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Efficient pipeline for plant disease classification
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Abstract

Accurate identification of disease and correct treatment policy can save and increase yield. Different
deep learning methods have emerged as an effective solution to this problem. Still, the challenges posed
by limited datasets and the similarities in disease symptoms make traditional methods, such as transfer
learning from models pre-trained on large-scale datasets like ImageNet, less effective. In this study, a
self-collected dataset from the DoctorP project, consisting of 46 distinct classes and 2615 images, was
utilized. DoctorP is a multifunctional platform for plant disease detection oriented on agricultural and
ornamental crop. The platform has different interfaces like mobile applications for iOS and Android,
a Telegram bot, and an API for external services. Users and services send photos of the diseased
plants in to the platform and can get prediction and treatment recommendation for their case. The
platform supports a wide range of disease classification models. MobileNet_v2 and a Triplet loss
function were previously used to create models. Extensive increase in the number of disease classes
forces new experiment with architectures and training approaches. In the current research, an effective
solution based on ConvNeXt architecture and Large Margin Cosine Loss is proposed to classify 46
different plant diseases. The training is executed in limited training dataset conditions. The number
of images per class ranges from a minimum of 30 to a maximum of 130. The accuracy and F1-score of
the suggested architecture equal to 88.35% and 0.9 that is much better than pure transfer learning or
old approach based on Triplet loss. New improved pipeline has been successfully implemented in the
DoctorP platform, enhancing its ability to diagnose plant diseases with greater accuracy and reliability.

Keywords: plant disease classification, deep learning, similarity learning, Large Margin Cosine Loss,
Triplet loss, ConvNeXt, MobileNet

1. Introduction

Plant disease identification is a critical task for farmers, smallholders, and home garden-
ers alike. The vast number of diseases and the similarity of their symptoms make it difficult
for users to identify the problem and choose the appropriate treatment policy. Deep learning
has emerged as an effective solution to this problem. Numerous papers are published annu-
ally, exploring various applications of neural networks for disease identification [1–3]. While
some researchers propose custom architectures [4, 5], transfer learning remains a more popular
research area [6–8]. Achieving good results with transfer learning requires extensive domain-
specific training data.
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There are two types of plant disease datasets. The first type is collected under controlled
conditions, where images have a static background, consistent lighting, orientation, and clear
separation of subjects. While these datasets, such as PlantVillage [9], are valuable for initial
model training, their real-world applicability is limited due to the lack of variability in the
conditions under which the images are captured. The second type of dataset is collected in
real-world conditions, where images are taken with varying backgrounds, lighting, orientations,
and levels of noise. These datasets better reflect the challenges faced in practical applications,
making them more suitable for developing models that can generalize well in diverse environ-
ments. Although specific crop datasets from real-world conditions can be found on platforms
like Kaggle, comprehensive datasets with numerous classes are rare, and the number of im-
ages is often limited. In such cases, few-shot learning approaches are increasingly popular.
Some of these approaches involve extending datasets using Generative Adversarial Networks
(GANs) [10, 11], while others use similarity learning. This approach involves determining
similarities or differences in data and fine-tuning base networks to better distinguish classes.

In transfer learning, the weights of the base network are typically frozen, and image embed-
dings are often generated using ImageNet [12] weights. In contrast, similarity learning modifies
the base network’s weights to better arrange image embeddings in feature space, so that em-
beddings of the same classes are closer to each other and farther from other classes. Siamese
networks [13] are a common solution in plant disease classification. For example, Argüeso et
al. [14] demonstrate the benefits of few-shot learning methods over classical fine-tuning transfer
learning, using the PlantVillage dataset and Siamese networks with Contrastive [15] and Triplet
loss [16] functions. Egusquiza et al. [17] effectively classify 17 disease classes using a real-world
dataset, a Siamese network, and a Triplet loss function. In our previous research [18], we used
MobileNet_v2 [19] as a backbone and trained it with Triplet loss to classify 25 diseases with
over 97% accuracy. However, as the dataset for the DoctorP project (https://doctorp.org)
expanded, the old approaches no longer yielded sufficient results, necessitating the evaluation
of new training methods and base architectures.

Loss functions based on angular space, such as SphereFace [20] and ArcFace [21], have
shown their effectiveness in face recognition. While Siamese networks operate in Euclidean
space, angular span functions work in angular space. Despite this distinction, their objective
remains the same: to minimize intra-class variations and maximize inter-class variations in
image embeddings. Angular span functions are much less popular in plant disease detection.
In [22], the authors propose an EfficientNet-B5 [23] network incorporating ArcFace loss with
an adversarial weight perturbation mechanism to classify citrus diseases.

The use of Large Margin Cosine Loss (CosFace) [24], which has shown great results in face
recognition, along with ConvNeXt [25] as the base architecture to classify 46 classes of plant
diseases, is evaluated in this research.

Appropriate image preprocessing can positively impact model training results. The normal-
ization of pixel values is recommended for imaging modalities, so normalization parameters for
the DoctorP dataset will be calculated and used during training. The effect of data augmen-
tation (flips, rotation, brightness, and contrast) on model performance will also be evaluated.
The aim of this research is to determine an effective pipeline for plant disease detection using
a real-world dataset.
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2. Materials and methods

2.1. Dataset

The DoctorP platform, which evolved from the Plant Disease Detection Platform (PDDP)
project [26], processes user requests made under various conditions, including different devices,
lighting, orientations, and close-ups. These requests have been the primary source of images
for dataset updates over the last couple of years. DoctorP handles several models designed
for specific tasks. At the first stage of processing user requests, a general model is employed,
while specific models for particular crops are used at later stages. This research is based on
the dataset for the general model, which includes 46 classes without specifying the crop. These
classes are: Alternaria leaf blight, Anthocyanosis, Anthracnose, Ants, Aphid, Black rot, Black
spots, Blossom end rot, Canker, Caterpillars, Coccomyces of pome fruits, Colorado beetle,
Corn downy mildew, Cyclamen mite, Downy mildew, Dry rot, Edema, Esca, Eyespot, Frost
cracks, Grey mold, Gryllotalpa, Healthy, Late blight, Leaf deformation, Leaf miners, Leaf
spot, Leaves scorch, Lichen, Loss of foliage turgor, Marginal leaf necrosis, Mealybug, Monilia,
Mosaic virus, Northern leaf blight, Polypore, Powdery mildew, Rust, Scale, Shot hole, Shute,
Slugs caterpillars effects, Sooty mold, Thrips, Tubercular necrosis, Wireworm.

The dataset includes 2615 images, with the number of images per class ranging from 30
to 130. All images are in RGB format with a resolution of 256× 256 pixels. Examples of these
images are presented in Figure 1.

Figure 1. Examples of the images in the DoctorP general dataset.

2.2. Methodology

The transfer learning approach involves taking a pre-trained network, freezing its weights,
replacing the original classification part with a new one tailored to the new domain, and training
it on new data. Since 2012, this has been a popular research area, leading to the introduction
of many great architectures. ImageNet, a large dataset used for training and benchmarking
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new architectures, has been in use since 2010. Most base networks used in transfer learning
are pre-trained on ImageNet weights, meaning they are trained on over 14 million images to
classify 1000 categories. This extensive training implies a high feature extraction ability of the
networks. Previously, MobileNet_v2 was used as the base network in the DoctorP project. It
is a lightweight solution presented by Google, achieving 71.9% accuracy (Acc@1) on ImageNet
data. Now, ConvNeXt_base, with 84.62% accuracy on ImageNet data, is suggested as the
base network. ConvNeXt is significantly larger than MobileNet, but the potential increase in
accuracy justifies the higher computational costs. Both architectures, trained using transfer
learning, will be compared in this research to evaluate how effectively the base networks, ini-
tialized with ImageNet weights, can handle the specific features of plant diseases. To achieve
optimal results through transfer learning, the classification part of the new architecture should
be trained on hundreds of images per class, which is not always feasible. For instance, in our
case, this would require hundreds of photos of different plants with the same disease taken un-
der various conditions. However, in the current situation, we have several classes with as few as
30 images each. In recent years, methods that require less data for training, known as few-shot
learning, have become increasingly popular. We used a method involving the determination of
similarities or differences in data and fine-tuning base networks to better distinguish classes,
known as similarity learning. We used the Triplet loss function to train the feature extractor on
our domain data rather than on ImageNet data. The Triplet loss function involves three images
during evaluation: an anchor, a positive image from the same class as the anchor, and a nega-
tive image from a different class. Triplet loss aims to minimize the distance between the anchor
and positive image embeddings while maximizing the distance between the anchor and negative
image embeddings. The benefit of training on triplets lies in the number of image combinations
that can be compared. The formulation of Triplet loss is typically expressed as in Eq. (1):

Ltriplet = max (Dap −Dan +margin, 0), (1)

here, Dap is the squared Euclidean distance between the embeddings of the anchor and the
positive image, Dan is the squared Euclidean distance between the embeddings of the anchor
and the negative image, and margin is a hyperparameter that represents the desired difference
between the distance of the anchor-positive pair and the anchor-negative pair. The margin in

Figure 2. Examples of images in the batch for Triplet loss.
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the current research is set to 1. To create triplets for training, a random image (anchor) is
initially selected. Then, an image from the same class (positive) is chosen (but not the same
image), followed by selecting an image from a different class (negative). An example batch of
8 items is presented in Figure 2.

Although the Triplet loss function has shown excellent results, there are other methods that
offer alternative approaches to Siamese networks. In this research, the CosFace loss function is
proposed as a primary alternative to Triplet loss. CosFace reformulates the Softmax loss into
a cosine loss by L2 normalizing both features and weight vectors to eliminate radial variations.
This normalization allows for the introduction of a cosine margin term, which further maximizes
the decision margin in angular space. Consequently, this approach achieves minimal intra-class
variance and maximal inter-class variance through normalization and the maximization of the
cosine decision margin. This can be formulated as shown in Eq. (2):

Lcf = − 1

N

N∑
i=1

log
es(cos(θyi,i)−m)

es(cos(θyi,i)−m) +
∑
j ̸=yi

es cos(θj ,i)
, (2)

subject to

W =
W ∗

∥W ∗∥
,

x =
x∗

∥x∗∥
,

cos (θj,i) = W T
j xi,

(3)

where N is the number of training samples, xi is the ith feature vector corresponding to the
ground-truth class of yi, Wj is the weight vector of the jth class. The θj is the angle between Wj

and xi, m is the margin that controls the cosine margin, and s is the scale parameter, used
to scale the logits for numerical stability and gradient control. In the original paper, the
margin m was varied between 0.25 and 0.45, while the scale s was set to 64. However, in
current research settings, the margin m is fixed at 0.7 and the scale s is kept at 64. In
this research, we will compare the quality of embeddings extracted by networks trained using
CosFace loss and Triplet loss. After training the feature extractors, similar classification layers
will be added to the networks, and statistical metrics will be calculated to assess performance.
The effects of data augmentation and normalization can vary depending on the data domain
and methods used. We will calculate normalization parameters specific to our dataset and
apply them during training. Additionally, we will evaluate popular augmentation techniques
relevant to our domain, including vertical flip, horizontal flip, and color jitter. The dataset
is split into 80% for training and 20% for testing to derive results. Model performance is
evaluated using metrics such as accuracy, weighted average precision, recall, and F1-score, with
results averaged over 10 runs. Accuracy measures the percentage of correct predictions and is
calculated as follows:

Accuracy =
TP + TN

TP + FP + TN+ FN
, (4)

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
Weighted-average metrics account for the number of samples in each class, calculated as the
sum of metrics multiplied by the weights of each class. Basic recall, or True Positive Rate
(TPR), is calculated as

Recall =
TP

TP + FN
. (5)
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Precision is calculated as
Precision =

TP

TP + FP
. (6)

The F1-score, which is the harmonic mean of recall and precision, is given by

F1 =
2× Precision× Recall

Precision× Recall
. (7)

The experiments will be conducted using the heterogeneous infrastructure at the Joint Institute
for Nuclear Research [27], utilizing NVIDIA Volta V100 GPUs with 512 GB of RAM.

3. Results and discussion

In the first stage, the weights of the selected backbone networks were frozen. The classi-
fication component of the networks was replaced with two linear layers followed by a ReLU
activation function. The networks were trained for 50 epochs with a batch size of 64 using
the CrossEntropy loss function and the Adam optimizer with a learning rate of 0.0001. No
data augmentation was applied, and normalization parameters from ImageNet were used for
the training data.

The accuracy and F1-score for MobileNet_v2 were 69.78% and 0.70, respectively, while
for ConvNeXt, these metrics were 78.20% and 0.78. It is evident that the larger ConvNeXt
outperforms the lighter MobileNet_v2. However, it was uncertain how these networks would
perform when fully trained on plant disease images.

In the second stage, the backbone networks were trained with Triplet loss and CosFace loss
functions for 30 epochs with a batch size of 64. The size of the embedding vector for each
network was set to 1280. The loss chart is presented in Figure 3.

Figure 3. Evaluation of loss during 30 epochs of training: a) MobileNet_v2 with Triplet loss;
b) MobileNet_v2 with CosFace loss; c) ConvNeXt with Triplet loss; d) ConvNeXt with CosFace loss.

Both networks exhibit good convergence and display similar training behavior. The loss
curve for the cosine-based loss function is notably smoother, which may be attributed to the
specific data preparation process used with Triplet loss. At this stage, accuracy metrics are not
available; only loss trends are observed. To gain insights into the nature of the embeddings,
visualization techniques such as t-SNE [28] or Principal Component Analysis (PCA) can be
employed. t-SNE converts similarities between data points into joint probabilities and aims to
minimize the Kullback–Leibler divergence between the joint probabilities of the low-dimensional
embedding and the high-dimensional data. 3D plots were utilized to assess the embedding
extraction capabilities of the models, as shown in Figure 4.

The dataset comprises 46 classes, which can make color differentiation challenging. Nonethe-
less, the embeddings are clearly separated regardless of the base network or training approach
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Figure 4. t-SNE visualization of embeddings extracted by the models: a) MobileNet_v2 with Triplet
loss; b) MobileNet_v2 with CosFace loss; c) ConvNeXt with Triplet loss; d) ConvNeXt with CosFace
loss.

used. Although this is just one form of visualization, some observations can be made. Embed-
dings of the same class extracted by the network trained with CosFace loss are positioned closer
together no matter which base network was used. At the same time, embeddings extracted us-
ing the ConvNeXt architecture show a more distinct distribution in the feature space, with
representatives of the same class clustered more closely, while the centers of different classes
are more distinctly separated. However, this observation does not guarantee that the networks
will exhibit the same performance in classification tasks.

To assess the evaluation metrics, the feature extraction component was integrated with
the classification component. This integration involved two linear layers with a ReLU activa-
tion function and a dropout rate of 0.2. The networks were trained for 20 epochs using the
CrossEntropy loss function and the Adam optimizer with a learning rate of 0.0001. The accu-
racy and F1-score for MobileNet_v2 were 75.52% and 0.76 for Triplet loss, and 77.43% and 0.78
for CosFace loss. For ConvNeXt_base_v2, the accuracy and F1-score were 82.79% and 0.83 for
Triplet loss, and 86.27% and 0.87 for CosFace loss. These results significantly outperform those
achieved with simple transfer learning. The more substantial ConvNeXt architecture surpasses
MobileNet, leading to further research being focused solely on ConvNeXt.
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The next step involved evaluating the effect of data augmentation. Three augmentation
techniques were applied: vertical flip and horizontal flip, each with a probability of 0.5, and
ColorJitter with parameters set to brightness = (0.5, 1.5), contrast = (0.8, 1.2), saturation= 0,
and hue= 0. The experiment revealed a decrease in accuracy to 83.93% and an F1-score of
0.84. Although there are many data augmentation methods and policies available, evaluating
the entire list is beyond the scope of this research.

Following this, the impact of data normalization was assessed. Normalization parameters
for the entire dataset were calculated as follows: mean = [0.4467, 0.4889, 0.3267] and std =
[0.2299, 0.2224, 0.2289]. Training the models with these normalization parameters showed a
significant improvement, with accuracy increasing to 88.35% and F1-score rising to 0.9. The
evaluation of model parameters during training is presented in Figure 5, while the combined
metrics for the networks are summarized in Table 1.

It is evident that the metrics are approaching a plateau, leaving little room for further model
improvement during training.

Figure 5. Evaluation of model metrics (validation loss and validation accuracy) during the training
of ConvNeXt with CosFace loss: a) without augmentation and normalization; b) with augmentation
but without normalization; c) without augmentation but with normalization.

Table 1. Combined metrics of the models presented in the study (wa — weighted average).

Accuracy wa precision wa recall wa F1-score
MobileNet_v2 TL 69.78 0.73 0.70 0.70
ConvNeXt_base TL 78.20 0.80 0.78 0.78
MobileNet_v2 Triplet loss 75.52 0.79 0.76 0.76
ConvNeXt_base Triplet loss 82.79 0.85 0.83 0.83
MobileNet_v2 CosFace loss 77.43 0.79 0.77 0.77
ConvNeXt_base CosFace loss 86.27 0.88 0.86 0.86
ConvNeXt_base CosFace loss + augmentation 84.51 0.87 0.85 0.85
ConvNeXt_base CosFace loss + normalization 88.35 0.91 0.90 0.90
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Taking into account that there are 46 classes with some having as few as 30 images, an
accuracy of 88.35% is a notable result. At this stage of the research, the optimal pipeline for
plant disease classification is identified as using the ConvNeXt_base backbone network trained
with the Large Margin Cosine Loss on normalized images.

Resource consumption is also a critical consideration. ConvNeXt_base, being larger than
MobileNet_v2, requires more training time. Additionally, training with Triplet loss involves
processing image triplets, which makes it more time-consuming compared to CosFace loss.
Specifically, training MobileNet_v2 with Triplet loss takes approximately 9 min, while training
ConvNeXt_base with CosFace loss takes about 33 min. Given that the DoctorP platform
involves annual model retraining, 33 min for ConvNeXt_base is acceptable in exchange for
superior accuracy.

Future experiments could explore several avenues for further improvement. Incorporat-
ing attention mechanisms might enhance model performance by focusing on relevant features.
Additionally, Generative Adversarial Networks could be employed to generate synthetic data,
which could be useful for expanding the training dataset and potentially improving model
performance.

4. Conclusion

Disease classification is a crucial area of research due to its significant impact on food
security. The challenges posed by limited datasets and the similarities in disease symptoms
make traditional methods like transfer learning less effective. In this study, we utilized a
self-collected dataset from the DoctorP project, which includes 46 classes and 2615 images,
to identify the most effective pipeline for disease classification. The previously used method,
based on MobileNet_v2 and Triplet loss, proved inadequate as the dataset expanded. Our
new approach, employing the ConvNeXt_base model trained with CosFace loss on normalized
images, achieved an accuracy of 88.35% and an F1-score of 0.9. This improved pipeline has been
implemented in the DoctorP platform, enhancing its ability to diagnose issues with agricultural
and ornamental crops.

Conflict of Interest

The author declares no conflict of interest.

References

[1] R. Ramanjot, U. Mittal, A. Wadhawan, J. Singla, N. Z. Jhanjhi, R. M. Ghoniem, S. K. Ray, A. Ab-
delmaboud, Plant disease detection and classification: A systematic literature review, Sensors 23
(2023) 4769. doi: https://doi.org/10.3390/s23104769.

[2] S. Muhammad, S. Babar, E. Shaker, A. Akhtar, U. Asad, A. Fayadh, G. Tsanko, H. Tariq, A. Far-
man, An advanced deep learning models-based plant disease detection: A review of recent research,
Frontiers in Plant Science 14 (2023). doi: https://doi.org/10.3389/fpls.2023.1158933.

[3] J. V. A. Porto, A. C. Dorsa, V. A. M. Weber, K. R. A. Porto, H. Pistori, Usage of few-shot
learning and meta-learning in agriculture: A literature review, Smart Agricultural Technology 5
(2023) 100307. doi: https://doi.org/10.1016/j.atech.2023.100307.

[4] M. Dyrmann, H. Karstoft, H. S. Midtiby, Plant species classification using deep convolutional
neural networks, Biosystems Engineering 151 (2016) 72–80. doi: https://doi.org/10.1016/j.
biosystemseng.2016.08.002.

9

https://doi.org/10.3390/s23104769
https://doi.org/10.3389/fpls.2023.1158933
https://doi.org/10.1016/j.atech.2023.100307
https://doi.org/10.1016/j.biosystemseng.2016.08.002
https://doi.org/10.1016/j.biosystemseng.2016.08.002


A. Uzhinskiy Natural Sci. Rev. 2 100201 (2025)

[5] A. K. Abasi, S. N. Makhadmeh, O. A. Alomari, M. Tubishat, H. J. Mohammed, Enhancing rice
leaf disease classification: A customized convolutional neural network approach, Sustainability 15
(2023) 15039. doi: https://doi.org/10.3390/su152015039.

[6] K. P. Ferentinos, Deep learning models for plant disease detection and diagnosis, Computers and
Electronics in Agriculture 145 (2018) 311–318. doi: https://doi.org/10.1016/j.compag.2018.
01.009.

[7] A. Picon, M. Seitz, A. Alvarez-Gila, P. Mohnke, A. Ortiz-Barredo, J. Echazarra, Crop conditional
convolutional neural networks for massive multi-crop plant disease classification over cell phone
acquired images taken on real field conditions, Computers and Electronics in Agriculture 167
(2019) 105093. doi: https://doi.org/10.1016/j.compag.2019.105093.

[8] F. Adnan, M. J. Awan, A. Mahmoud, H. Nobanee, A. Yasin, A. M. Zain, EfficientNetB3-adaptive
augmented deep learning (AADL) for multi-class plant disease classification, IEEE Access 11
(2023) 85426–85440. doi: https://doi.org/10.1109/ACCESS.2023.3303131.

[9] D. P. Hughes, M. Salathe, An open access repository of images on plant health to enable the
development of mobile disease diagnostics, arXiv (2015). arXiv:1511.08060, doi: https://arxiv.
org/abs/1511.08060.

[10] Y. Lu, X. Tao, N. Zeng, J. Du, R. Shang, Enhanced CNN classification capability for small rice
disease datasets using progressive WGAN-GP: Algorithms and applications, Remote Sensing 15
(2023) 1789. doi: https://doi.org/10.3390/rs15071789.

[11] Y. Wang, Y. Yin, Y. Li, T. Qu, Z. Guo, M. Peng, S. Jia, Q. Wang, W. Zhang, F. Li, Classification
of plant leaf disease recognition based on self-supervised learning, Agronomy 14 (2024) 500. doi:
https://doi.org/10.3390/agronomy14030500.

[12] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei-Fei, ImageNet: A large-scale hierarchical image
database, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Miami, FL, USA, 2009, pp. 248–255. doi: https://doi.org/10.1109/CVPR.2009.5206848.

[13] G. Koch, R. Zemel, R. Salakhutdinov, Siamese neural networks for one-shot image recognition,
in: Proceedings of the ICML Deep Learning Workshop, Lille, France, 2015, pp. 1–8.
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