of signals S. As will be seen below, fraction of these signals describes actual
beam motion, while other are due to noise, spurious signals and nonlinearity in the BPM gain.
Thus, the measured matrix of orbit coordinates at all turns X can be presented by a product
of matrices:

X = S ·A. (1)

The mathematical task is to define matrix S, providing all oscillation modes of the consid-
ered system. Every column S⃗m of matrix S presents a single oscillation mode.

Each betatron motion mode in matrix S is presented by two orthogonal signals (sine and
cosine) because each BPM sees different phases of betatron oscillation. Synchrotron motion,
being a slow periodic process, at fixed turn appears at each BPM identically, so that longitudinal
motion in S is presented by a single signal. Therefore, matrix S contains five basic modes:
pairwise betatron and single synchrotron. If there are other periodic components in the system,
they will appear in matrix S: fast — by pair, slow — by single mode. So, S can be viewed as
a temporal projection of the considered system.

Matrix A represents a spatial pattern of oscillation modes along the ring, i.e. their amplitude
distribution along the ring. It allows one to calculate the betatron functions and the betatron
phase advances. The spatial mode presenting the synchrotron motion is proportional to the
dispersion.

Matrices A and S can be defined using ICA under conditions of mutual independence
and non-Gaussianity1 of signals S⃗m. In the presence of coupling, it is enough to have only
horizontal turn-by-turn orbit data from the BPMs. The number of BPMs needs to be more
than the required number of modes planned for calculations. Further, if not stated otherwise,
the matrices have dimensions S ∈ RN×M and A ∈ RM×N .

Various algorithms are used in a core of ICA. The first of them, FastICA [11], is the easiest
for implementation and is based on using the gradient descent method. The most widespread
method is the Blind Source Separation (BSS) algorithm of second order using simultaneous
diagonalization of covariance matrices of measured data with Jacobi angles technique [6, 12].
In this study, BSS showed good separation of the modes.

The first step in the implementation of BSS is preparation of measured data which consists
of data centering of X (providing zero mean value, i.e. zeroing δm); and the second step is the
data decorrelation. Removing correlations from a matrix (whitening) represents such a linear
transformation of the input data that converts them into new data, the covariance matrix of
which is identity matrix, i.e. the correlation of the data in the matrix is totally removed.
This procedure is called whitening, as it brings the initial data closer to white noise. For
centered matrix X ∈ RN×M , covariance matrix C = XTX is calculated. Then it is used for
computation of matrix E, consisting of eigen vectors of C, and diagonal matrix λ, diagonal
elements of which are eigen values of matrix C. Finally, decorrelated matrix X̃ is calculated
using input data X in accordance with

X̃ = V ·X, (2a)

V = λ−1/2 ·ET , (2b)

where the square root of matrix λ in (2a) is a new matrix, elements of which are square roots
of λ matrix elements. After transformation of the initial data using (2a), matrix X̃ is split

1In this context, the non-Gaussianity means that the value is not normally distributed.
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into K submatrices X̃k using row-wise splitting (turn-by-turn samples) with a finite step of
N/K ∈ (1;N), and matrices C̃k are calculated as

C̃k = X̃k ·X̃
T

k+1,

k = 1, 2, . . ., K,

K ⩽ N,

X̃k ∈ R
N
K
×M .

Then symmetrical matrices of the following form are computed:

Rk =
C̃k + C̃

T

k

2
,

and, finally, we should define such orthogonal matrix W that will diagonalize simultaneously
all the matrices Rk. K is chosen to have better result for simultaneous diagonalization, that
can be achieved only approximately, and can be K = 1. To calculate W , the Jacobi angles
technique is used [12, 13], which has algorithmic realizations in programming languages [14]
and can be easily used as a solution to the described problems.

At the final stage, the mixed matrix for calculation of an original physical signal based on
measured data is computed:

A−1 = W T ·V ,

and original signals are calculated as

S = X ·A−1.

Now we have matrix S ∈ RN×M , in which betatron oscillations are presented by pairwise
columns. Synchrotron motion is calculated from a single column:(

dp

p

)
n

= b · sn,ms , (3)

where constant b is the scaling factor that can be defined when comparing measured results and
calculated data using a computer model. ms — the number of data column in S, responsible
for synchrotron motion. It is not possible to define beforehand columns numbering, presenting
betatron oscillations, synchrotron motion and other physical modes in matrices S and A. ICA
orders restored signals in accordance with their relative power. Typically, these signals are in
the first 6–10 restored modes. Ordering of the modes can be done after computation of their
Fourier series.

Fourier analysis of columns of matrix S responsible for the betatron motion yields the
betatron tunes. Corresponding columns of matrix A ∈ RM×M contain information about
betatron functions and phase advances and also about the dispersion function of the accelerator
at azimuths where the BPMs are installed. Let us call the beta-functions β1 and β2 assuming
the presence of coupling of transverse motions. β1 and β2 go to the standard βx and βy used
for rings without coupling. The functions can be calculated as

β1m = c ·
(
a2m,nβ11 + a2m,nβ12

)
, φ1m = tan−1

(
am,nβ11
am,nβ12

)
,

β2m = c ·
(
a2m,nβ21 + a2m,nβ22

)
, φ2m = tan−1

(
am,nβ21
am,nβ22

)
,

Dm = d · am,ns.

(4)
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Here scaling factors c and d, responsible for amplitude of betatron oscillations (proportional
to emittance) and for proportionality between dispersion and orbit displacement (proportional
to momentum deviation), can be found when comparing measured results and calculated data
using computer model. Indexes nβ11, nβ12, nβ21, nβ22, ns — columns numbers in matrix
A, presenting pairs of betatron modes and synchrotron motion. Note that ϕ1 and ϕ2 are not
affected by errors in the gains of BPM’s differential response.

3. Usage of ICA in measurements of the beam optics

Testing of the described algorithm can be performed at a computer model of the accelerator.
For that, firstly turn-by-turn orbit position at each BPM should be generated. Then prepared
orbit data are processed using ICA, and linear optics of the accelerator is computed.

First, we consider the beam motion in the absence of betatron motion decoherence. For
the NICA Booster, the calculation procedure was the following. The computer model of the
accelerator is prepared using code OptiMX [15]. The model and all the calculations are made
taking into account coupling of transverse motions. The reason is to develop all the algorithms
in a general case, and the NICA Booster includes electron cooling system with 2.7-m solenoid
operating with field level up to 1.5 kG. The NICA Collider, for which the methods intended,
also has electron cooling system and longitudinal magnetic field in each of its detectors. From
the optical model, alpha-, beta-functions, betatron phase advances, and variables describing
value of coupling are exported. Based on these data, the circulation of an ion (center mass of
the beam) in the ring is simulated. At each turn, the orbit position is saved for each BPM. The
ion motion is calculated using an algorithm based on transformation eigen vectors of transfer
matrices [16, 17]. Ion position at turn n in phase-space in place where BPM m is located can
be calculated as
xn,m
x′n,m
yn,m
y′n,m

 = Re
(√
ε1 (v⃗1)m e−i(ψ1+(µ1)m+nµ1R) +

√
ε2 (v⃗2)m e−i(ψ2+(µ2)m+nµ2R)

)
+


Dxm
0

Dym
0

(dpp
)
n

,

(5)
where ε1,2 are the beam transversal emittances, µ1,2 are the betatron phase advances in two
transverse planes, ψ1,2 are the initial phases of the ion, µ1R,2R are the betatron phase advances
corresponding to the full turn in the ring, Dx, Dy — dispersion functions, dp/p — momentum
deviation, n – turn number. Eigen vectors v⃗1 and v⃗2 at the azimuth where BPM m is installed
are defined as

(v⃗1)m =



√
(β1x)m

−i (1− u) + (α1x)m√
(β1x)m√

(β1y)me
i(υ1)m

−
iu+ (α1y)m√

(β1y)m
ei(υ1)m


, (v⃗2)m =



√
(β2x)me

i(υ2)m

−iu+ (α2x)m√
(β2x)m

ei(υ2)m√
(β2y)m

−
i (1− u) + (α2y)m√

(β2y)m


. (6)

Generalized Twiss functions α1x, β1x, α1y, β1y, α2x, β2x, α2y, β2y in (6) describe coupled
transversal motion. In the absence of coupling, nonzero values have only α1x, β1x and α2y,
β2y, which coincide with the commonly used alpha- and beta-functions of horizontal and vertical
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motions. υ1 and υ2 are the relative phases of horizontal and vertical components corresponding
to the eigen vectors. Constant u characterizes value of coupling [16]. All the functions in (6) are
exported from OptiMX. It is assumed in (5) that all the functions do not depend on the turn
number, which is justified if the number of measured turns and chromaticities is sufficiently
small.

In this numerical study, to account for the longitudinal motion, it is sufficient to introduce
turn-by-turn energy gain as

Tn = Tn−1 + UrfZe cos (ωrf tn + φ0), (7)

where Urf — amplitude of accelerating voltage, Ze — ion charge, ωrf = frf2π — accelerating
frequency, φ0 — initial RF phase of the ion. Relative momentum deviation, as known, can
be obtained as dp/p = (γ/γ + 1) dT/T , where γ — Lorentz factor. Synchrotron oscillations
are obtained from (7) if one takes account of the dependence of ion orbit length on the beam
energy.

Using (5), motion of a single ion is simulated and its trajectory equates with coordinates of
coherent oscillations of the beam that will be measured in the experiment. Strictly speaking,
association of a single ion motion with the beam center of mass is not correct, but for such
calculations with testing of ICA, this assumption is sufficient.

The data were computed for both horizontal and vertical planes, but only horizontal coordi-
nates (only x in left part of (5)) were used. So, matrix with turn-by-turn horizontal orbit data
X ∈ RN×M is generated that corresponds to the measured orbit from horizontal BPMs. For
the NICA Booster, the calculations were performed with coupling introduced by the solenoid
of electron cooling system. After X prepared, it is appended by different noises and periodical
crosstalk. Then whitening is performed according to (2) and ICA implemented in Python.

Coherent oscillations of the beam can be excited in the measurements by single kick using
transverse kicker, or, in the case of longitudinal motion, small jump in the RF phase. Also,
beam oscillations excited by injection errors and measured immediately after injection can
be used in the calculations. The calculations produced for the above-described case without
decoherence show that required decomposition of the signals appears (Figure 1), even in the
case of significant coupling and the white noise added.

The first pair of extracted signals presents betatron oscillations for mode 1, the third mode —
synchrotron motion, the next pair — betatron oscillations of mode 2. Other signals do not
contain physics. Fourier analysis of the signals yields the betatron and synchrotron tunes that
are in good agreement with the optics model used to generate data (Figure 2).

Results of restoration of betatron functions, momentum deviation due to synchrotron mo-
tion, and dispersion function are also in good agreement with target data computed in the
optics model (Figure 3). Rms accuracy of betatron functions restoration reaches 2 · 10−2 for
the white noise with peak value of 10% of betatron motion and random errors in BPM gains
up to 5%. Without errors in the gains, the accuracy improves to 3 · 10−3. Horizontal dispersion
is restored with an accuracy of 1 · 10−2. The betatron function of second transversal plane (β2)
also can be restored using horizontal orbit data, but with an accuracy an order of magnitude
worse. It is better for computation of β2 to use vertical orbit data.

After adding to input data a spurious signal with 50-Hz frequency (EMI from power net), the
accuracy of synchrotron mode restoration is changed significantly. This is due to the fact that
the synchrotron tune in the NICA Booster is ∼ 80 Hz at injection (where the measurements are
planned). So, the synchrotron tune value is close to the added crosstalk frequency. Temporal
modes restored by ICA are shown in Figure 4. Components of longitudinal motion (mode 3)
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Figure 1. First ten temporal modes provided by ICA: components 1, 2 and 4, 5 represent betatron
oscillations, component 3 corresponds to synchrotron motion, components 6–10 do not contain peri-
odical states.

Figure 2. Results of Fourier analysis of betatron modes. Values in frames are targeted tunes.

and crosstalk (mode 5) are distorted strongly. Dispersion function is defined with a significant
error (Figure 5, left) because of large inaccuracy of synchrotron oscillations selection (Figure 5,
right). However, it weakly affects the accuracy of betatron functions restoration.
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Figure 3. ICA results for restoration of betatron functions, horizontal dispersion, and synchrotron
motion. Horizontal orbit was used for the calculations.

Figure 4. First six temporal modes in presence of 50-Hz crosstalk: components 1, 2 and 4, 6 present
betatron motions, component 3 — synchrotron motion, component 5 — 50-Hz crosstalk.

Now we take account of the beam decoherence in a simplified model. A betatron motion
excited by single kick decoheres due to betatron tune chromaticities and dependence of betatron
tunes on amplitudes [18, 19]. In the NICA Booster, the main effect comes from chromaticities.
In negligence of synchrotron motion and Gaussian distribution over momentum, the beam
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Figure 5. Results of computation of dispersion function and synchrotron motion in the system with
the presence of 50-Hz crosstalk.

oscillations decohere exponentially with form-factor dependence on the turn number n as

F1n = exp

(
−2

(
ξ
dp

p

sin (πQsn)

Qs

)2
)
,

where ξ is the betatron mode chromaticity, and Qs is the synchrotron tune.
For Gaussian beam, the decoherence form factor related to the dependence of betatron tunes

on the amplitude is

F2n =
1

1 + θ2
exp

(
− A2

x

2σ2
x

θ2

1 + θ2

)
,

θ = 4π∆Qxn.

Here Ax is the initial amplitude of beam oscillations, σx is the beam rms transverse size, ∆Qx

is the spread of betatron tunes in the beam. Recent measurements with injected coasting beam
into the NICA Booster show that oscillations of the beam decohere completely in about 100
turns. If a large number of turns is considered (4096), then without crosstalk with frequency
value close to the synchrotron frequency, the longitudinal motion and the dispersion function
are restored with good accuracy (1 ·10−2). Consequently, it is possible to compute the betatron
function with acceptable accuracy (1 · 10−1) and the betatron tunes with accuracy of up to
2 · 10−3 (Figure 6).

Figure 6. Results of Fourier analysis of betatron modes. Decoherence is turned ON. Values in frames
are targeted tunes.

In the presence of 50-Hz crosstalk, synchrotron motion is computed with a large error. The
study also showed that it is not reasonable to use the number of turns far beyond the end of
coherent oscillations. Calculations with 128 turns show that the betatron function is computed

9



V. L. Smirnov Natural Science Review 1 4 (2024)

with better accuracy (3 · 10−2) than for larger number of turns. However, the betatron tunes
are restored with lower accuracy due to the smaller number of turns in the input matrix.

In conclusion of this section, we would like to stress that the above calculations of beta-
functions and dispersions in the BPM locations are model independent but they are susceptible
to misfunction of the BPMs. In particular, the above algorithms do not use the measured
betatron phase advances between the BPMs. A global fitting of the ICA results with phase
advances accounted into the optics model should enable one to see possible inconsistencies in
BPM gains and, thus, should produce more reliable optics measurements.

4. Conclusion

For incoming measurements of linear optics in accelerators of the NICA complex, it has
been necessary to produce a study based on computer simulations which would show achievable
accuracy of restored optics and requirements to the measurement accuracy. None of the known
methods of measurements provides absolute precision and it is quite difficult to define the
degree of confidence for obtained results. Consequently, several independent methods should
be used. In this study, one of the methods was tested. Simulations were based on the optics
model of the NICA Booster.

Independent component analysis is a powerful tool for finding betatron functions and phases,
as well as the betatron and synchrotron tunes, and dispersions. The calculations show that an
application of ICA to the Booster allows one to find the betatron functions in the BPM locations
with an accuracy of about 10−2 for moderate noises in the measurements and errors in BPM
gains, even in the presence of EMI from power supplies. ICA naturally takes into account the
transverse coupling if it is present in the beam optics. In normal operating conditions, it is
enough to measure several hundreds of the beam turns. To find the synchrotron tunes and the
dispersions and separate EMI signals with frequencies close to synchrotron frequency, several
thousand turns need to be measured.

Note that the above-considered analysis is model independent. It enables finding betatron
functions and betatron phases in the BPM locations without knowledge of beam optics for
the rest of the machine. Although it is sensitive to errors in differential BPM responses, it
supplies a redundant information (i.e. betatron amplitudes and phases) which can be used to
build a reliable model of the entire machine optics. Typically, such a model is based on small
corrections to quad focusing so that to match the measurements and the model. In this case,
a usage of measured dispersion is highly desirable since it severely limits variations of quad
focusing. Finding optimal procedures to build an actual machine optics will be a next logical
step in the method development. The goal is to achieve the level of sophistication similar to the
already achieved by LOCO-like algorithms which are based on the orbit response matrix. Data
acquisition for the turn-by-turn measurements is much faster than for LOCO measurements,
which is considerable advantage of the turn-by-turn measurements. However, from general
points of view they are complimentary and a usage of both of them will significantly improve
our knowledge of linear optics and its accuracy. Thus, the plan of optics measurements should
include measurements of linear optics with both turn-by-turn orbit data and orbit response
matrix. Also, one of goals of this comparative analysis is verification of fast methods for online
optics control; for example, ICA for the turn-by-turn data or usage of just two–three orbit
responses.
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