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Abstract

This introductory review is devoted to the newest section of the theory of symmetries — the theory
of quantum groups. The principles of the theory of quantum groups are reviewed from the point of
view of the possibility of their use for deformations of symmetries in physics models. The R-mat-
rix approach to the theory of quantum groups is discussed in detail and is taken as the basis of the
quantization of classical Lie groups, as well as some Lie supergroups. We start by laying out the
foundations of noncommutative and noncocommutative Hopf algebras. Much attention has been paid
to the Hecke and Birman-Murakami-Wenzl (BMW) R-matrices and related quantum matrix algebras.
Noncommutative differential geometry on quantum groups of special types is discussed. Trigonometric
solutions of the Yang-Baxter equations associated with the quantum groups GL4(N), SO4(N), Spy(2n)
and supergroups GLq(N|M), Ospy(N|2m), as well as their rational (Yangian) limits, are presented.
Rational R-matrices for exceptional Lie algebras and elliptic solutions of the Yang—Baxter equation are
also considered. The basic concepts of the group algebra of the braid group and its finite-dimensional
quotients (such as the Hecke and BMW algebras) are outlined. A sketch of the representation theories
of the Hecke and BMW algebras is given, including methods for finding idempotents (quantum Young
projectors) and their quantum dimensions. Applications of the theory of quantum groups and Yang—
Baxter equations in various areas of theoretical physics are briefly discussed.

This is a modified version of the review paper published in 2004 as a preprint [47] of the Max-
Planck-Institut fiir Mathematik (MPIM) in Bonn.
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1. Introduction

In modern theoretical and mathematical physics, the ideas of symmetry and invariance play
a very important role. Sets of symmetry transformations form groups, and therefore the most
natural language for describing symmetries is the group theory language.

About 40 years ago, in the study of quantum integrable systems [1-5], in particular, in the
framework of the quantum inverse scattering method [6-9], new algebraic structures arose, the
generalizations of which were later called quantum groups [10]'. Yang-Baxter equations (which
firstly appeared and were used in |2, 3|) became a unifying basis of all these investigations. The
history of the creation of the quantum inverse scattering method and the origin of the term
“Yang-Baxter equation” are described in the review [11], Section 5.

The most important nontrivial examples of quantum groups are quantizations (or deforma-
tions) of ordinary classical Lie groups and algebras (more precisely, one considers the deforma-
tions of the algebra of functions of a Lie group and the universal enveloping of a Lie algebra;
see, e.g., [113, 114]). The quantization is accompanied by the introduction of an additional
parameter ¢ (the deformation parameter), which plays a role analogous to the role of Planck’s

'In pure mathematics, analogous structures appeared as nontrivial examples of “ring-groups” introduced by
G. Kac; see, e.g., [62] and references therein.
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constant in quantum mechanics. In the special limit ¢ — 1, the quantum groups and algebras
go over into the classical ones. Although quantum groups are deformations of the usual groups,
they nevertheless still possess several properties that make it possible to speak of them as of
“symmetry groups”. Moreover, one can claim that the quantum groups serve as symmetries and
provide integrability in exactly solvable quantum systems (see, e.g., [12-14])%. In this connec-
tion, the idea naturally arises of looking for and constructing other physical models possessing
such quantum symmetries. Some of the realizations of this idea use the similarity of the repre-
sentation theories of quantum and classical Lie groups and algebras (for ¢ not equal to the root
of unity). Thus, there were attempts to apply quantum groups and algebras in the classification
and phenomenology of elementary particles and in nuclear spectroscopy investigations. Further,
it is natural to investigate already existing field-theoretical models (especially gauge quantum
field theories) from the point of view of relations (see, e.g., [16, 17]) to the noncommutative
geometry [15]°> and, in particular, the possibility of their invariance with respect to quantum-
group transformations. An attractive idea is that of relating the deformation parameters of
quantum groups to the mixing angles that occur in the Standard Model as free parameters.
One of the possible realizations of this idea was proposed in [21] (see also [22]). Of course, it
is necessary to mention here numerous attempts to deform Lorentz and Poincaré groups and
construct a covariant quantum Minkowski space—time corresponding to these deformations [23—
31]. Finally, promising studies of Yangian symmetries of planar Feynman graphs and scattering
amplitudes in supersymmetric Yang-Mills theories should be noted (see, e.g., [32—40]; see also
the review [41] and references therein).

It is clear that the approaches listed above (associated with deformations of symmetries in
physics) present only a small fraction of all the applications of the theory of quantum groups.
Quantum groups and Yang—Baxter equations naturally arise in many problems of theoretical
physics, and this makes it possible to speak of them and their theories as of an important
paradigm in mathematical physics. Unfortunately, the strict limits of this review make it im-
possible to discuss in detail all applications of quantum groups and Yang—Baxter equations.
We have therefore restricted ourselves to a brief listing of certain areas in theoretical and
mathematical physics in which quantum groups and Yang—Baxter equations play an important
role. The incomplete list is given in Section 5. In Section 2, the mathematical foundations
of the theory of quantum groups are outlined. A significant part of Section 3 is a detailed
exposition of the results of the famous work by Faddeev, Reshetikhin, and Takhtajan [42] who
formulated the R-matrix approach to the theory of quantum groups. In Section 3, we also
consider R-matrix formulation of link and knot invariants, problems of invariant Baxterization
of R-matrices, multiparameter deformations of Lie groups, the quantization of some Lie super-
groups, and various aspects of differential geometry on special types of quantum groups. The
rational solutions of the Yang—Baxter equation for exceptional Lie algebras are also considered
in Section 3. At the end of Section 3, we present the basic notions of the theory of quantum
Knizhnik—Zamolodchikov equations and discuss elliptic solutions of the Yang—Baxter equation
for which the algebraic basis (the type of quantum universal enveloping Lie algebras U,(g) in
the case of trigonometric solutions) has not yet been completely clarified (see, however, [43-45]).
In Section 4, we briefly discuss the group algebra of a braid group and its finite-dimensional
quotients such as the Hecke and Birman-Murakami-Wenzl (BMW) algebras. The Hecke and
BMW algebras are, respectively, quantum analogs of the group algebra of the permutation

2The Yangian symmetries are the symmetries of the same type.
3After the quantization of any Poisson manifold [18] and the appearance of papers [19, 20], the subject of
field theories on noncommutative spaces became very popular from the point of view of string theories.

4
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group and the Brauer algebra. A sketch of the representation theories of the Hecke and BMW
algebras is given (including methods for finding idempotents and their quantum dimensions).
The representation theories of the Hecke and BMW algebras are important for understanding
of the quantum analog of Schur-Weyl and Schur-Weyl-Brauer dualities for linear and orthog-
onal /simplectic quantum groups. The part of the content of Section 4 can be considered as a
different presentation of some facts from Section 3. In Section 5, some applications of quantum
groups and Yang-Baxter equations are outlined.

This introductory review is based on the paper [46] and the MPIM (Bonn) preprint [47]
published in 1995 and 2004, respectively. An extended version of the preprint [47] is available
in [48]. Comparing to the previous version [47], this text has been considerably changed only
in Subsections 3.1, 3.2, 3.4.3, 3.8, 4.3.6, and 5.3. The structure of the review has also been
significantly modified. Three new Subsections 3.5.3, 3.13, and 4.5 have been added, and
Subsection 4.4 has been extended. In the course of the presentation, we have also tried briefly
mention some of the new results. According to this, we have refreshed the list of references.
Among the added references, we highlight the paper [11|, where Section 6 provides a brief
overview of the quantum group theory, including a discussion of the quantum dilogarithm and
Faddeev’s modular double.

2. Hopf algebras

2.1. Coalgebras

We consider an associative unital algebra A (over the field of complex numbers C; in what
follows, all algebras that are introduced will also be understood to be over the field of complex
numbers). Each element of A can be expressed as a linear combination of basis elements e; € A,
where ¢ = 1,2, 3, ..., and the identity element [ is given by the formula

I=FE'e (E'€QC)

(we imply summation over repeated indices). Then for any two elements e; and e;, we define
their multiplication in the form

A A" A = ei-ej:mfjek, (2.1.1)

where mfj is a certain set of complex numbers that satisfy the condition

ik _ ki _ sk
E’mij = mjiEZ = 53‘ (2.1.2)
for the identity element, and also the condition
l -
Mg, = Mgy, = misy (2.1.3)
that is equivalent to the condition of associativity for the algebra A:

(eiej)er = eiejex). (2.1.4)

The condition of associativity (2.1.4) for the multiplication (2.1.1) can obviously be represented
in the form of the commutativity of the diagram in Figure 1:
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idR@m
AR A A A A
m & id m
m
A A A

Figure 1. Associativity axiom.

In Figure 1, the map m represents multiplication: A® A — A, and id denotes the identity
mapping. The existence of the unit element I means that one can define a mapping i: C — A
(embedding of C in A)

k—sk-I, keC. (2.1.5)

For I we have the condition (2.1.2), which is visualized as the diagram in Figure 2:

A® A

i®z'y ‘Yd@i
m

CoA A®C
\ / /
Figure 2. Axioms for the identity.

Here the mappings
CoA+— A and ARC+ A (2.1.6)

are natural isomorphisms. One of the advantages of the diagrammatic language used here is
that it leads directly to the definition of a new fundamental object — the coalgebra — if we
reverse all the arrows in the diagrams of Figures 1 and 2.

Definition 1. A coalgebra C is a vector space (with the basis {e;}) equipped with the mapping
A:C—Cx®C .
Ale;) = AVe, @ ¢, (2.1.7)

which is called the comultiplication, and also equipped with the mapping ¢ : C — C, which
1s called the coidentity. The coalgebra C s called coassociative if the mapping A satisfies the
condition of coassociativity (cf. the diagram in Figure 1 with the arrows reversed and the symbol
m changed to A)

(id® M)A = (A®id)A = AMANT = AUAPE = ATH (2.1.8)

The coidentity € must satisfy the following conditions (cf. the diagram in Figure 2 with arrows
reversed and symbols m,i changed to A, €)

m((e®id)AC)) =m((id® e )A(C)) =C = A =Ale = 0. (2.1.9)

Here m realizes the natural isomorphisms (2.1.6) as a multiplication map: m(c® e;) = m(e; ®
c)=c-e; (Vee C), and the complex numbers €; are determined from the relations e(e;) = €;.

For algebras and coalgebras, the concepts of modules and comodules can be introduced.
Thus, if A is an algebra, the left A-module can be defined as a vector space N and a mapping v:
A® N — N (action of A on N) such that the diagrams in Figure 3 are commutative.

6



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

ARAR N A® N i®id .
m ® id M Ce® N

Figure 3. Axioms for the left A-module.

In other words, the space N is the representation space of the algebra A.

If N is a (co)algebra and the mapping 1 preserves the (co)algebraic structure of N (see be-
low), then N is called the left A-module (co)algebra. The concept of the right module (co)algebra
is introduced similarly. If N is simultaneously the left and the right A-module, then N is called
the two-sided A-module. It is obvious that the algebra A itself is a two-sided A-module for
which the left and right actions are given by the left and right multiplications in the algebra.

Now suppose that C is a coalgebra; then a left C-comodule can be defined as a space M
together with a mapping Ap: M — C ® M (coaction of C on M) satisfying the axioms in
Figure 4 (in the diagrams of Figure 3, where the modules were defined, it is necessary to
reverse all the arrows):

CM
CRCM CoM e®iii/
Ap

A
Co M L M \M

Figure 4. Axioms for the left A-comodule.

id ® Ap

If M is a (co)algebra and the mapping Ay, preserves the (co)algebraic structure (for example,
is a homomorphism; see below), then M is called a left C-comodule (co)algebra. The right
comodules are introduced similarly, after which two-sided comodules are defined in the natural
manner. [t is obvious that the coalgebra C is a two-sided C-comodule.

Let V, V be two vector spaces with bases {e;}, {é:i}. We denote by V*, V* the corresponding
dual linear spaces whose basis elements are linear functionals {¢'} : V — C, {¢'} : V — C. For
the values of these functionals, we use the expressions (¢’ |e;) and (¢ |é;). For every mapping L:
V — V it is possible to define a unique mapping L* : V* — V* induced by the equations

(€' [L(e;)) = (L(&') lej), (2.1.10)
if the matrix (€’|e;) is invertible. In addition, for the dual objects there exists the linear
injection

p: VoV — (VeV),
which is given by the equations
(ple’ @ &) lex, @ &) = (€' |ex) (&' |&1).

A consequence of these facts is that for every coalgebra (C, A, €), it is possible to define an
algebra C* = A (as dual object to C) with multiplication m = A* - p and the unit element [
that satisfy the relations (Va,a’ € A, Ve € C):

(alecay){d'le@) = (pla @ a)|A(c)) = (A" - pla®@d)c) = {a-a'[c),  (I]c) = €(c).

7
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Here we denote a - a’ := A* - p(a ® a’) and use the convenient Sweedler notation of [11] for
comultiplication in C (cf. Eq. (2.1.7)):
Ale) =) ey @ e (2.1.11)

The summation symbol > will usually be omitted in the equations. We also use the Sweedler
notation for the left and right coactions Az (v) = 97V ® v and Az(v) = v @ oV where
index (0) is reserved for the comodule elements and summation symbols ) are also omitted.

Thus, duality in the diagrammatic definitions of the algebras and coalgebras (reversal of the
arrows) has, in particular, the consequence that the algebras and coalgebras are indeed duals
to each other.

It is natural to expect that an analogous duality can also be traced for modules and co-
modules. Let V be a left comodule for C. Then the left coaction of C on V: v Y, 90V ®
0@ (-1 e ¢, v® € V) induces the right action of C* = A on V:

(v,a) — wv<a={(a|t"V) 0O, a€c A,

and therefore V is a right module for A. Conversely, the right coaction of C on V: v — v @u(")
induces the left action of A =C* on V:

(a,v) +— avv=0alzW).

From this we immediately conclude that the coassociative coalgebra C (which coacts on itself
by the coproduct) is a natural module for its dual algebra A = C*. Indeed, the right action
C ® A — C is determined by the equations

(c,a) = c<a=(alcq))cp), (2.1.12)
whereas for the left action A ® C — C we have
(a,c) = av>c=culalcy)). (2.1.13)

Here a € A and ¢ € C. The module axioms (shown as the diagrams in Figure 3) hold by virtue
of the coassociativity of C.

Finally, we note that the action of a certain algebra H on C from the left (from the right)
induces an action of H on A = C* from the right (from the left). This obviously follows from
relations of the type (2.1.10).

2.2. Bialgebras

So-called bialgebras are the next important objects that are used in the theory of quantum
groups.

Definition 2. An associative algebra A with identity that is simultaneously a coassociative
coalgebra with coidentity is called a bialgebra if the algebraic and coalgebraic structures are
self-consistent. Namely, the comultiplication and coidentity must be homomorphisms of the
algebras:

Ale;) Aley) = mbEA(er) = A ATl by, = mb AFE (2.2.1)

J v

AD) =11, ele;-e;)=c¢le)elej), €I)=E"¢=1.

8
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Note that for every bialgebra we have a certain freedom in the definition of the multiplica-
tion (2.1.1) and the comultiplication (2.1.7). Indeed, all the axioms (2.1.3), (2.1.8), and (2.2.1)
are satisfied if instead of (2.1.1) we take

_ k

or instead of (2.1.7) we choose '
A%(e)) = Al e @ ¢ (2.2.2)

(such algebras are denoted as AP and A“P, respectively). Then the algebra A is called non-
commutative if mfj + m?i, and noncocommutative if A?j + Afj

In quantum physics, it is usually assumed that all algebras of observables are bialgebras.
Indeed, a coalgebraic structure is needed to define the action of the algebra A of observables on
the state [1)1) ® |1) of the system that is the composite system formed from two independent
systems with wave functions |¢);) and |1s):

at (Y1) @ [2)) = Ala) (Y1) @ [12)) = aq) [¥1) @ ap) [1h2)  (Va € A). (2.2.3)

In other words, for bialgebras it is possible to formulate a theory of representations in which
new representations can be constructed by direct multiplication of old ones.

A classical example of a bialgebra is the universal enveloping algebra of a Lie algebra g,
in particular, the spin algebra su(2) in three-dimensional space. To demonstrate this, we
consider the Lie algebra g with generators J, (o =1,2,3,...), that satisfy the antisymmetric
multiplication rule (defining relations)

[Jar T = €157, (2.2.4)

Here t! 5= —tga are structure constants which satisfy Jacoby identity. The enveloping algebra
of this algebra is the algebra U(g) with basis elements consisting of the identity I and the
elements e; = J,, -+ J,, Vn > 1, where the products of the generators J are ordered lexico-
graphically, i.e., a1 < ay < ... < a,. The coalgebraic structure for the algebra U(g) is specified
by means of the mappings

A(Jo) = Ja @ T+T®@ Joy  e(Jo) =0, €(I)=1, (2.2.5)

which satisfy all the axioms of a bialgebra. The mapping A in (2.2.5) is none other than
the rule for addition of spins. In fact, one can quantize the coalgebraic structure (2.2.5) for
universal enveloping algebra U(g) and consider the noncocommutative comultiplications A.
Such quantizations will be considered below in Subsection 3.3 and lead to the definition of Lie
bialgebras.

Considering exponentials of elements of a Lie algebra, one can arrive at the definition of a
group bialgebra of the group G with structure mappings

AR =hoh, eh) =1 (VheQ), (2.2.6)

which obviously follow from (2.2.5). The next important example of a bialgebra is the algebra
A(G) of functions f on a group (f : G — C). This algebra is dual to the group algebra of the
group G, and its structure mappings have the form (f, f' € A(G); h,l € G):

(f - fOR) = f(R)f'(R), f(h-h) = (A (R ) = fay(h) fiy(B),  e(f) = f(1),  (2.2.7)

9
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where I is the identity element in the group G. In particular, if the functions T]’ realize a
matrix representation of the group G, then we have

Tj(hb') = Ti(WTf (W) = A(T)) =T, Ty}, (2.2.8)

(the functions T} can be regarded as generators of a subalgebra in the algebra A(G)). Note
that if g is non-Abelian, then U(g) and G are noncommutative but cocommutative bialgebras,
whereas A(G) is a commutative but noncocommutative bialgebra. Anticipating, we mention
that the most interesting quantum groups are associated with noncommutative and noncocom-
mutative bialgebras.

It is obvious that for a bialgebra H it is also possible to introduce the concepts of left
(co)modules and (co)module (co)algebras (right (co)modules and (co)module (co)algebras are
introduced in exactly the same way). Moreover, for the bialgebra H it is possible to introduce
the concept of a left (right) bimodule B, i.e., a left (right) H-module that is simultaneously
a left (right) H-comodule; at the same time, the module and comodule structures must be
self-consistent:

Ap(Hv> B) = A(H)>AL(B),

(e@id)AL(h)=b, be B,

where Ap(b) = bV @b and bV € H, b® € B. On the other hand, in the case of bialgebras,
the conditions of conserving of the (co)algebraic structure of (co)modules can be represented in
a more explicit form. For example, for the left H-module algebra A we have (a,b € A; h € H):

h> (ab) = (hay>a)(h@>b), hols=e(h)la.
In addition, for the left H-module coalgebra A we must have
A(hea) = A(h)> Ala) = (ha) > ap)) @ (he > a), e(h>a) = e(h)e(a).
Similarly, the algebra A is a left H-comodule algebra if
Ap(ab) = Ap(a) Ap(b), Ap(ls) =1y ® Iq,
and, finally, the coalgebra A is a left H-comodule coalgebra if
(1d @ A)Ap(a) = my(AL @ Ap)A(a), (id® es)Ar(a) = Iyea(a), (2.2.9)

where B
mu(AL @ Ap)(a®b) =a" Y @ 0@ @ b0,

We now consider the bialgebra H, which acts on a certain module algebra A. One further
important property of bialgebras is that we can define a new associative algebra AfH as the
cross product (smash product) of A and H. Namely:

Definition 3. The left smash product AfH of the bialgebra H and its left module algebra A is
an associative algebra such that:

1) as a vector space, AfH is identical to A& H,;
2) the product is defined in the sense (h,g € H; a,b € A):

(atg) (bth) = Y alga) > D)i(gyh) = (at]) (Alg) > (bzh) ; (2:2.10)
3) the identity element is If1.

10
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If the algebra A is the bialgebra dual to the bialgebra H, then the relations (2.2.10) and (2.1.13)
define the rules for interchanging the elements (/tg) and (afl):

(Itg) (afl) = (ayt]) (g)lae) ([Hg@e))- (2.2.11)

Thus, the subalgebras A and ‘H in AfH do not commute with each other. The smash product
depends on which action (left or right) of the algebra H on A we choose. In addition, the
smash product generalizes the concept of the semidirect product. In particular, if we take as
bialgebra H the Lorentz group algebra (see (2.2.6)), and as module A the group of translations
in Minkowski space, then the smash product A4 H defines the structure of the Poincare group.

The coanalog of the smash product, the smash coproduct AfH, can also be defined. For
this, we consider the bialgebra H and its comodule coalgebra A. Then on the space A ® H it
is possible to define the structure of a coassociative coalgebra

Alagh) = (e fag ha) @ (ag) the),  elath) = e(a)e(h). (2.2.12)

The proof of the coassociativity reduces to verification of the identity
(my (AL ® Ay) ®id)(id @ AL)Ay(a) = (id @ id @ Ar)(id @ Aq)AL(a),
which is satisfied if we take into account the axiom (2.2.9) and the comodule axiom
(td @ Ap)Ar(a) = (Ay ® id)Ar(a). (2.2.13)

Note that from the two bialgebras A and H, which act and coact on each other in a special
manner, it is possible to organize a new bialgebra that is simultaneously the smash product
and smash coproduct of A and H (bicross product; see [52]).

2.3. Hopf algebras. Universal R-matrices

We can now introduce the main concept in the theory of quantum groups, namely, the
concept of the Hopf algebra.

Definition 4. A bialgebra A equipped with an additional mapping S : A — A such that

m(S @id)A =m(id® S)A=1i-€=

S(aqy) ap) = aq)S(a@) =€la) - I (Va € A) (2.3.1)

1s called a Hopf algebra. The mapping S is called the antipode and is an antihomomorphism
with respect to both multiplication and comultiplication:

S(ab) = S(b)S(a), (S® S)A(a)=0c-A(S(a)), (2.3.2)
where a,b € A and o denotes the operator of transposition, o(a ® b) = (b ® a).

If we set

S(e:) = Sley, (2.3.3)

then the axiom (2.3.1) can be rewritten in the form

AL Sjmy,; = A Simi, = exE. (2.3.4)

11
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From the axioms for the structure mappings of a Hopf algebra, it is possible to obtain the useful
equations
SJZQ = €y, S]ZE] = Ei,
) ) (2.3.5)
AL (ST Iy, = A (ST mp, = e E,
which we shall use in what follows. Note that, in general, the antipode S is not necessarily
invertible. An invertible antipode is called bijective.

In quantum physics, the existence of the antipode S is needed to define a space of contragre-
dient states (1| (contragredient module of A) with pairing (|¢): (| ® |¢) — C. Left actions
of the Hopf algebra A of observables to the contragredient states are (cf. the actions (2.2.3)
of A to the states [11) ® [1)2)):

av (Y] == (| S(a) (a € A), (2.3.6)

a> (] @ () == (1] @ (2])A(S(a)) = (Y] S(a@) @ (o] S(aq))-

The states (1| are called left dual to the states |¢); the right dual ones are introduced with the
help of the inverse antipode S™! (see, e.g., |60, 61]). Then the covariance of the pairing (1|¢)
under the left action of A can be established:

at (Y]¢) = (aq) > (¥]) (a@) > [¢) = (¥[S(aq)) ap)@) = e(a)(¥|9),
at (Y1) (V2|d2) = a> ((U1] @ (V2])(|01) @ [¢2))
= (U1]S(ag))ae)|¢1) (1S (aq))aw|dr) = e(a) (Y1]or) €
The universal enveloping algebra U(g) and the group bialgebra of the group G that we
considered above can again serve as examples of cocommutative Hopf algebras. An example

of a commutative (but noncocommutative) Hopf algebra is the bialgebra A(G), which we also
considered above. The antipodes for these algebras have the form

2| ¢2).

Ug): S(Ja)=—Ju, SUI)=1I,
G: S(h)=h", (2.3.7)
A(G): S(f)(h) = f(h™1),

and satisfy the relation S? = id, which holds for all commutative or cocommutative Hopf
algebras.

From the point of view of the axiom (2.3.1), S(a) looks like the inverse of the element a,
although in the general case S? # id. We recall that if a set G of elements with associative
multiplication G ® G — G and with identity (semigroup) also contains all the inverse elements,
then such a set G becomes a group. Thus, from the point of view of the presence of the
mapping S, a Hopf algebra generalizes the notion of the group algebra (for which S(h) =
h~1), although by itself it obviously does not need to be a group algebra. In accordance with
Drinfeld’s definition [13], the concepts of a Hopf algebra and a quantum group are more or
less equivalent. Of course, the most interesting examples of quantum groups arise when one
considers noncommutative and noncocommutative Hopf algebras.

Consider a noncommutative Hopf algebra A which is also noncocommutative A # A°P =
o/, where o is the transposition operator o(a ® b) =b® a (Va,b € A).

12
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Definition 5. A Hopf algebra A for which there exists an invertible element R € A® A such
that
A%®(a) = RA(a)R™', Va€ A, (2.3.8)

(A®id)(R) = Ri13Rae3, (id®A)(R)=Ri3Ri2 (2.3.9)
15 called quasitriangular. Here the element
R = Z R(ij)ei ® e; (2.3.10)
]

is called the universal R-matriz, R € C are the constants and the symbols Ri2, R1s, Ras have
the meaning

R12 = ZR(U)&@e]’@I, R13 = ZR(U)Q’Q@[@G]-, 'R,23 — ZR(”)[®61®€J (2311)
gl ij ij

The relation (2.3.8) shows that the noncocommutativity in a quasitriangular Hopf algebra is
kept “under control”. It can be shown [51] that for such a Hopf algebra the universal R-mat-
rix (2.3.10) satisfies the Yang—Baxter equation

R12R13R23 = R23R13R12> (2312)

(to which a considerable part of the review will be devoted) and the relations

(id®e)R =(e®id)R =1, (2.3.13)
S®idR=R*' & (S'®idR'=R,
(2.3.14)
(idoSYR'=R & (deoSHR=R".
The Yang-Baxter equation (2.3.12) follows from (2.3.8) and (2.3.9):
ng ng Rgg - ng (A ® Zd) (R) - (AOP ® Zd) (R) ng - Rgg ng ng. (2315)

It is easy to derive the relations (2.3.13) by applying (e ® id ® id) and (id ® id ® ), respectively,
to the first and second relation in (2.3.9), and then taking into account (2.1.9). Next, we prove
the equalities in (2.3.14). We consider expressions R - (S ®id) R and R - (id ® S™!) R and make
use of the Hopf algebra axioms (2.3.1) and equations (2.3.9) and (2.3.13):

Ros - (id ® S ® id) Raz = (M2 ® ids) (Ris (id ® S ® id)Ra3) =
= (m12 ® id3) (id ® S ® id)Ri3 Raz = (m12 ® ids) ((id ® S)A®id)R = (i-e®id) R =1,

ng (Zd &® S_l) ng = (Zdl &® mgg) (Zd & id & 5_1)7?42 ng =
= (idy @ ma3) (id ® (id © STHAP)R = (id@i-€) R =1,
where the ultimate equality follows from (2.3.1) which is written in the form a@2)S™"(a@)) =
e(a)l.
The next important concept that we shall need in what follows is the concept of the Hopf

algebra A* that is the dual of the Hopf algebra A. We choose in A* basis elements {e'} and
define multiplication, identity, comultiplication, coidentity, and antipode for A* in the form

eed =mjle®, I =FEpe', Ale)=A @, ee)=¢, S()=>75e. (2.3.16)

13
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Definition 6. Two Hopf algebras A and A* with corresponding bases {e;} and {e'} are said
to be dual to each other if there exists a nondegenerate pairing {.|.): A* ® A — C such that

(e'eller) = (' @ /| Aler)) = (ei|ek/>A£/k"<ej|eku>,
(eflejer) = (A(e))|e; @ ex) = (€7 ]e;) AL (e |er), (2.3.17)

(S(eles) = (€'lS(eg)),  (e'll) = e(e"), (I]es) = e(eq).

Since the pairing (.|.) (2.3.17) is nondegenerate, we can always choose basis elements {e’} such
that 4 '
(e'lej) = ;. (2.3.18)

Then from the axioms for the pairing (2.3.17) and from the definitions of the structure maps
(2.1.1), (2.3.3), and (2.3.16) in A and A* we readily deduce

ij ij k k Gi T i F
Thus, the multiplication, identity, comultiplication, coidentity, and antipode in a Hopf algebra
define, respectively, comultiplication, coidentity, multiplication, identity, and antipode in the
dual Hopf algebra.

Remark. In [63], L. Pontryagin showed that the set of characters of an Abelian locally com-
pact group G is an Abelian group, called the dual group G* of G. The group G* is also locally
compact. Moreover, the dual group of G* is isomorphic to G. This beautiful theory becomes
wrong if G is a noncommutative group, even if it is finite. To restore the duality principle, one
can replace the set of characters for a finite noncommutative group G by the category of its
irreducible representations (irreducible representations for the commutative groups are exactly
characters). Indeed, T. Tannaka and M. Krein showed that the compact group G can be recov-
ered from the set of its irreducible unitary representations. They proved a duality theorem for
compact groups, involving irreducible representations of G (although no group-like structure
is to be put on that class, since the tensor product of two irreducible representations may no
longer be irreducible). However, the tensor product of two irreducible representations of the
compact group G can be expanded as a sum of irreducible representations and, thus, the dual
object has the structure of an algebra. Recall (see (2.2.8)) that matrix representations of group
G are realized by the sets of special functions T%. One can consider the group algebra G of
finite group G and the algebra A(G) = G* of functions on the group G as simplest examples
of the Hopf algebras. The structure mappings for these algebras have been defined in (2.2.6),
(2.2.7), and (2.3.7). Note that the algebras G and G* are Hopf dual to each other. The detailed
structure of G* follows from the representation theory of finite groups (see, e.g., [54]).

2.4. Heisenberg and quantum doubles. Yetter—Drinfeld modules

In Subsection 2.2, we have defined (see Definition 3) the notion of the smash (cross) product
of the bialgebra and its module algebra. Since the Hopf dual algebra A* is the natural right
and left module algebra for the Hopf algebra A (2.1.12), (2.1.13), one can immediately define
the right A*f.A and the left AfA* cross products of the algebra A on A*. These cross-product
algebras are called Heisenberg doubles of A and they are the associative algebras with nontrivial
cross-multiplication rules (cf. Eq. (2.2.11)):

aa = (aq >a)ae) = aq (aw | ae) ae), (2.4.1)

14
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da=am(@<ag) = aw (@ law)ae, (2.4.2)

where a € A and a € A*. Here we discuss only the left cross-product algebra AfA* (2.4.1) (the
other one (2.4.2) is considered analogously).

As in the previous subsection, we denote {e'} and {e;} as the dual basis elements of A*
and A, respectively. In terms of this basis, we rewrite (2.4.1) in the form

Let us define a right A*-coaction and a left A-coaction on the algebra AfA* such that these
coactions respect the algebra structure of AfA*:

Ar(2)=C(ze1)C™, ALz)=C"(1®2)C, C=e®ce. (2.4.4)
The inverse of the canonical element C' is
Clt=S5(e)®e" =e; @ S(e),
and Ag, Ap (2.4.4) are represented in the form
Ag(2) = (ex)y 2 Slere)) @, Ap(z) =€, ® S(e’(“l)) Ze@). (2.4.5)

Note that Ag(z) = A(2) Vz € A" and AL(z) = A(z) Vz € A (here A and A* are understood as
the Hopf subalgebras in AfA* and A are corresponding comultiplications). Indeed, for z € A
we have

AL(z) =€, ® S(e’{l)) 2 e’é) =€, ® S(e'("’l)) e'(‘“Q) (2 | e’(“3)>z(2) =

= ex (2 | €") ® 22) = 20) ® 22,
(the proof of Ag(z) = A(Z2) is similar). The axioms

(id® A)Ap = (Ap®@id)Ap, (id® ALAL = (A @id)Ay,

(Zd & AR)AL<Z) = 01_31 (AL & Zd)AR(Z) 013
can be verified directly by using relations (cf. (2.3.9))

(id @ A)Chg = C13Co3, (A ®id)Cia = C13Co;
and the pentagon identity |55, 56] for C:
C12 C13 Cy3 = Co3 Ca. (2.4.6)
The proof of (2.4.6) is straightforward (see (2.4.3)):
CioCi3Cy=eie;@c ey @e " =e,@mle ey Af @e =

=e,Re.e"®e" = CyyCha.

The pentagon identity (2.4.6) is used for the construction of the explicit solutions of the tetra-
hedron equations (3D generalizations of Yang-Baxter equations).

Although A and A* are Hopf algebras, their Heisenberg doubles AfA*, A*#A are not Hopf
algebras. But as we have just seen before, the algebra AfA* (as well as A*f.A) still possesses

15
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some covariance properties, since the coactions (2.4.4) are covariant transformations (homo-
morphisms) of the algebra Af.A*.

The natural question is the following: is it possible to invent such a cross-product of the
Hopf algebra and its dual Hopf algebra to obtain a new Hopf algebra? V. Drinfeld [10] showed
that there exists a quasitriangular Hopf algebra D(.A) that is a special smash product of the
Hopf algebras A and A% D(A) = A x A° which is called the quantum double. Here we
denote by A° the algebra A* with opposite comultiplication: A(e’) = mj e/ @ e, A° = (A*)P.
It follows from (2.3.5) that the antipode for .A° will be not S but the skew antipode S~'. Thus,
the structure mappings for A° have the form

el = AjeF, Ale') = mzjej ®e* S(e') = (S_l)§ej. (2.4.7)
The algebras A and A° are said to be antidual, and for them we can introduce the antidual
pairing ((.|.)): A°® A — C, which satisfies the conditions

((ee’lex)) = ((e' @ €| Alen))) = AY,
({e'lexe;))

((S(e)leg)) = {{e'S7Hes))) = (575 (2.4.8)

(A(e)]e; @ ex)) = my;,

elD) = B, ({Tles)) = e
The universal R-matrix can be expressed in the form of the canonical element
R=(e;x 1)@ (I xe), (2.4.9)
and the multiplication in D(A) is defined in accordance with (the summation signs are omitted)
(ax a)(bx B)=a((az>b)<S(am)) X amb, (2.4.10)
where o, f € A% a,b e A, A*(a) = aq) @ ap) @ a) and
atb=buy((albz)), baa= ({albw))bp). (2.4.11)

The coalgebraic structure on the quantum double is defined by the direct product of the
coalgebraic structures on the Hopf algebras A and A°:

Ale; X el) = Ale; x AL x €?) = A?km{p(en X eP) @ (e ™ €b). (2.4.12)
Finally, the antipode and coidentity for D(A) have the form
S(a x a)=5(a) x S(a), €lax a)=c¢la)ea). (2.4.13)

All the axioms of a Hopf algebra can be verified for D(A) by direct calculation. A simple
proof of the associativity of the multiplication (2.4.10) and the coassociativity of the comulti-
plication (2.4.12) can be found in [53].
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Taking into account (2.4.11), we can rewrite (2.4.10) as the commutator for the elements
(I X ) and (b I):

(L ) a)(bw I) = {(S(am)lbay))(bey x D)L X o) ({s)lbe)) (2.4.14)

or, in terms of the basis elements o = e’ and b = e,, we have [10]:

(I xe')(es ) I) =mip, AWF(S™ P (e; w I)(I m e') =
(2.4.15)
= (mf,(STHRALT) (M, AF) (e w (I €,
where mf,, and A" are defined in (2.1.3) and (2.1.8), and (S™')% is the matrix of the skew
antipode.

The consistence of definitions of left and right bimodules over the quantum double D(A)
should be clarified in view of the nontrivial structure of the cross-multiplication rule (2.4.14),
(2.4.15) for subalgebras A and A°. It can be done (see, e.g., [198]) if one considers left or
right coinvariant bimodules (Hopf modules): MY = {m : Ap(m) =1® m} or M% = {m :
Agr(m) =m®1}. For example, for M one can define the left A and left A°-module actions as

avm = aqymS(awg)), (2.4.16)

av>m = ((S(a), m1))) Mo, (2.4.17)

where Ap(m) = m_1) ® m) is the left A-coaction on M* and a € A, a € A°. Note that
the left A-module action (2.4.16) respects the right coinvariance of M. The compatibility
condition for the left A-action (2.4.16) and the left A-coaction Ay is written in the form (we
represent Ay (a>m) in two different ways):

(a > m)(,l) X (CL > m)(o) = () M(-1) S(a(g)) & a2y > my). (2.4.18)

A module with the property (2.4.18) is called the Yetter—Drinfeld module. Then, using (2.4.16),
(2.4.18) and opposite coproduct for A°, we obtain

ar(a>m) = av (aqymS(awe)) = ((S(a),aqym1) S(ag)))) ae) >m@e) =
(2.4.19)

= ((S(am)), an))) ({ag), ag))) a@) > (ae)>m),

and one can recognize in Eq. (2.4.19) the quantum double multiplication formula (2.4.14).
It follows from Egs. (2.1.3), (2.1.8) and from the identities for the skew antipode (2.3.5)
that
(mf,AR) (mi,(S~EAL) = %6, (2.4.20)

T om)

and this enables us to rewrite (2.4.15) in the form
(M AR (1w €')(es x I) = (mEAIF) (e x I)(I m €').

This equation is equivalent to the axiom (2.3.8) for the universal matrix R (2.4.9). The relations
(2.3.9) for R (2.4.9) are readily verified. Thus, D(A) is indeed a quasitriangular Hopf algebra
with universal R-matrix represented by (2.4.9).

In conclusion, we note that many relations for the structure constants of Hopf algebras (for
example, the relation (2.4.5)) can be obtained and represented in a transparent form by means
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of the following diagrammatic technique:

For example, the axioms of associativity (2.3) and coassociativity (2.1.8) and the axioms
for the antipode (2.3.4) can be represented in the form

X o (-8
n o0 k:n po k ?
[ [ [

Now we make three important remarks relating to the further development of the theory of
Hopf algebras.

2.5. Tunsted, ribbon and quasi-Hopf algebras

Remark 1. Twisted Hopf algebras.
Consider a Hopf algebra A (A, €, S). Let F be an invertible element of A ® A such that

(€@id)F=1=(id®e)F, (2.5.1)

and we denote F = >, 0, @ f;, F 1 =3, 7 ®46;, I = 1. Following the twisting procedure |60,
61], one can define a new Hopf algebra AF) (AW ) S (twisted Hopf algebra) with the
new structure mappings

AP (a) = F Ala) F7, (2.5.2)
e€B(a) =ela), ST(a)=US(a)U(Va e A), (2.5.3)
where the twisting element F satisfies the cocycle equation
Fi2 (A ® id)F = Faz (id @ A)F, (2.5.4)
and the element U = «; S(5;) is invertible and obeys
U'lt=850H)6 Sl)U B =1 (2.5.5)

(the summation over 4 is assumed). First of all, we show that the algebra A% (AF) ¢) is a
bialgebra. Indeed, the cocycle equation (2.5.4) guarantees the coassociativity condition (2.1.8)
for the new coproduct A¥) (2.5.2). Then the axioms for counit € (2.1.9) are easily deduced
from (2.5.1). Considering the identity

m(id ® S @ id) (Fps' Fra (A @ id)F) = m(id ® S @ id)(id ® A)F,

we obtain the form for U~! (2.5.5). The second relation in (2.5.5) is obtained from the identity
m(S @ id)F'F = 1.
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Now the new antipode S (2.5.3) follows from equation
m(id ® S) (A (a) F) = m(id ® S) (F A(a)),

which is rewritten in the form ayUS(ag)) = €(a) U, where AT (a) = a1y @ do).
If the algebra A is a quasitriangular Hopf algebra with the universal R-matrix (2.3.8), then
the new Hopf algebra A is also quasitriangular and a new universal R-matrix is

RE) = Fy RF (2.5.6)
since we have
AP = Fp AP Fy' = Fn RART Fi! = (Fa RF ) AN (FRT Fy')

The Yang-Baxter equation (2.3.12) for R-matrix (2.5.6) can be directly checked with the help
of (2.3.8) and (2.5.4).

Impose additional relations on F:
(A@Zd)f: .Flg .Fgg, (Zd@A)J’TI .F13 .F12, (257)

which, together with (2.5.4), imply the Yang—Baxter equation for F. Using (2.3.8), one deduces
from (2.5.7) the equations

Rig Fi3 Foz = Faz Fi3 Ri2,  Fia Fi3 Raz = Rag Fi3 Fio. (2.5.8)

Equations (2.5.8) and the Yang-Baxter relations for universal elements R, F define the twist
which is proposed in [57] (the additional condition F?'F =1 ® 1 is assumed in [57]).

Note that if A is the Hopf algebra of functions on the group algebra of group G (2.2.7),
then Eq. (2.5.4) can be written in the form of 2-cocycle equation

F(a,b) F(ab,c) = F(b,c)F(a,bc), (VYa,b,ceqG),

for the projective representation p of G: p(a)p(b) = F(a,b) p(ab). That is why Eq. (2.5.4) is
called the cocycle equation.

Many explicit solutions of the cocycle equation (2.5.4) are known (see, e.g., [64-66] and
references therein).
Remark 2. Ribbon Hopf algebras.
Here we explain the notion of the ribbon Hopf algebras [58]. Consider quasitriangular Hopf
algebra A and represent the universal R-matrix in the form

R=> a,®B, R'=) 70, (2.5.9)
u o
where o, B, Vu, 0, € A. By using the right equalities in (2.3.14), we represent the identities
(id® S)(RR™Y) =1 =(id® S)(R'R) as
apa, ® B, S(By) =1 =a,a,®S(B,) By (2.5.10)

(the summation over repeated indices p and v is assumed and we write [ instead of (I ® I)),

while for (S ® id)RR™' =1 = (S ®1id)R™'R we have
S(V) Y ® 0,6, =1 =7, 5(7) ® 9, 0y (2.5.11)

We use identities (2.5.10) and (2.5.11) below in Subsection 3.1.2 (Remark 1).
Consider the element u = 3_ S(8,) o, for which the following proposition holds.
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Proposition 2.1 (see [51]).
1. For any a € A we have
S%(a)u = ua. (2.5.12)

2. The element u s invertible, with
u ™t =5718,) Y (2.5.13)
Proof. 1. From the relation (2.3.8) it follows that Va € A (the summation signs are omitted):

A1) ® B ag) ® a@) = a) a4 @ aq) By ® ag),

where a1y ® a) ® ag) = (A ® id)A(a). From this we obtain

S(a@) S(Bua) apan) = S*(a) Slaw) Bu) ae)op,
or

S*(ag) Sla) wap) = S*(a@) S(B.) Slaw) a@)ay,.
Applying to this equation the axioms (2.3.1), we obtain (2.5.12).
2. Putting w = S7%(6,) 7, we have

Uw = u571<5u> Vi = S(0u) uy, = S(By 6,) v Y-

Since R - R™! = a7, ® B0, = I, we have uw = I. It follows from the last equation and
from (2.5.12) that S?*(w)u = 1, and therefore the element u has both a right and left in-
verse (2.5.13). =
Thus, the element u is invertible and we can rewrite (2.5.12) in the form

S%(a) =uau*. (2.5.14)
This relation shows, in particular, that the operation of taking the antipode is not involutive.

Proposition 2.2 (see [51]).
Define the following elements:

w =u=95(8u) o, us=95)0u us=p5, S_l(ozu), Uy =, S_l(éu). (2.5.15)
The relations (2.5.14) are satisfied if we take any of the elements u; from (2.5.15):
S%(a) =u;jau;', Vae A (2.5.16)

In addition, we have S(uy)™" = ug, S(uz)™" = uy, and it turns out that all u; commute with
each other, while the elements uiuj_l = uj_lui are central in A. Consequently, the element

wS(u) =uyuy " is also central.

Proof. In view of relation (2.5.13) we have S(u;)™* = S(u™') = S(7,)8, = up and u;' =
S(u) = S~ H(u) = S~ ) B, where we use the identity S?(u) = u which follows from (2.5.14).
Applying the map S to both parts of (2.5.14), we deduce S3(a) = usS(a)u, ' which is equivalent
to (2.5.16) for i = 2. Note that from (2.3.14) we have R* = (S7! @ S71)R*. Thus, one can
make in all formulas above the substitution o, — S™'(a,), B, = S7'(8,) and v, = S (7,.),
6, — S7(8,) to exchange the elements u; and us, respectively, to the elements ug and ug. It
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means that equations (2.5.16) are valid for i = 3,4 and we have u; = S(u3)~*. Relations (2.5.16)
yield S%(u;) = u; (Vj) and substitution a = u; to (2.5.16) gives wu; = uju; (Vi,j =1,...,4).
Finally, for any a € A we have uj_lui au;tu; = uj_l S%(a)u; = a, which means that elements

1

uj_lui = u;u; - are central. m

In [51], it was noted that
A(U) = (Rglng)_l(u & U) = (u &® U)(R21R12)_1.

On the basis of all these propositions, we introduce the important concept of a ribbon Hopf
algebra (see [58]):

Definition 7. Consider a quasitriangular Hopf algebra (A, R). Then the triplet (A, R, v) is
called a ribbon Hopf algebra if v is a central element in A and

02 = uS(u), Sw)=wv, €w)=1,
A(v) = (Ra1 Raz) " (v @),

For each quasitriangular Hopf algebra A we can define A-colored ribbon graphs [58|. If, more-
over, A is a ribbon Hopf algebra, then for each A-colored ribbon graph we can associate the
central element of A that generalizes the Jones polynomial being an invariant of a knot in R3
(see [58, 67]).

Remark 3. Quasi-Hopf algebras.

One can introduce a generalization of a Hopf algebra, called a quasi-Hopf algebra [60, 61],
which is defined as an associative unital algebra A with homomorphism A : A — A® A,
homomorphism ¢ : A — C, antiautomorphism S : A — A, and invertible element ¢ €
AR AR A. At the same time, A, €, ®, and S satisfy the axioms

(id @ A)Aa) = @ - (A®id)A(a) - 7!, a€ A, (2.5.17)

(id®id @ A)(P) - (A ®id®id)(®P) = (IR ®) - (id® ARid)(P) (PR I), (2.5.18)
(€@id)A =id=(id® A, (idoexid)d=1® ], (2.5.19)

Slany) aap) =€la) o, aaqyBS(awe) = €la) B, (2.5.20)

¢zﬂs(¢§)a¢§/ =1, S(ﬁf;i)a@ﬂs(%) =

where o and /3 are certain fixed elements of A, A(a) = a@) ® a), and
=0, Q¢ ¢, P i=¢ ¢

(summation over 7 is assumed). Thus, a quasi-Hopf algebra differs from an ordinary Hopf
algebra in that the axiom of coassociativity is replaced by the weaker condition (2.5.17). In
other words, a quasi-Hopf algebra is noncoassociative, but this noncoassociativity is kept under
control by means of the element ®. The axioms (2.5.20) (which look like different definitions
of the left and right antipodes) generalize the axioms (2.3.1) for usual Hopf algebras and con-
sequently the elements o and 3 involved into the play with the contragredient representations
of the quasi-Hopf algebras.

To make the pentagonal condition (2.5.18) more transparent, let us consider (following |60,
61]) the algebra A as the algebra of functions on a “noncommutative” space X equipped with
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a x product: X x X — X. Then elements a € A, b € A® A,... are written in the form
a(x), b(z,y) ... and A(a) is represented as a(x * y). The homomorphism e defines the point
in X, which we denote 1 and instead of €(a) we write a(1). Then Egs. (2.5.17)—(2.5.19) are
represented in the form [60, 61]:

a(w * (y * 2)) = D(x,y, 2) a((w * y) * 2) D(w,y,2) ",
O(z,y,zxu) P(r*xy,z,u) = Py, z,u) ®(x,y x z,u) ®(z,y, 2), (2.5.21)
a(lxz)=a(x)=a(xx1), &(x,1,2)=1.

Now it is clear that (2.5.21) (and respectively (2.5.18)) is the sufficient condition for the com-
mutativity of the diagram:

a(((zxy)*x2)xu) — a((zxy)x(zxu)) — alz*x(y*(zx*xu)))

i |

a((z* (y*2))*u) _— a(xx ((y*z)xu))

Remark 4. Applications of the theory of quasi-Hopf algebras to the solutions of the Knizhnik—
Zamolodchikov equations are discussed in [60, 61]. On the other hand, one can suppose that,
by virtue of the occurrence of the pentagonal relation (2.5.18) for the element ®, quasi-Hopf
algebras will be associated with multidimensional generalizations of Yang—Baxter equations.

3. The Yang—Baxter equation and quantization of Lie groups

In this section, we discuss the R-matrix approach to the theory of quantum groups [42],
on the basis of which we perform a quantization of classical Lie groups and also some Lie
supergroups. We present trigonometric solutions of the Yang—Baxter equation invariant un-
der the adjoint action of the quantum groups GL,(N), SO,(N), Sp,(2n) and supergroups
GL,(N|M), Osp,(N|2m). We briefly discuss the corresponding Yangian (rational) solutions
and Zy ® Zy symmetric elliptic solutions of the Yang-Baxter equation. We also show that for
every (trigonometric) solution R(z) of the Yang—Baxter equation one can construct the set of
difference equations which are called quantum Knizhnik-Zamolodchikov equations.

3.1. Numerical R-matrices

This subsection is based on the results presented in [67, 68].
3.1.1. Invertible and skew-invertible R-matrices

Let A be a quasitriangular Hopf algebra. Consider representations 7) of A in N,-
dimensional vector spaces V, (the index v enumerates representations). In view of (2.2.8)

and (2.3.12), the matrix (R(,w))i”,if‘lu = (T(V),iz ® T(“)li“)R, where R € A ® A is the universal
element (2.3.10), satisfies the generalized matrix Yang-Baxter equation

(Riwy)) 305, (Bon) iy (R i = (Riun) i (Ren) e (Bww) i (3.1.1)

Here the summation over repeated indices j,, j,, jx is assumed. Let the representations T,
TW, TXN be equivalent to a representation 7" which acts in N-dimensional vector space V.
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In this case, according to (3.1.1), the image R%, = (T%, ® T7,)R of the universal element
R € A® A satisfies the standard matrix Yang-Baxter equation

Ritiz  pitis. Rjzkaskd_Rzm RiJs Rj}gjsz‘ (3.1.2)

Jij2 k1373 J2Js Jiks

A lot of numerical solutions of the Yang—Baxter equations (3.1.1), (3.1.2) can be constructed
as representations of the universal R-matrices. However, not all numerical solutions R of
Egs. (3.1.1) and (3.1.2) are images (T") @ TW)R and (T ® T)R of the universal element R
for some quasitriangular Hopf algebra A. Below we consider solutions R € End(V ® V') of the
standard matrix Yang-Baxter equation (3.1.2) that are not necessarily the universal R-matrix
representations.

First, we assume that a solution R of Eq. (3.1.2) is the invertible matrix

Ri1kilz£2 (R_l)kl,ez _ 521 5@2 — (R )zlkzlzb Rkﬂg (313)

J1J2 J1 " J2 J132°

Note that for all images R = (T'®T)R, such invertibility follows from the invertibility (2.3.14) of
the universal element R. In terms of the concise matrix notation [42|, we write relations (3.1.3)
and (3.1.2) in the following equivalent forms:

Rlzngl =1 = nglRlz — Rlzngl =1y = nglRm;
Ria Ri3 Roz = Roz Rz Ry =
]:212 R23 R12 = R23 R12 }?23 —
Ras R1_21 Rz_sl = R1_21 R2_31 Ry, Rao R2_31 R1_2l = R2_31 R1_21 Ras.
Here R := P R, the matrix P is the permutation:

pitiz _ §i1 §iz Rivie (P R)le Rizia (3.1.8)

J1J2 J2 7717 J1J2 J1J2 71327

Iy == 1 ®1I (I € Mat(N) is the unit matrix in V') and indices 1,2, 3 label the vector spaces
V in V®3 where the corresponding matrices Ria, Ros, ... act nontrivially, e.g., Ri» = R ® I,
Ry = I ® R, etc. We also note that if matrix R satisfies the Yang—Baxter equation (3.1.2),
then the matrix R}, = R also satisfies the Yang-Baxter equation

13

Ry R31 R3p = R3p R31 Ry <= Raz Ri3 Ria = Rz Ry3 Ras. (3-1-9)
In what follows, we introduce matrices
Ry = Rygp1 = I V@ R I®M-9  (¢=1,... M), (3.1.10)

which act in the space VEM+1) and, according to Yang-Baxter equations (3.1.6), we have braid
relations

A

Ry Ryt Ry = Ryt Ry Ror (a=1,...,M). (3.1.11)
In view of these relations and locality relations
[Ry, Ry] =0 (for |a—b| > 1), (3.1.12)

the invertible matrices R, define a representation of generators of the braid group By, (see
definition in Subsection 4.1). The name “braid group” is justified since relation (3.1.11) admits
the graphic visualization
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a a4+ 1 a4+ 2 a a+1 a4+ 2

/'/'j
A

Rov1 Ro Royy = = / = Ry Ry~ R, (3.1.13)
( « <

that is an identity of two braids with three strands (the third Reidemeister move). Here we
make use of the graphic representation

1 2 a /a,:—l M+1
Ha :[ I x [ ' (3.1.14)
1 2 "' a a+1""" M+41

We discuss in detail the braid group Bjys.1, its group algebra C[B),41] and finite dimensional
quotients of C[By41] in Section 4 below.
Let X(R,) be a formal series in RE!. The direct consequences of (3.1.11) are equations

~

X(Ry) Ray1 Ry = Ros1 Ry X(Rys1), Ry Raty X(Ry) = X (Rat1) Ry R, (3.1.15)

which make it possible to carry functions X (Ry), X(Rqi1) through the operators Ryy iR, and
Ry Ray1.

Definition 8. The matriz R € End(V®?) is called skew-invertible if there exists matriz ¥ €
End(V®?) such that (cf. (3.1.3))

R W™ = §iof =W RN (3.1.16)
The index-free forms of these relations are*
TI'2<R12 @23) = P13 = TI"Q (@12 R23> s (3118)

where U = P 0. We say that the invertible and skew-invertible R-matriz is completely invertible
if the inverse matriz R~ is also skew-invertible, i.e., there exists a matriz ® € End(V®?) such
that

Oy (R =le = (R OH & 47

(R7)55 = o = (R7)4, 92 =
TI'Q (&)12 R2_31> = P13 = TTQ(RI_QI (i)gg), (3119)
where R"-* = R P and & = & P.

The skew-invertible R-matrices were considered in [67], where operator ¥, was denoted as
(R)™1)! (cf. (3.1.17)).

1The form (3.1.18) is very convenient for calculations (see below) and was proposed in [97]. Equations
(3.1.17) are equivalently written as U3 R% =I5 = Ri3 U1,
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3.1.2. Quantum traces

Now we define four matrices
Dy = Try(Vyy), Qy = Try (W), (3.1.20)
El = TI'Q(Ci)lg), @2 = TI'1<§)12), (3121)
which are important for our consideration below.

Proposition 3.3. Let the Yang—Bazter matriz R be invertible and skew-invertible, then the
following identities hold:

TI'Q(RQDQ) == [1, Trl(Ql ng) == [2, (3122)
Tro(Ry Do) = I, T (Q, RyY) = I, (3.1.23)
Do POQ = TI'3D3R2_31 Rgg, DO POQ = TI‘3D3R23 }%0_31, (3124)
Qo Po2 = TT1Q1R1_21 Rio, Qo Poy = TriQiRys Rf()l, (3.1.25)
Dy Ry} = Uy Dy, Ry} Dy = Dy Wy, (3.1.26)
Q1 Ry =02 Qr, Ry Qr=Q Wy, (3.1.27)

where the matrices D and ) commute and satisfy
Dy Q2 = Q> Dy = Tr3(Ds Ry') = Try(Q1 Ry, (3.1.28)

If the matrix R is completely invertible, then

ng DQ = D1 (bgl, DQ ng = (i)21 Dl. (3129)

RizQi = Q:®21, Qi Rz =$5 Qs (3.1.30)
and the matrices D and @) are invertible such that
D'=Q, Q'=D. (3.1.31)

Conversely, if the matriz D (or Q) is invertible, then the matriz R is completely invertible. For
wvertible matrices D and () one has the relations

Try (D7 Ryy) = I, = Trg(Q3 Ry). (3.1.32)

Proof. Identities (3.1.22) and (3.1.23) follow from (3.1.18) and (3.1.19). To obtain (3.1.24)
and (3.1.25), we multiply both sides of Eqs. (3.1.15) (for a = 1) from the left by Wo, and from
the right by W3, and take the trace Try3 (= Try Trz). Using (3.1.18), we obtain

Trlkime(I%’l)PMRl = Trgég P02 X(Rg) @34, (3133)

Trl\f/mf%l Pg4 X(}?l) = TI'3X<R2) P02 RQ \1[34, (3134)

where Ry = Ryay1 (see (3.1.10)). We put X(R) = R~ in (3.1.33), (3.1.34) and take the traces
Try or Try. Using (3.1.18) and (3.1.20), we obtain four identities (dependent on different choices
of £)

DO IQ = TI'3D3E2¥1 P02 R;:l, QO IQ == TI'lQlﬁiH P02 ﬁfl, (3135)
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which can be easily written as (3.1.24) and (3.1.25). Applying to both sides of the first relation
in (3.1.24) the operation Tro(Wio...) and to both sides of the second relation in (3.1.24) the
operation Try(Wis .. .), we obtain identities

Tro(‘ijloDopm) = TF03(¢’10D3f‘32_31R03)7 TT2(D0‘1112P02) = Tf23(\i’12D3R23f?531)7

which, by means of (3.1.18), give (3.1.26). Similarly, applying to both sides of the first relation
in (3.1.25) the operation Try(... ¥g3) and to both sides of the second relation in (3.1.25) the
operation Try(... Wy3), we obtain (3.1.27). Taking the traces Try(...) and Try(...) of (3.1.26)
and (3.1.27), respectively, we deduce (3.1.28).

If the matrix R is completely invertible, then acting to the first relation (3.1.24) by
Try(®15...) and to the second relation (3.1.24) by Tro(®yo...), we obtain (3.1.29). Analo-
gously, acting to the first relation (3.1.25) by Try(... ®y3) and to the second relation (3.1.25)
by Tro(. .. ®g3), we find (3.1.30). Equations (3.1.31) are obtained by taking traces Try(...) and
Try(...) of (3.1.29) and (3.1.30), respectively, and applying (3.1.21), (3.1.22). Thus, for the
completely invertible R the matrices D and () are invertible.

Conversely, if the matrix D is invertible, then D; Ry D7' (cf. (3.1.29)) is the skew-inverse
matrix for R~L. Indeed,

TI‘Q (Rl_21 D2 R32 D3_1 ) == TI'2 (ﬁgl_; D2 R32) D3_1 ==

= Dy Try (‘1’21 332) D;' =D, Py D;' = Py,

where in the second equality we apply the second relation in (3.1.26). Thus, the R-matrix is
completely invertible. For the invertible matrix () the proof of the fact that the Yang-Baxter
R-matrix is completely invertible is similar. For invertible matrices D and ) we have (3.1.31)
and one can rewrite relations (3.1.23) as (3.1.32). n

Qorollary 1. Let R be skew-invertible and the matrix A;s be one of the matrices {]%12, Rf;,
W9}, Then from (3.1.26) and (3.1.27) we obtain

[A19, D1 Dy] =0 = [Aja, Q1 Q2] (3.1.36)

A2 (DQ) = (D Q) As. (3.1.37)

If R is completely invertible, then matrices @12, @12 are invertible
Uiy = D' RouDy = Q' RonQ, 15 = DaRy! Dyt = Qi Ry Q5

In this case, by using (3.1.29) and (3.1.30), we prove Eqs. (3.1.36), (3.1.37) for Ay = dy, and
deduce the relation on the matrices ¢ and ¥:

ol = D20y, DI = Q2 0,, Q52

Corollary 2. For any quantum (N x N) matrix E (with noncommutative entries £?) one can
find the following identities:

T(D E) I, = Try (Dgﬁzfl B Rlﬂ) , Te(QE) I, = Tr, (Qlﬁifl Io }?;Fl) (3.1.38)
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that demonstrate the invariance properties of the quantum traces
Tr(DE) = Trp(E), Tr(QFE)=:Trg(E). (3.1.39)

To prove identities (3.1.38), we multiply Eqs. (3.1.35) by the matrix E, and take the trace
Tro(...). Note that in view of (3.1.36), the multiple quantum traces satisfy cyclic property

Trp(rmy (X(R) - Y) = Trpam (V- X(R)),

) ) (3.1.40)
Tro.m) (X(R)-Y ) =Trou.m (Y - X(R)),

~

where X (R) € End(V®™) denotes arbitrary element of the group algebra of the braid group
B,, in R-matrix representation (3.1.11), (3.1.12) and Y € End(V®™) are arbitrary (quantum)
operators.

Corollary 3. Let R be completely invertible matrix. We multiply the first and the second
Yang-Baxter equations in (3.1.7), respectively, from the right and the left by the matrix Dj:

RyRy'Ry' Dy =R Ry ' Ri D3, DyRiRy' Ry = Dy Ry Ry Ry,
and use relations (3.1.26). As a result, we deduce
Ros oy Wy = Woy Wy Ris,  Rip W Way = Wy Wy Ros. (3.1.41)

Analogously, if we multiply Yang Baxter equations (3.1.15) (for X(R,) = R;' and a = 1) from
the left and the right by the matrix ¢); and use relations (3.1.30), we respectively deduce

(i)21 (i>32 RIZ = R23 ci)Ql @327 (i)32 dA=)21 RQS = RlZ (AP32 (i)Zl- (3142)

Corollary 4. The trace Tros(...) of Eq. (3.1.33) (or (3.1.34)) gives
TI'lQlX(Rl) = TrngX(]%g) = Y&(X), (3143)

where we redefined the arbitrary function X: X(R)R — X (R). In particular, for X = 1 we
obtain Tr(D) = Tr(Q). Equation (3.1.43) leads to the following identity:

Tryg (QlQQX(f%l)> — Trys (DgQQX(RQ)) — Trq, (DSD4X(1%3)> . (3.1.44)

Proposition 3.4. For any polynomial X € (C[Rl,Rl_l} the matriz Y (X) defined in (3.1.43)
satisfies (D, Y] =0=1[Y, Q] and

Yo(X) R = R vy(X). (3.1.45)

Matrices X R R
Vi = V(R = Ty (Dy Ry) =Ty (@ BY), Vnez, (3.1.46)

generate a commutative set.
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Proof. From (3.1.43) and (3.1.36) we have
Dy Yy = Trz(Dy D3 X (Ry)) = Trs (X (Rz) Dy D3) = Ys Do,
Q2 Yy = Tri(Q1 Q> X (R1)) = Tra(X (1) Q1 Qs) = Y2 Qs
The left-hand side of (3.1.45) is transformed as follows:
Ya(X) Rf' = Trg(DsX (Ro)RY'Ry'RY') = Ry Trs(DsRy ' X (R)RS') =
— R T (D X () = REVi(X),

where we used (3.1.15) and the first relation in (3.1.38).

The commutativity of the matrices YQ(n) follows from (3.1.45), since for even and odd n we
have, respectively

Ya(X) Y2(2k) ~ T, <D3Y2R3k> — Try (D3 ng Y2> _ Y2(2k)Y2(X)7

Va(X) Vi =Ty (QuYa B3 =Ty (@1 B3 Y ) = Ty (Y Qo 3 =
~ Ty, <Q1 Y, ﬁ%kJrl) — Tr, (Ql R%kJrl Y2> _ Y2(2k+1) Y (X).
For X(R) = R™ (m € Z) we obtain commutativity of matrices (3.1.46). "

Proposition 3.5. The identity (5.1.44) is generalized as
Trl...n(Ql e QkaJrl T DnX1Hn> = Trl...n<D1 e DnXlan> (vn 2 27 k= 17 QR ,Tl), (3147)

where X{_,, 1= X(El, . Rn,l) € C[Z%lﬂ, o R | is an element of the group algebra of the

n—1

braid group B, in the R-matriz representation® (3.1.11), (3.1.12).

Proof. Indeed, from (3.1.11), (3.1.12) we have Ry Ry Xiom = Xo wni1 Ry -+ R,. Multiply-
ing both sides of this equation by the matrices (); and D,,; from the left and the right and
taking the trace TriTr, 41 (...), we deduce (by means of (3.1.22))

~

Trl <Q1 Rl [P fzn—l X1_>n> = Trn+1 (Dn+1 X2—>’VL+1 RQ PPN Rn> ,

A

which is written, after the redefinition X;_,,, — (Ry--- ]%n,l)_l Xi_n, in the form

~

TI'1 (Ql Xl—)n) = TI'n+1 <Dn+1 (RQ s Rn)_l X2—>n+1 ég s Rn) . (3148)

Then, applying the trace Tra(Qs2...) to (3.1.48) (and again using (3.1.48)), we obtain

Trio (Qle Xlﬁn) = Tl“n+1Dn+1T1"2 (Qz (Rz ce Rn>_1 X2~>n+1 R2 s Rn) =

AN S (3.1.49)
= Trn+l,n+2 (Dn—i—an—i—Q (R?) T Rn+l)_ X3—>n+2 (R3 e Rn+l) ) .

°In view of the graphical representation (3.1.14), any monomial in X;_,,, is interpreted as a braid with n
strands.
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Applying the trace Tr3(Qs...) to (3.1.49), etc., we obtain

Tri e (Qr- Qr X150) = (3.1.50)

_ » B —k B k
= Trni1. ntk <Dn+1 Dy (Rig1 -+ Rogim1) ™" Xiotrontk (Rigr -+ Rg—1)

and finally multiplying both sides of (3.1.50) by D1 -- - D,, from the left and taking the trace
Tris1. (applying Trii1. n(Dgs1 -+ Dy ... ) to both sides of (3.1.50)), we deduce (3.1.47)

Trl...n (Ql T Qk:DkJrl tee Dn Xlﬁn) =

= Tret1. ntk <Dk+1 e+ Dok (Rig1 -+ Rogne1) ™ Xisromak (Rigr - - Rn+k71)k> = (3.1.51)
= Trit1.ntk (D1 Do Xir15ntk)

where we have used the cyclic property (3.1.40). n

Remark 1. A numerical R-matrix which is the image (7' ® T')R of the universal R-matrix
(2.5.9) for the quasitriangular Hopf algebra is obliged to be skew-invertible. Indeed, relations
(2.5.10) are written in the matrix form

0508 = Tj (o) TF(BuS(Bu) = Ry T () T7 (S(BW),
0§05 = Tf (auen) T;(S(B,)Bu) = T (w) T3, (S(B,)) Ry
and, thus, relations (2.5.10) are the algebraic counterparts of (3.1.16), where the matrix ¥ is
given by the equation ' . -
Vo = o) TS (Bu) = Vo (3.1.52)
Moreover, in view of (2.3.6), the transposed matrix W2 of (3.1.52) is interpreted as the image
(T®T)R, where T denotes a contragredient representation to 7', i.e., T'(a) = T*(S(a)) (Va € A).
Then the second equation in (3.1.41) is nothing but the image of the universal Yang-Baxter
equation (2.3.12) in the representation (I'®@ 7T ® T).
The image (T @ T)R™! = R™! is also skew-invertible. The matrix ®5 in (3.1.19) is given
by
O = T (S () T (0,) = Pip (3.1.53)

ml
and the algebraic counterpart of (3.1.19) is (2.5.11). The second equation in (3.1.42) is the
image of the universal equation RysRiy Rz = Rz Ris Ras (see (2.3.12)) in the representation
(T®T®T). From Egs. (3.1.52), (3.1.53) we also have the universal formulas for matrices
(3.1.20), (3.1.21) of quantum traces

D =T(S(Bu)on) =T(w), D =T(S(yu)0u) =T(ua), .
1.
Q =T(auS(Bu)) = T(S(us)) = T(uy"), Q=T(3,S(7u) =T(S(ua)) =T(u"),

where elements u; = w,us,us, uy were introduced in (2.5.15) in Subsection 2.5. Then, in
view of Proposition 2.2, all matrices (3.1.54) commute with each other and the products DQ,
DQ =1, DQ = I, and DQ = (DQ)™" are images of central elements (uluj_l) € A in the
representation 7.
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3.1.3. R-matrix formulation of link and knot invariants

The R-matrix formulation of link and knot invariants was developed in [58, 59, 67| (see
also references therein). Taking into account the fact that R-matrices satisfy (by definition)
the third Reidemeister move (3.1.13), we see that Propositions 3.3 and 3.5 are important for
constructing of link and knot invariants. Indeed, using graphic representation (3.1.14), one can
visualize relations (3.1.22) and (3.1.32) from Proposition 3.3 as the first Reidemeister moves:

Tr, <R12D2> :X]D - {11 . T (R;;cg;) - X}Ql - J[l ,

(3.1.55)

Tr <Q1R12> - Q{X - JIQ , T <D1‘1R1‘21> - D1M - JIQ .

(3.1.56)

These pictures show that the elementary braids R and R~! are closed by matrices D, Q~! = D
on the right, and by matrices D!, Q = D' on the left, to obtain trivial braids. We note
that in general D # Q~!'. We stress, however, that for many explicit numerical R-matrices
we have® Q=1 ~ D, and therefore, after the special normalization of R-matrices, we deal with
the standard first Reidemeister moves. Finally, for the case of the skew-invertible R-matrices,
Proposition 3.5 demonstrates the equivalence of the complete closuring of braids” X;_,,, from
the left and from the right by means of the quantum traces respectively with matrices () and
D. Thus, for any braid X;_,, with n strands (X;_,, is a monomial constructed as a product of
any number of R-matrices {Ry,..., R,_1}) the characteristic (3.1.47)

Q(Xlﬁn) = TrL..n(Ql T anlﬁn) = Trl...n(Dl s DnXIHn)a (3-1-57)

gives (by closing of the braid Xj_,,) the invariant for link /knot.
Remark 2. Let T be the representation of the quasitriangular Hopf algebra A in the space V.

Consider a special matrix representation of the universal R-matrix

Riemy = Y, T () @ T*™(8,) = (T* @ T*™) R, (3.1.58)

I

where T®* acts to the first factor in R, T®™ acts to the second factor in R and we have used
the notation (2.5.9). Then applying (2.3.9), we deduce

R(k,m) = Rl—)k;k-ﬁ-m te R1—>k;k+2 : Rl—)k;k-ﬁ-l = (Pl—>k;k+m te P1—>k;k+l) R(k,m)> (3159)

Riem) = Rimoskrm—1) - Rk Ry, (3.1.60)

where . .
Riskpqe = Rypge Ropge - Brje = Piosporye - Rasi—1) R e,

Pt = Pyt Pojyr - Pogre, R = By Rpyq -+ Ry,

6For R = (T ® T)R the matrix DQ = T(uju; ') is the image of central element and for irreducible repre-
sentation 1" we have D@ ~ I; see also Examples 1 and 2 below.
"Here the braids X;_,, are elements of the braid group B,, in the R-matrix representations.
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R;; = ((T ® T)R);; and the braid R (k,m) 15 obtained from matrix R,y by substitution
Ri; = Py RZ] and shifting all permutation matrices F;; to the left. The braid }A‘E(kvm) defined
in (3 1. 60) can be visualized, by means of (3.1.14), as the intersection of two cables (or two
ribbons) with m and k strands:

(3.1.61)

This pictorial presentation demonstrates the fact that in general the R-matrix approach could
describe invariants not only for ordinary links and knots, but also for ribbon (cable) links and
knots. In this case, the right (or left) closuring for braids with matrices Dy --- D,, ~ Q7" - - Q;;!
(or Q®™ ~ (D~1)®") is also different for the cable (ribbon) braids R(n,n) and R(_nl,n) (cf. (3.1.55),
(3.1.56)). For example, for the right closuring it follows from the visualization of the moves
which are shown in the pictures:

AR IO O R

where we pull the ribbons along the arrows on the left-hand side (1.h.s.) of the equalities
and obtain two differently twisted ribbons (as spirals) in the right- hand side (r.h.s.) of the
equalities. Thus, for ribbon (cable) links/knots, to obtain the first Reidemeister moves, we
need to insert matrices D and D in the closuring of braids D®" - D and (Q~)®" - D (here the
“ribbon” matrices D and D are defined in (3.1.62)):

WG po

Thus, in the right-hand side of the relations (3.1.63), we obtain the unit operators in V.

(3.1.63)

3.1.4. Spectral decomposition of R-matrices and examples of knot/link invariants

We now assume that the invertible Yang-Baxter R-matrix obeys the characteristic equation
(f?—ul)(f?—m)--'(f?—ﬂm =0, (3.1.64)
where p; € C, p; # pj it i # j and p; # 0 Vi. This equation can be represented in the form
RM — oy () RM ™ - 4 ()M Vo () B+ (=)Mo () 1 =0, (3.1.65)
where 1 is a unit matrix in V2 and

o(p) = Z Hiy oo g,

i1 <ig<--<ip
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are elementary symmetric polynomials of u; (i = 1,..., M). For R-matrices satisfying (3.1.64),
one can introduce a complete set of M projectors:

P, =] M Y Pi=1, (3.1.66)

itk (e — ,uj)

which project the R-matrix to its eigenvalues Py R = RP), = (i P and can be used for the
spectral decomposition of an arbitrary function X of R:

X(R) = iX(uk)Pk. (3.1.67)

In particular, for X = 1 we obtain the completeness condition (see the second equation in
(3.1.66)). The derivation of formulas (3.1.66) can be found, for example, in [139, 180].

In the calculations of the knot/link invariants (3.1.57), the characteristic equations (3.1.65)
play the role of the skein relations. We also note that for many known explicit examples of com-
pletely invertible Yang-Baxter R—matrices, which satisfy the characteristic equation (3.1.64),
all matrices Y (X)), defined in (3.1.43), are proportional to the identity matrix (see Proposition 4
in [47]).

Examples. Here we consider two special cases M = 2,3 for the characteristic equation (3.1.64).
By renormalizing the matrix R, it is always possible to fix first two eigenvalues in (3.1.64) so
that u; = q # 0 and s = —q~ ' # 0, where ¢q € C.

1. For M =2, Egs. (3.1.64) and (3.1.65) are represented in the form of the Hecke condition

(R—q)(R+q¢)=0 = RP=\R+1 =

. . (3.1.68)
R—X1—-R1'=0, X:=(¢g—q").
In this case, for all n € Z we obtain
R" = a,R+ oy 11, Qy, = ¢ = (g™ (3.1.69)

q+q!

and according to (3.1.22), all matrices Y (R") = Y in (3.1.46) are proportional to the identity
matrix

Try(DoRY,) = (ay + oy Tr(D)) 1. (3.1.70)
In particular, one can immediately find (see (3.1.22), (3.1.28))

Tr(Q) = Te(D), Yi(RY)=Qi Dy =Tra(DoRY)=(1-ATx(D) I = ¢ 21, (3.1.71)

where we introduce useful parametrization ¢=2¢ = (1 — A Tr(D)). Equation (3.1.71) means that
for the skew-invertible Hecke R-matrix, in the case ATr(D) # 1, the matrices D and @ are
always invertible and Q=" = ¢*? D.

2. For M = 3, Egs. (3.1.64) and (3.1.65) are the Birman-Murakami-Wenzl cubic relations
(cf. Eq. (3.10.4) below)

(R—q)(R+¢ ) R-v)=0 = RB-—A+v)RR+MW-1)R+v1=0 =
NP o R R . (3.1.72)
KR=RK =vK, K:z%(q—R)(q‘l—{—R):$<1+)\R—R2>,
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where A = (¢ — ¢~ ). In this case, we have

. N 1
K=uK, p:= X(V_l+)\_y)’ (3.1.73)
and for all n € Z we obtain ) ) )
B = anR + an1l + BoK, (3.1.74)
"= (=™ v =9 (" —1q")
Oy 1= T 1 671 = 1 1 - .
q+q q+q (v+q) (v—2q)

Let the matrix K be a one-dimensional projector in V%2, i.e., IA(,?ll,jQ = C"2Cy;,. In this
case, one can define the quantum trace (3.1.43) as follows (see Eq. (3.10.39) in Subsection 3.10
below): A o A A

Kgg X(ng) K23 = l/_lTI'Q (X(ng)Dz) K23, Dij =Vr CikOjk,

and we deduce
N A N Lz
Koz Rip Koz = v Koz, Koz K19 Koz = Kos,

K1 Ky = T+ A —v) Koy = v 'Tr(D)Kys = Tr(D) = —(qﬂ’)(/‘(lw).

Using these relations and (3.1.74), we obtain

(q—v)(q"+v)
)

where o, and 3, were introduced in (3.1.74). Thus, for the cubic characteristic equation (3.1.72)
all matrices Y (R") (3.1.46) are also proportional to the identity matrix and for n = —1 we find
Ql'=v72D.

Remark 3. Equations (3.1.70) and (3.1.75) are visualized in Figure 1A and give (for the cases
M = 2,3) invariants of links and knots (3.1.57):

Tro(R2,Dy) = <an + ot + I/Bn> I, (3.1.75)

M=2: Q(R}) = Tris(R}D1Ds) = (v, + a1 Tr(D)) Tr(D),
M=3: QRY) = Tria(RpDiD) = (o + S 0,y g, ) ),

which are presented in Figure 1B:

-

=

S

B

Figure 1. Closure of the braid R™ (the right picture B) gives toroidal knots for odd n and links for
even n.

The explicit examples of R-matrices subject to (3.1.68) and (3.1.72) with fixed values Tr(D)
and v are given in Subsections 3.4, 3.7 and 3.10.1, 3.11.2, 3.11.3 below.
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3.2. Quantum matriz algebras

3.2.1. RTT algebras

We consider an algebra A* of functions on a quasitriangular Hopf algebra A and assume
that generators of A* are the identity element 1 and elements of N x N matrix T' = ||T}|
(¢i,j = 1,...,N), which define N-dimensional matrix representation of 4. We will use the
following notation: f(a) = (a, f) for the functions f € A* of elements a € A. For the image
Ri2 = (R, Ty ® Ty) of the universal matrix R € A ® A we deduce Va € A the identity (by
using (2.1.11) and (2.2.8))

Ry (% A T2> = Ry <Cl(1), T1> (a(2)7 Tz) = <RA(CL)7 T ® T2> =
= <A°p(a) R, T1 (024 T2> = <A0p((l>, T1 & T2 > R12 = <CL, T2 T1> ng.

Since the element a € A is not fixed here, one can conclude (for the nondegenerate pairing)
that the elements T; satisfy the following quadratic relations (RT'T relations):

RU2 THTE = T2 T RJZ & RisT\Ty = o1 R & RV Ty =Ti L R, (3.2.1)
where the indices 1 and 2 label the matrix spaces and the matrix R, satisfies Yang-Baxter
equations (3.1.2), (3.1.5).

In the case of nontrivial R-matrices satisfying (3.1.2), the relations (3.2.1) define a noncom-
mutative quadratic algebra (as the algebra of functions with the generators {1, T}}), which
is called the RTT algebra. We stress that one can consider the RT'T algebra (3.2.1) with
the Yang—Baxter R-matrix which is not in general the image of any universal R-matrix. The
Yang—Baxter equation for R is necessary to ensure that on monomials of the third degree in T
no relations additional to (3.2.1) arise. We shall assume that Ry is a skew-invertible matrix.
In this case, matrices D and @ (3.1.20) define 1-dimensional representations pp(77) = D} and
po(T}) = @} for the RTT algebra (3.2.1) (see (3.1.36)). In some cases below, we also assume
that Ry, is a lower triangular block matrix and its elements depend on the numerical parameter
q = exp(h), which is called the deformation parameter.

Suppose that the RTT algebra can be extended in such a way that it also contains all
clements (T7')%:

(TN, TF =T (T s =0d.- 1. (3.2.2)
Then this algebra becomes a Hopf algebra with structure mappings
AT =T T, eT})=0d, S(T;) = (T, (32.3)
which, as is readily verified, satisfy the standard axioms (see Subsections 2.2 and 2.3):

(id ® A)A(TY) = (A @ id)A(T),
(e @ id)A(TY) = (id @ )A(T}) = T, (3.2.4)
m(S @ id)A(T?) = m(id ® S)A(T?) = (Ti)1.

The antipode S is not an involution, since instead of S? = id, we have an equation
S*(T}) D] = D} T}, (3.2.5)
which can be rewritten in the form
D{T\S(T}) = Dj, (3.2.6)
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and the matrix D has been defined in (3.1.20). The relations (3.2.5) and (3.2.6) can be in-
terpreted as the rules of permutation of the operations of taking the inverse matrix and the
transposition (¢):

DT Y =(TH'D". (3.2.7)

To prove (3.2.5), we note that RT'T relations (3.2.1) can be represented in the form
Tr Ry Ty =Ty Ry Ty

We multiply this relation by Wo; from the left and by Was from the right and take the traces
Tri(...). Then, taking into account Egs. (3.1.18), we arrive at the relation

Tr, (@01 T P T1> — Tr, <T2 Py T3 xi%) .
Acting to this relation by Trs(...) and Tro(...), we obtain, respectively,
Do = TroTy Pyo Tyt Dy, TriQ1 Ty PisTh = Q3. (3.2.8)
The first equation in (3.2.8) is identical to (3.2.5) and (3.2.6), while the second one gives
S(THTF Q' = Q. (3.2.9)

As it was shown in Subsection 3.1.2, the matrices D} and @} (3.1.20), entering the conditions
(3.2.8), define the quantum traces |42, 67]. To explain the features of the quantum trace, we
consider the N2-dimensional adjoint A*-comodule E (in what follows, we continue to use the
concise notation A* for the RTT algebra). We represent its basis elements in the form of an
N x N matrix E = ||Ej||, 4,j = 1,...,N. The adjoint coaction is

i i i’ i _. —1yi

where in the right-hand side of (3.2.10), we have introduced abbreviations that we shall use
in what follows (we omit the sign of the tensor product and should only remember that the
elements EJ’ commute with the elements TF). We stress that there is a different form of the
adjoint coaction:

i i iNd L 1 i
E! - E, ® S(T)T! = (T7'ET).. (3.2.11)

One can check that in (3.2.10) and (3.2.11), the elements E} form, respectively, left and right
comodules. The matrix ||T}|| is interpreted now as the matrix of linear noncommutative adjoint
transformations. Both left and right comodules E are reducible, and irreducible subspaces in

E can be distinguished by means of the quantum traces. For the case (3.2.10), the quantum
trace has the form (cf. (3.1.39))

N
TrpE = Te(DE) = Y D)E! (3.2.12)

ij=1

and satisfies the following invariance property, which follows from Egs. (3.2.5), (3.2.6) and the
first relation in (3.2.8):
Trp(TET ) = Trp(E). (3.2.13)
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For the case (3.2.11), the definition of the quantum trace must be changed to

TrgE = Tr(QE) = ZQZEJ Tro(T 'ET) = Tro(E), (3.2.14)

i,7=1

this follows from the second relation in (3.2.8). Thus, Trp(E) and Trg(E) are, respectively,
the scalar parts of the comodules E (3.2.10) and (3.2.11), whereas the g¢-traceless part of
E generates (N? — 1)-dimensional (reducible in the general case and irreducible in the case
of linear quantum groups) A*-adjoint comodules. Note that, if the matrix D is invertible,
one can substitute Q — const - D! in (3.2.14), since Eq. (3.2.6) is rewritten in the form
(D™Y)k = S(T)) T} (D7)}, (cf. (3.2.9)). We also note that formulas (3.2.13) and (3.2.14) of the
adjoint invariancy of the quantum traces can be considered as universal analogs of (3.1.38).
An important consequence of the definition of the quantum trace (3.1.39), (3.2.13), (3.2.14)

and RTT relations (3.2.1) is the fact that

TT'X(RT, =Ty X(R)T,' =

, . A (3.2.15)
T ' Trpe) (X (R)Ty = Trpey(X(R)), 1o Tromy (X (R)) Ty ' = Trou)(X(R)),

where X(.) is an arbitrary function, while Trgu) and Trpp) are the quantum traces over
the first and second space, respectively. Equation (3.2.15) indicates that the matrices Y, =
Trpes (X(Rg)) = TrQ(l)(X(Rl)) (see (3.1.43)) must be proportional to the identity matrix if 7}
are functlons which define an irreducible representation of the quantum group A. In particular,
we must have

Trpe) (RE) = Trou) (RY,) = s, (3.2.16)
(

(R
where ¢, are certain constants, e.g., ¢; = 1 (3.1.22), (3.1.23), and I is the identity matrix in
the kth space. Note that a direct consequence of (3.1.28) is
TrD(2)(}?1_21) =cq-Li =D Qr, (3.2.17)

and for ¢_; # 0 matrices D, ) are invertible. As we will see below, for the quantum groups
of the classical series the fact (3.2.16) does indeed hold. In what follows, we shall attempt to
restrict consideration to either left or right adjoint comodules with quantum traces (3.2.12) or
(3.2.14). The analogous relations for right (or left) comodules can be considered exactly in the
same way.

3.2.2. Faddeev-Reshetikhin—Takhtajan L* algebras
It can be seen from comparison of the relations (3.2.1) and (3.1.2), (3.1.5) that for the

generators T; it is possible to choose the following finite-dimensional matrix representations:

(THr =R, (TH = (R (3.2.18)

Jj J lj

In these representations, the images of invariance relations (3.2.13), (3.2.14) coincide with
(3.1.38). Since the R-matrix satisfies the Yang-Baxter equation, there exist linear functionals
(L*)! € A that realize the homomorphisms (3.2.18), i.e., we have

(L{,T)) = Ry := R}, (L7, 1)) = Ry} := R3). (3.2.19)
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For the case Ris = (R,T) ® T) we immediately construct the mapping from A* to A (see, for
example, |67, 91])

(R, id®T;) = (L), (R, S(T}) ®id) = (L7)j,

(3.2.20)

(R. T} o id) = S(L")).

J

Equations (3.2.19) are generalized in the following form:

The Yang—Baxter equation (3.1.5) can now be reproduced from RTT relations (3.2.1) by aver-
aging them with the L* operators.

From the requirement that elements (Li)§- € A generate the algebra that is the dual to
the algebra A* (the definition of the dual algebra is given in Definition 6, Subsection 2.3), we

obtain the following commutation relations for the generators L(*):

Ry Ly L7 = Ly L Rys. (3.2.22)

The same equations are obtained from the universal Yang—Baxter equation (2.3.12) by the
averaging it with (T} @ To ® id), (id @ T1 @ Ty), (T ® id ® Ty) and using (3.2.20). The algebra
(3.2.21), (3.2.22) is obviously a Hopf algebra with comultiplication, antipode, and coidentity:

A(LF)s = (L5, ® (LF)F, S(LF) = (L), (3.2.23)

e((LF)%) = (L5, 1) = at, (3.2.24)

where we have assumed that the matrices L* are invertible.

We call the Hopf algebras with generators {(L*)%}, defining relations (3.2.21), (3.2.22) and
structure mappings (3.2.23), (3.2.24) as Faddeev-Reshetikhin—Takhtajan (FRT) algebras. As
was shown in [42|, for the R-matrices of the quantum groups of the classical series A,,, B,,, C,,,
D,, (respectively, SL,(n+ 1), SO,(2n + 1), Spy(2n), SO,(2n)), the relations (3.2.21), (3.2.22)
define quantum universal enveloping Lie algebras U,(sl(n + 1)), U,(so(2n + 1)), U,(sp(2n)),
Uy(s0(2n)) in which the elements (L¥)’ play the role of the quantum analog of the Cartan-
Weyl generators. We will investigate the case of U,(sl(n)) below in Subsection 3.4.

One can construct (see, e.g., [69]) the FRT algebra (3.2.21) — (3.2.24) as a Drinfeld double
of two dual Hopf subalgebras B* and B~ with generators (L*)} and (L™)}, defining relations
(3.2.21) and structure mappings (3.2.24), and (cf. (3.2.23))

ALYy = (L) @ (L)}, Doy (L7); =(L7)
(3.2.25)
S(L*) = (L)~ S (L7)=(L7)™"

op

In this case, the Hopf algebras BT and B~ are dual to each other with respect to the pairing [69]:
(LT, L3) = Riy- (3.2.26)

We denote by B~¢ the Hopf algebra with generators (L_);'-, and with comultiplication and
antipode (3.2.23) opposite to that of (3.2.25). The algebras B+ and B~¢ are antidual with
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respect to the pairing (3.2.26). As it was shown in Subsection 2.4, from the antidual Hopf
algebras Bt and B~ it is possible to construct a Drinfeld quantum double BT x B9, for
which the cross-commutation relations have the form (3.2.22). Thus, for the algebras B* in
(3.2.21) one can propose a special cross-product (quantum Drinfeld double), given by (3.2.22),
which is again a Hopf algebra (with structure mappings (3.2.23), (3.2.24)), and which was used
in [42] for the R-matrix formulation of quantum deformations of the universal enveloping Lie
algebras.

Note that the FRT algebra (3.2.21), (3.2.22) is a covariant algebra (comodule algebra) with
respect to the left and right cotransformations

(L) = (T @ (L)} = (LT,
(3.2.27)
(L) — (L9 @ (T = (T L*);

(we forget here for a moment that the matrices T and L* could have the different triangular
properties). Thus, the matrices

L= (S(LT)LY);, L= (L*S(L7))! (3.2.28)

J

realize, respectively, the left and right adjoint comodules (3.2.10) and (3.2.11). It is clear that
any powers L™ and L™ are also the left and right adjoint comodules (3.2.10) and (3.2.11) and
one can define the coinvariants

pu = Trp (L), Dy = Trg (L) (3.2.29)

Proposition 3.6 (see also [42]). The coinvariants (3.2.29) are central elements for the FRT
algebra (3.2.21), (3.2.22) and pyr = Dy for the realizations (3.2.28).

Proof. Indeed, one can obtain from (3.2.21), (3.2.22) the relations
LY LF = [F R LM RT LT LM = RH LM RF LT, (3.2.30)

where R := Ri5. Then, by taking the traces Trp() and Trg(p), respectively, of the first and
second relations (3.2.30) and using (3.1.38), we prove [pas, L*] = 0 = [par, L*], and therefore
we demonstrate the centrality of the elements (3.2.29) for the algebra (3.2.21), (3.2.22).

The equality pys = Py, for the elements (3.2.29) (where L and L are composed from L*
(3.2.28)) is deduced as follows:

Trp (LY) = Trpee) (S(Ly) Ly Ly) = Trou)Trpe (S(L;) RIM L;) =

= Trom)Trpe) (Eiw S(Ly) ﬁLS) = TromTrp() (Eiw Ly RS(H)) = Trq (LY),
where we have used Eqgs. (3.1.22), (3.1.23), (3.2.21), (3.2.22), (3.2.30). "
3.2.3. Reflection equation algebras
Note also that the generators L;'. and Z; (3.2.28) satisfy the equations

élg Ll élg Ll - Ll Rl2 Ll R127 (3231)
ng ZQ ng ZQ - ZQ [’%12 ZQ [’%12. (3232)
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In Subsection 5.2 below, we will see that (3.2.31) and (3.2.32) are the special limits of the re-

flection equations with spectral parameters. In view of this, algebras with generators L;- and Z}
and defining relations (3.2.31), (3.2.32) are called the left and right reflection equation algebras,
since (3.2.31) and (3.2.32) are covariant under the left and right coactions (cotransformations)
(3.2.10), (3.2.11). A set (which is incomplete in general; see below) of central elements for
these algebras is represented by the same formulas as in (3.2.29). Indeed, one can deduce from
(3.2.31), (3.2.32) the relations

~ A A A R ~ _M A A _M ~ R
LiRLIMRY =R LM R,y Ly, LoRyyLy, Ry = Ry Ly, RioLs. (3.2.33)

Then, taking the quantum traces Trp)(...) and Trge)(...) of the first and second relations
and using (3.1.38), we prove the centrality of the elements (3.2.29) for the algebras (3.2.31),
(3.2.32)

(L, Trp (LM)] =0,  [L%, Trq (L™)] =0. (3.2.34)

The algebra (3.2.31) (and similarly the second algebra (3.2.32)) decomposes into the direct
sum of two subalgebras, namely, into the Abelian algebra with generator p; := Tr, (L) and the
algebra with (N? — 1) traceless generators L’ (we assume that Tr,,(I) # 0):

i i i Fi L, i P1
Li=pidi+ AL = Li= 3 (L =phal),  phe= T (1) (3.2.35)
D

where the factor A := ¢ — ¢! is introduced to ensure that the operators L have the correct

classical limit for ¢ — 1. For the latest algebra, it is easy to obtain the commutation relations
Ruo Ly Buo Ly — Ly Bia L o = P2 (L RS, — B8, L), (32.36)
which after normalization Ly — —p Ly (for p) # 0) gives
Ruv En Ry Ea = Ly Ry B Ry = S (R By — Ly ). (3.2.37)

These relations can be regarded (for an arbitrary Yang-Baxter R-matrix) as a deformation of
the commutation relations for Lie algebras. For the Hecke-type R-matrix (3.1.68) the relations
(3.2.37) are equivalent to

Rm fq Rm fq - [Nq Ru [~,1 Ru = R12 E1 - le f%m, (3.2.38)

and corresponding algebra has a projector-type representation p: ([Nzé)g = A"B;s, where nu-
merical rectangular matrices A and B are such that Trg(ié) = Bjo A" = QY (for any matrix Q
that satisfies TrlQlli’lg = I,; see (3.1.22)).

The relations (3.2.31), (3.2.32), (3.2.37), and (3.2.38) are extremely important and arise, for
example, in the construction of a differential calculus on quantum groups as the commutation
relations for invariant vector fields (see [70-91] and references therein; see also Subsection 3.5.3
below).

Note that, instead of (3.2.20), one can use a somewhat different linear mapping from A*
to A |51, 67, 91, 95, 96] (which is completely determined by (3.2.20)):

(c(R)R,id®a)=a (a€ A", a € A), (3.2.39)
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where o(a ® b) = (b® a), Va,b € A. The explicit calculations give
(0(R)R,id® T}) = L, (3.2.40)
(0(R)R, id® T, Ty) = S(LT) Ly L = Ly Ry Ly Ry,

<O’(R)R, Zd@TlTk>:LngLEELEL§LT,

where R ) R R
Liyi=Re Le By, Lyzm =R, 'Ly Ry, Li=Ly= Ly, (3.2.42)

and we have used Egs. (2.3.9), (3.2.20), and (3.2.30). If we confine ourselves to the fairly
general case of quasitriangular Hopf algebras A, for which the mapping (3.2.39) is invertible
(such Hopf algebras are called factorizable [95]), one can map the identities for the RT'T" algebra
into the identities for the reflection equation algebra and vice versa. For this we need to use
relations (3.2.39) (for more details see [96]).

In view of (3.2.41), one can represent the reflection equation algebra (3.2.31) in the “univer-
sal” form

R32 (R31R13) R23 <R21 R12) = <R21 R12) R32 (R31R13> R237

where the notation R;; has been introduced in (2.3.11). The pairing of this relation with
(1d®T ®T) gives (3.2.31). The algebra (3.2.32) has an analogous representation if we start
with .

(0(R)R, T} ®id) = L. (3.2.43)

We note that the identity (which has been obtained in (3.2.41))
LiLy...Ly=1Lg...Ly Lt (3.2.44)

is valid in more general case of any reflection equation algebra (3.2.31) (even not realized in the
form (3.2.28)). Below we also use the following identity (which can be proved by induction):

Lyp1 Liyo - Lign = Uy Ln Lo . La U, (3.2.45)

where the operator Uy ) is represented as a product of £ or n factors (cf. (3.1.60)):
Utkn) = Rigonsio) - - Riasnry) Raomy) = Ripeny Roerien) - Rinsioreon), (3.2.46)
B = o Brr oo o By = B Bovir -+ B (3.2.47)

3.2.4. Central and commuting subalgebras for reflection equation and RTT algebras

As we prove in the previous subsection, the elements (3.2.29) are central for the RLRL
(reflection equation) algebras (3.2.31), (3.2.32). Now the description of a more general set of
central elements for reflection equation algebra is in order.

Proposition 3.7. Let X1, be an arbitrary element of the group algebra of the braid group

B, generated by skew-invertible R-matrices R, (a = 1,....,m — 1) with defining relations
(3.1.11), (3.1.10), (3.1.12). Then the elements

2 (X) = Trpam) (X(aom) L1 La ... L) (m=1,2,...) (3.2.48)

belong to the center Z(L) of the reflection equation algebra (3.2.31), where we recall Riy = Ry.
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Proof. First of all, we note that z,,(X) (3.2.48) satisfies

Zm(X) Il = Tr’D(Q...m+1) (X(2—>m+1 Lg L3 Lm—l—l) — (3 2 49)
= Trpe..m+1) (Xeomer) Lt - - - Lg Ly) -

where Xo_ymi1) € By is obtained from X,y by the shift R, — Rqy1 (Va). The first
equality follows from the chain of relations

Trp@.m+1) (X(2—)m+1) Ly... L) =
= Trpee. mH)( e R R Ly L Y Ry
( Xaom Ly Ly R*l---Rl—l):

= TI‘D(Q__m) (R R -1 [TI‘D( (X(1—>m) L1 Lm> R;},l T ﬁil_1> =
==L Trpa.m) (Xaomy L1 La ... L)

= TTD(Q .m+1)

where we have applied (3.1.38) many times. The second equality in (3.2.49) is proved in the
same way, or by using the generalization of the identity (3.2.44)

Then the proof of the commutativity of the arbitrary generator of the reflection equation (RE)
algebra (3.2.31) with elements z,,(X) is straightforward:

Ll Zm<X) = TrD(2...m+1) (X(2—>m+1) Lng LQ Ce LLH) =

= TrD(Q...m-i—l) (X(2—>m+1) Lm+1 L2 Li) = Zm(X) Ly.

u
Remark 1. If; in the definition of central generators (3.2.48), we take the set of elements
X =X,, a=1,2,..., which are all primitive idempotents for any finite-dimensional quotient

B!, of the group algebra of B,,, then the set of central elements z,,(X,) forms a basis in the
subspace of Z(L) generated by elements (3.2.48) for any matrices X € B],.

Remark 2. The “power sums” (3.2.29) belong to the space Z(L). Indeed, the substitution
of X = R(m 1) 1= Ry1...Ry in (3.2.48) gives

2 (X) = Trp(1..m) <L1 co Ly (R aeyIn R ) R(m—wl)) =

- TrD(l...m) (Ll [N LM (R(m_2<_1)Llﬁi(:i_%_l))Rgmflﬁ(m_m_l)[/l) == (3250)

= Trp(1..m—1) (LL i, me—zﬁ(mfzel)La = =Trpa) (L") = P,

where in the first line we used the cyclic property of the quantum trace (3.1.40) and in the
second line we applied (3.1.22).

Now we discuss the set of commuting elements in the RT'T algebra (3.2.1). For this algebra
one can construct [94] the following elements:

Qr = Tryq..p (R p—1eny Ty Ty -+ T) = TrY(l...k)(}Sb(lﬁkfl) Ty Ty), (3.2.51)

where

TI‘y(lmk) (Xlk) = Tl“l e Tl"k(ifl Ce Yk Xl...k);
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and the matrices Y are such that V1Y, = R, Y, Y5 (eg,Y=DorY =Q, see (3.1.36)). The
second equality in (3.2.51) is obtained as follows:

TI"Y(1 k)(R Rk ARE Tk;) TI"Y 1.. k)(Rk AR Rl T ék—2) =
= Tryq..x) (R1 Rk sRy Ry oTy-- - T) =
= Try(u.. k)(Rk | Ry 21T R1 Ry_3) =
= =Try@.x (R Ry—o-- R\ Ty -+ T3,).

(3.2.52)

Note that by means of (3.2.39) we map the elements Q) (3.2.51) (for Y = D) to the central
elements py (3.2.29) of the reflection equation algebra.

Proposition 3.8. The elements (3.2.51) generate a commutative subalgebra in the RTT al-
gebra (3.2.1).

Proof. Our proof of the commutativity of the elements @y, is based (see [97]) on the fact that
there exists the operator Uy, (3.2.46) which satisfies

U(k,n) él U(;’ln) - Rprk’ Z - 1, oo, — 1, U(k,n) énJrj U(;’ln) = Rj, j - 1, ey ]{Z - 1
Using the operator Uy ), we obtain the commutativity of Qy:

QrQn = TTY(1_..1<;)(R(1—>1<;—1) Ty - Ty) Try(1...n)(R(1—>n—1) T - T,) =

= TrY(l...k—&-n)(lT:{(l—)k—l) ﬁi(k+1—>k+n—1) Ty Thgn) = (3.253)
= Try @ k) Utk Bins1snr1) Rasno) Uy T1 - Tn) = -

= TrY(lA..kJrn) (R(lﬁnfl) R(TH*l*WH’k*I) U(;,ln) Ty 'Tk+n U(k,n)) = Qn Qk

]

In fact, applying the same method as in (3.2.53), one can prove [97] that the set of commuting

elements in the RT'T algebra is wider then the set (3.2.51) and consists of all elements of the
form

Qu(X) = Try (1) (X(le, R )T Ty -Tk> , (3.2.54)

where X (...) run over basis elements of the braid group algebra with generators {R;} (i =
L...,k—=1).
Our conjecture is that, for the Hecke-type R-matrices (3.1.68), the set of elements (3.2.51)

Qr = Qr(Ri_k 1) = Qu(Ri_101)

is complete and all Q(X) (for any braid X with k strands) are expressed as polynomials of
the commuting variables {Q1,...,Q)} and deformation parameter q. These polynomials, if
we add some extra constraints dictated by Markov (Reidemeister) moves for the braids X (see
Section 1 in [201]), could be related to link polynomials. On the other hand, Eq. (3.2.54) defines
g-analogs of characters for representations of the algebra A (3.2.21)—(3.2.24) and for the RT'T
algebra A*. These representations are characterized by special choices of the elements X{...)
being central idempotents in the Hecke algebra generated by matrices {RZ} (i=1,....k—1).
We will discuss these ideas in detail in Subsection 4.3.6 below.
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3.2.5. Heisenberg double for the RTT and reflection equation algebras

Since the RTT algebra A* (3.2.1), (3.2.3) and the quantum algebra A (3.2.21)-(3.2.24)
are Hopf dual to each other (with respect to the pairing (3.2.19)), one can define the left
and right Heisenberg doubles (HD) of these algebras (about HD see Subsection 2.4). Their
cross-multiplication rules (2.4.1), (2.4.2) are written for the left HD in the form

LiTy=TyRyLf, LiT,=TR;Ly, (3.2.55)
and for the right one we have
T\L = Ly RyyTy, T\Ly, = Ly Ry'. (3.2.56)

The corresponding cross products of the RTT algebra and the reflection equation algebras
(3.2.28), (3.2.31), (3.2.32) are described by the cross-multiplication rules

L1 Ty = TyRisLoRys, TiLo = RiaLiRioTh (3.2.57)

in the case of the left (3.2.55) and right (3.2.56) HD, respectively. A remarkable property [98]
of these cross products is the existence of automorphisms of the HD algebras

{r, L} ™ {TL" L}, {I, L}™ {L"T, L}, (3.2.58)
i.e., we have (the same is valid for the automorphisms 7,)
Riy (L"T)y (L"T)y = (L"T)y (L" T)y Ryg,  (L"T)y Ly = Ris Ly Ryp (L"T);, = (3.2.59)

(Ln T)1 Lg = (Rm L1 Rm)k (Ln T)l, Vn, k - Z}O-

One can check these properties by induction using Egs. (3.2.1), (3.2.31), (3.2.32), and (3.2.57).
The maps m,,m, define discrete time evolutions on the RTT algebra. For the Hecke-type
R-matrices (3.1.68) the automorphisms (3.2.58) can be generalized in the form

(r, I} ™ {T (i gsz’”> , I}, (T, L} ™ {(i xmLm> T, L}, (3.2.60)

for any parameters x,,, Z,, € C. This generalization follows from the fact that any symmetric
function of two variables L; and RlLlﬁ’l commutes with 1%1.

For the left and right Heisenberg doubles (3.2.55)—(3.2.57) one can define new reflection
equation algebras, generated by the elements of matrices L and L transformed by the adjoint
action of the RT'T algebra

Y=TL 'TY, v=T7'L"'T
for which we have [84] (cf. (3.2.31), (3.2.32), (3.2.57)):
Ry Y1 RpY1 =Y RiyY1 Ry, RuYaRipYo =Ya RipYa R,
T1Yy=RupYiRpTi, YiTo=TyRipYs Ris.

The elements of these matrices satisfy: [V, Li] = 0 = [V, Ly]. In the differential calculus on
quantum groups, matrices L and M := Y ! are interpreted (see [84] and [129]) as invariant
vector fields on the RT'T algebras (see Proposition 3.9 below).
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The cross-multiplication rules (3.2.57) for the HD of the RT'T" and reflection equation alge-
bras were extensively exploited in the context of the R-matrix approach to the differential calcu-
lus on quantum groups [71-91] (see also Subsection 3.5.3 below). Another cross-multiplications
(of the RT'T and reflection equation matrix algebras), which are characterized by the relations

LTy = TyRisLoRy),  TiLo = RiaLiRyTh, (3.2.61)

were also considered in various investigations [84, 87, 88| of a noncommutative differential
geometry on quantum groups.

Proposition 3.9. 1. For cross-multiplication of the RTT and reflection equation algebras
?REA));Uith generators Tj and L% subject to defining relations (see (3.2.1), (3.2.31), and
3.2.01

Ry T\Ty = Ty Rys,  Rialy Rialy = Ly RioLy Ry, TiLo = Riy Ly R, (3.2.62)
we have the following equations [88]:
ﬁlg (L T)l (L T)2 = (L T)l (L T>2 ﬁ{lg (3263)

(we, however, stress that it is impossible to define the whole discrete evolution (3.2.59) for the
double algebra (3.2.62)).

2. Let L;, i; be generators of the REA (3.2.31) and E; subject to the following cross-commutation
relations [88] with generators of (3.2.62)

Ty\Ly = Ry R} Ty, Ry Ly RisLy = Ly Ry Ly Rys. (3.2.64)
Then we have [52, 88]

A~

Riy (LT)y Ly = RisLy R} (LT)y, Ria(LT)y (LT)y = (LT), (LT)y Ria, (3265
ng(L I—J)l Rlz(L E)l - (L Z:J)l ng(L Z:J)l ng.

3.2.6. Quantum matriz algebras in general setting

Now we present a definition of a more general quantum matrix algebra M(R, F ) generated
by (N x N) matrix components M} subject to the relation

Rio My Fia My Fry = M, Fiy M, Fiy Ry, (3.2.66)
where the pair of Yang-Baxter operators {I%, F } € End(V$?) satisfies the conditions
Riy Fyy Fiy = Fy3 Fio Ros,  Roy Fip Foy = Fip Py R, (3.2.67)

The algebra M(R, F') is a quantum matrix algebra M (o(R)F), since we can reproduce (3.2.66)
(for details see [99]) by means of identifications

M= (0(R)F,id®@T}), Fy:=Pu(F, T ®T),

J

where F is a twisting matrix (2.5.4), (2.5.7) and Pjy is the permutation matrix (3.1.8). Note
that Egs. (3.2.67) are the images of Egs. (2.5.8). It means that, for the pair the Yang-Baxter
operators {R, F'} (3.2.67), the matrix

Rgl = F12R12F1§1 = (R", 71 @ Ty) Pi (3.2.68)
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is the Yang-Baxter matrix as well. Specializing to F=PorF = R, one reproduces from
(3.2.66) the RTT or reflection equation algebras, respectively. The algebras M(R, F') (3.2.66)
and their modifications were discussed in [97, 99, 100, 130].

At the end of this subsection, we introduce a notion of a coideal subalgebra of the quantum
algebra (3.2.21), (3.2.22). Let R12 be a Yang-Baxter R-matrix and there are numerical matrices

G, @; which satisfy the conditions
R, Gy R3 G = Gy RY, Gy RE,

T (3.2.69)
R, Gy R}y Gy = Gy R3: Gy Ry,
Using relations (3.2.21), (3.2.22) and conditions (3.2.69), it can be shown directly that the

elements of quantum matrices
K=L G(L", K=S(L")G(S(L))
obey the following commutation relations:

Riy Ky Ry Ky = Ko Ry Ko Ry, (3.2.70)
Ris K1 R Ky = Ky RZ Ky Ry,

which we consider as the defining relations for a new type of quantum matrix algebras IC(R, Q)
and (R, G). The defining relations (3.2.70) are covariant® under the left and right A-coactions:
Ki— (L), (LY, @ Kf, K, — Ky @ S(LY)L S(L7), (3.2.71)
Thus, the unital algebras K and K (with generators K} and 73-, respectively) are left and right
A-comodule algebras and these algebras are called coideal subalgebras of A. _
One can consider two more such algebras with generators K/ = LTG'(L7)" and K =
S(L™)G S(L)" which obey the following defining relations:

R K (Reb)™ K = K (Rgh)s K7 (Rgyte,
Rﬁl Flz (Rﬁl)752 Rll - Kll <R511>t1 ?,2 (Rgll)tm-
Note that these relations can be obtained from (3.2.70) by the substitution Rjo — Ry, .

For the special case of GL,(N) R-matrices (see Subsection 3.4) the algebras (3.2.70) have
been considered in [101, 106] (see also references therein). In this case, the coideal sub-
algebras coincide with quantized enveloping algebras introduced earlier by A. Gavrilik and
A. Klimyk [105].

Representation theory for compact quantum groups has been considered in [116]. In [117],
a universal solution to the reflection equation has been introduced and general problems of
the representation theory for the reflection equation algebra were discussed (representations
and characters for some special reflection equation algebras were considered in [24, 118, 119]).
A classification of commutative solutions of the graded reflection equations associated with the
vector representations of the quantum supergroup of GL-type was given in [120].

8Here the notion covariant is equivalent to the statement that (3.2.71) are homomorphisms for the algebras
defined by (3.2.70).
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3.3. The semiclassical limit (Sklyanin brackets and Lie bialgebras)

We assume that the R-matrix introduced in (3.2.1) has the following expansion in the limit
h—0(g=¢c"—1):

R12 =1+ h?"lg + O(h2) (331)

Here 1 = I ® I denotes the (N? x N?) unit matrix. One says that such R-matrices have

semiclassical behavior, and 715 is called a classical r-matrix. It is readily found from the

quantum Yang—Baxter equation (3.1.11) that rio satisfies the so-called classical Yang—Baxter

equation
[r12, 713 + 23] + [113, r23] = 0. (3.3.2)

Substituting the expansion (3.3.1) in the RTT relations (3.2.1), we obtain
[Ty, T5) = h[T\ Ty, r12] + O(h?). (3.3.3)

This equation demonstrates the fact that the RTT relations (3.2.1) can be interpreted as a
quantization (deformation) of the classical Poisson bracket (Sklyanin bracket [43]):

{11, T} = [T, 110 (3.3.4)

(here the elements TJZ are commutative coordinates of some Poisson manifold). The classi-
cal Yang-Baxter equation (3.3.2) guarantees fulfillment of the Jacobi identity for the brack-
et (3.3.4). From the requirement of antisymmetry of the Poisson bracket (3.3.4), we obtain

{11, T} = [TWTy, —ran]. (3.3.5)
Thus, the classical r-matrix TS) — —7y; corresponding to the representation R(™) (3.2.18) must
also be a solution of Eq. (3.3.2), as is readily shown by making the substitution 3 <> 1 in (3.3.2).
On the other hand, comparing (3.3.4) and (3.3.5), we obtain

T1T2(7”12 + 7’21) = (7’12 + T21>T1T2. (336)
Thus,
1
t1o = 5(7"12 + 791) (3.3.7)

is an invariant with respect to the adjoint action of the matrix 7775 (it is an ad-invariant). We
introduce the new classical r-matrix

5 1
r1g = 5(7"12 — T91). (3.3.8)

Then the Sklyanin bracket can be represented in the manifestly antisymmetric form
{Th, T2} = [T, 1), (3.3.9)

and the matrix 7 (3.3.8) satisfies the modified classical Yang—Baxter equation

B _ B B _ 1
[T12, T13 + Tag] + [T13, To3] = 1 (123 + 732, T13 + T31] = [tas, t13]. (3.3.10)

Note that the reflection equation algebras (3.2.31), (3.2.32) can also be regarded as the
result of quantization of a certain Poisson structure. For example, for these algebras, after
substitution of (3.3.1), we have [121] (see also [88])

{La, L1} = [Ly, [La, T12]] + LatiaLo — Lotia Ly,
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{Ly, L1} = —[Ly, [La, F12]] + LitiaLo — Lotio Ly,

where again we must assume that [L; Lo, t12] = 0 = [L; La, t12] (cf. (3.3.6)). On the other hand,
the relations (3.2.37) in the zeroth order in h give the equations

(L1, Lo) = [tia, L), ([t127 L+ Ly = 0) ;

and this enables us to regard (3.2.37) as a deformation of the defining relations of a Lie algebra.

Now we consider the universal enveloping U(g) of a Lie algebra g with defining relations
(2.2.4) as a bialgebra (2.2.5) and assume that the cocommutative comultiplication A (2.2.5) is
quantized A — Ay, in such a way that A, is noncocommutative. The semiclassical expansion
of A}, is?

An(Jo) =Jo+ T2+ hpl) Ty J2 4+ 02 (0 5 J, J2 4 2 g5 J2 J2) + % (3.3.11)

where J. = J, ® 1, J2 = 1 ® J,, the term of zeroth order in h in (3.3.11) is the classical
comultiplication (2.2.5) and p?7, uf1%27 ... are some constants. The comultiplication map
(3.3.11) (as well as the opposite comultiplication A?®; see (2.2.2)) should be a homomorphic
map for the Lie algebra (2.2.4):

[An(Ja), Bn(Jp)] =t An(Jy), (A7 (), A7 (Jp)] = tas A3 (J5)- (3.3.12)

Then the subtraction of the second relation of (3.3.12) from the first one gives the following
equation:

(AL (Ja): Ay (o) + (A5 (Ja), Ay ()] = tag Ay (J5)

(here we define Ay := A, — A and A} :=
of h) as

(A, + AP)) which is rewritten (in the first order
5T, Jh+ 2]+ LT+ T2, (T3] = 12, 6(7,), (3:3.13)
where the map 0: ¢ — g A g is
§(Jo) =00 Js @y, 0P = b — P (3.3.14)
Equation (3.3.13) is nothing but the cocycle condition for 627

(98" 85, — 00" t,) — (35" 85, — 95" th,) = tas O3".

On the other hand, the structure constants (A~)7 = A — AJ satisfy the co-Jacobi identity

(A (A" + (A7) (A7)

mh (AT (AT =0,

J ? J

as it is evident from the coassociativity condition (2.1.8). This identity for the comultiplication
(3.3.11) in the order h? reduces to the co-Jacoby identity for the structure constants 657 (3.3.14):

50 555 + (cycle v, p,&) = 0. (3.3.15)

Thus, we have arrived to the following definition [10].

9The terms hqﬁBVJﬁJ I and hgbﬂ”JBJ 2 are gauged out by triviality transformation from this expansion (see,
e.g., [68]).
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Definition 9. The vector space g with the basis {J,} equipped with a linear map §: g — g\ g
(5.8.14) satisfying the co-Jacobi identity (3.5.15) is called a Lie coalgebra. A Lie bialgebra is
a Lie algebra (2.2.4) which is at the same time a Lie coalgebra with the map §: g — g AN g
(3.3.14), (3.53.15) satisfying the cocycle condition (3.53.13).

Let g be a Lie bialgebra. If there exists an element r € g ® g such that the map ¢ has the
form

M()=[J@1+1xJ, r] VJEyg,
then the Lie bialgebra g is called a coboundary or r-matrix bialgebra.

3.4. The quantum groups GLy(N), SLy(N) and their quantum algebras and hyperplanes

3.4.1. GL,(N) quantum hyperplanes and R-matrices

In this subsection, we discuss the simplest nontrivial quantum groups, which are the quan-
tizations (deformations) of the linear Lie groups GL(N) and SL(N). We begin with the defini-
tion of a quantum hyperplane. We recall that the Lie group GL(N) is the set of nondegenerate
N x N matrices T]’ that act on an /N-dimensional vector space, whose coordinates we denote
by z* (i =1,...N). Thus, we have the transformations

v — at = Tiad, (3.4.1)

which we can regard from a different point of view. Namely, let {77} and {2’} (i,j =1,...,N)
be the generators of two Abelian (commuting) algebras

(2", 27] = [T;,le] = [T;,xk] = 0. (3.4.2)

Then the transformation (3.4.1) can be regarded as an action (more precisely, it is a coaction)
of the algebra {T'} on the algebra {z}:

b = op(a =i =Tl @ 3.4.3
J

that preserves the Abelian structure of the latter, i.e., we have [7*, 77] = 0. We introduce a
deformed N-dimensional “vector space” whose coordinates {x} commute as follows:

o'l = qaixt, i < g, (3.4.4)

where ¢ is some number (the deformation parameter). In other words, we now have a noncom-
mutative associative algebra with N generators {z'}. In accordance with (3.4.4), any element
of this algebra, which is a monomial of arbitrary degree

R AR (3.4.5)

can be uniquely ordered lexicographically, i.e., in such a way that i; <o < ... < ig. Of such
algebras, one says that they possess the Poincare-Birkhoff-Witt (PBW) property. An algebra
with N generators satisfying (3.4.4) is called an N-dimensional quantum hyperplane [73, 74].
The relations (3.4.4) can be written in the matrix form

Rﬁ’jzlex” = qx"2" & Rippx119 = quox1 & Ry 19 = q 1 20, (3.4.6)
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Here the indices 1 and 2 label the vector spaces on which the R-matrix, realized in the tensor
square Mat(N) ® Mat(N) =: Mat(N); Mat(N)q, acts. Thus, the indices 1 and 2 of the R-
matrix show how the R-matrix acts on the direct product of the first and second vector spaces.
We emphasize that the R-matrix depends on the parameter ¢ and, generally speaking, its
explicit form is recovered nonuniquely from the relations (3.4.4). However, if we require that
the R-matrix (3.4.6) be constructed by means of two GL(N)-invariant tensors 115 and Pjs,
ie.,10

Rt = (57102) - @iy + (5207 - by (3:4.7)

J132 J17J2 J27J1

and also satisfy the Yang—Baxter equation (3.1.2) and have lower-triangular block form (R%z =
0, i1 < J1), then we obtain the explicit expression [42, 113]

Ryip = qz i ®eit Y ei®e;+AY e ® e, (3.4.8)
i#] i>7
Riy=PpRi=q Z ey ® ey + Z €ij @ €j; + A Z eji e, (3.4.9)
i) i>j

where €], .

ooty Are matrix units: (eg;)f = 6"0; , Pia := Y, , e @egg is a permutation matrix

and here and below we often use notation | A := ¢ —¢~* |. Equation (3.4.8) is represented in
the components in the form

Ry = 6300 (14 (g = 1)) + A63072 04,

J1J2 J17J2 J2701
12 i1 §i2 . 0; i1 Sl2
RJIJQ - 5]25]1 ‘12 _l_ )\5]15J2@i2i1a (3410)

O, ={11if i>j 0 if ¢ <j}.

It can be verified (by using, e.g., the diagrammatic technique of Subsection 3.6) that this
R-matrix satisfies the Hecke relation (3.1.68) (a special case of (3.1.64)):

Riy—APy—R;'=0 = R-M—-R'=0 & R=AR+1=0, (3.4.11)

where Iﬁ;g = (5;1(5;3 is a unit operator. The following helpful relations also follow from the
explicit form (3.4.8), (3.4.10) for the GL,(N) R-matrix:

%@:%M<$E%F$WL (3.4.12)

RU2 = Ry, RS Ryy = Rip RY. (3.4.13)

The R-matrix (3.4.7) (where without loss of generality one can fix b; = 0) is skew-invertible
iff a;; # 0 (Vi,7) and det(||b;; + a;;0,5]|) # 0. Then the skew-inverse matrix Wy, (3.1.18) is
represented in the form

b = — 5;;5;3 — diyi, 01072, (3.4.14)
1211

where coefficients d;; are defined by the matrix equation

d=A"B(A+B)™', Aj:=auby, B=|byl.

0The form of R-matrix (3.4.7) proves to be very fruitful for the construction of solutions for dynamical
Yang—Baxter equations; see [109, 110] and references therein (see also Subsection 3.8 below).
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For the given R-matrix (3.4.10), the matrix Wy, (3.4.14) is calculated in the form [68]
ViR = q 007 — AOu ¢* )80, (3.4.15)
Uiy =¢7" Y e @ e+ 205 @ eji — A ¢° e @ e
Then the quantum trace matrices D, @) (3.1.20) and the related quantum traces (3.2.12) are

Dl = Tr? <‘i;12) = diag{q_2N+17 q_2N+37 s 7q_1}7 D; = qQ(i_N)_l(S;'a

) | N (3.4.16)
Q2 =Ty (‘1’12) = diag{q™",...,q 2" "3, ¢ 2N, Q= QI_QZ(S;',
TrpA = Tr(DA) Zq M=LAL TrgA = Tr(QA) = qu 2AL
We also note the useful relations (cf. (3.1.22), (3.2.17))
Trp(I) = Tr(D) = ¢V [N], = Tr(Q) = Trg(I),
(3.4.17)

N TID R23 = qiN . ](2) = qN TYQ(l)éil,

where [N], = qq qu X One can readily prove the cyclic property of the quantum traces

TrD(12)(éE12) = Trl?(DlDZREH) = TrlQ(RDlDQ Elg) = TI'D(lg)(ElgR), (3418)
where Ejy € Mat(N) ® Mat(N) is a matrix with noncommutative entries. In (3.4.18), we have
used the fact that the matrix D, by definition, obeys Eq. [R, D; D] = 0 (3.1.36) (note that for
R-matrices of the type (3.4.7) all diagonal matrices D satisfy this equation). The same cyclic

property TI'Q(lg)(.REIQ) = TI‘Q(12)<E12R) is also valid for the traces Trg.
In semiclassical limit (3.3.1), relation (3.4.11) can be written in the form

T1g +ro1 = 2P (3.4.19)

Thus, for the Lie-Poisson structure on the group GL(N) the transposition matrix Pj, is taken
as the ad-invariant tensor ¢;5. For the 7-matrix (3.3.8) determining the Sklyanin bracket, we
obtain from (3.4.10) the expression

P2 =Y [e; ® eji — e ® eyj] € gl(N) A gl(N). (3.4.20)
i>j
In accordance with (3.1.68), (3.1.66), and (3.1.67), for ¢ # —1 the matrix R has the spectral
decomposition X

R=¢qPT —¢'P", (3.4.21)

with projectors X
P = (¢+¢ ") {¢T'1£ R}, (3.4.22)
which are the quantum analogs of the symmetrizer (P") and antisymmetrizer (P~), as can

be seen by setting ¢ = 1 in (3.4.22). Using the projector P~, we can represent the definition
(3.4.4) of the quantum hyperplane in the form

P xzy2y=0. (3.4.23)

Note that the relations
Ptojz, =0 (2) =0, 2'2/ = —¢ '2?2" (i <j) (3.4.24)
define a fermionic N-dimensional quantum hyperplane that is a deformation of the algebra of

N fermions: z'z’ = —272°.
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3.4.2. Quantum groups Fun(GL,(N)), Fun(SL,(N)) and q-determinants

A natural question now is about the properties of the N x N matrix elements T;’ that
determine the transformations (3.4.3) of the quantum bosonic (3.4.4), (3.4.23) and fermionic
(3.4.24) hyperplanes. These properties should be such that the transformed coordinates z* form
the same quantum algebras (¢-hyperplanes) (3.4.23) and (3.4.24). It is readily seen that the
elements of the N x N matrix T; must satisfy the both conditions

P TVT,bP =0, P T,T,P"=0. (3.4.25)
Indeed, we have for bosonic x~ and fermionic ™ hyperplanes (we omit the symbol ® in (3.4.3))
0=P i7i; =P " T1 Thafzy =
=P*T\ T, (PT + P )afaf = PE T\ T, P¥ af o,

and we deduce (3.4.25) (otherwise new quadratic relations on the coordinates xz* should be
imposed). Equations (3.4.25) are equivalent to the RTT relations (3.2.1) for the elements of
the N x N quantum matrix ||TJ’H

RNV, -T'ThR=(q+q¢ ) (PTTiToP~ —P Ty T, PT) = 0. (3.4.26)

We note that one can define the quantum matrix algebra when only one of two relations in
(3.4.25) is fulfilled. In this case, the quantum matrix algebras, generated by T]?, are called
half-quantum or Manin matrix algebras [107, 108].

For the R-matrix (3.4.10) the RTT relations (3.2.1) and (3.4.26) can be written in the
component form

TiT] =qT{T}, TFTF=qTFTF, (i<j k=1,...,N),
. (3.4.27)
[T, T2 = (g — ¢ ") T;) T

J1? g1

([T, T3] =0, (i1 < i, j1 < Jo).

J27

The RTT algebra with defining relations (3.4.27) is a bialgebra with the structure mappings
A e presented in (3.2.3). The simplest special case (N = 2) of this algebra is defined by

TLT} = T3, ThTh=qT5Th, (k=1,2). 105,
T, T3 = (¢—q ) THT3, [Th, T3 =0. B
One can directly check that det,(T) := T} T35 —qT5T3 = T3 T} —q T4 T4 is a central element
for the algebra (3.4.28). This element is called quantum determinant for (2 x2) quantum matrix
||T7]], since for ¢ = 1 the element det,(T") coincides with the usual determinant. Let det,(T)
be invertible element. Then the inverse matrix 7! is

T2 —q T} 1 .
-1 2 2 —1 1
T = ( o ) o o det,-1(T71) = det, ' (T).

Now we generalize the definition of the quantum determinant for the case of (N x N) quan-
tum matrices ||7}||. We introduce the quantum determinant det,(7), which is a deformation of
the ordinary determinant and also is a central element for the RTT algebra (3.4.27). For this
aim we introduce the g-deformed antisymmetric tensors &; and £192IN (Vg =1,..., N)
as follows:

1J2---JN

N
Z Ejimin E1T7IN = €y N E2N)

J1...jn=1
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5(12...NPZJ€+1 = g(lQ...N(Rk,k+1 +q¢ =0, 1<k<N, (3.429)
Pl 8% N = (Rygr + ¢ )EPN =0, 1<k <N, a

where we have used concise matrix notations. Namely, we denoted by 12...N) and (12... N
the sets of incoming and outgoing indices, where 1,2,... N are numbers of the N-dimensional
vector spaces Vi, and P}, | = I®*D @ P* @ [9W=F=1) are the symmetrizers (3.4.21) acting
in the vector spaces Vy labeled by numbers k& and k + 1. Note that, in view of the RTT
relations (3.2.1), (3.4.27), the tensors Eno. N (1112 Ty) and (1T - - - Ty )E?N) possess the
same symmetry'! (3.4.29) as the tensors Eqo..n and E12-N) respectively. Supposing that the
E-tensors are unique (up to a normalization), one can write
detQ<T) gj1j2~-~jN = gZHQZNTJle ' T]Z; TN

IN?

3.4.30
Siriz.in detq(T) _ T;l . T;Q . .T;Ngjljé-njzv ( )
1 2 N )

or in concise matrix notations, we have
dety(T)Eno. v =Eno nTh - To-- Ty,  EPNdety(T) =T, Ty Ty E*N,  (3.4.31)
where T, := I®m"Y @ T ® [*0N=™)_ The scalar coefficient det,(T):
dety(T) = Ena..n (TiTo -+ Tiy) E2 N = Tryg N(Arn TiTo -+ T), (3.4.32)

is called the quantum determinant for the (N x N) quantum matrix [|T}||. In (3.4.32), we
introduced the rank-1 projector

ALy = 512"'N>5(12...N7 Aiun Aoy = A,

. N (3.4.33)
AN Pk7k+1 = Pk7k+1 AN = 0, 1< k< N7

which acts as a g-antisymmetrizer in the tensor product V](‘?N of N copies of vector spaces Vy.
It is worth noting that the g-antisymmetrizers A;_,5 := P, (3.4.22) and A;_,y are two special
representatives of the set of antisymmetrizers {A;,,,} (m =2,3,..., N) which act in the tensor
product of m vector spaces Vy and satisfy

A1—>m Al—)m = A1—>m7

(3.4.34)

All of them can be explicitly constructed in terms of the R-matrices (3.4.8), (3.4.10) (see,
e.g., [111, 113| and Subsection 3.5 below).

The fact that det,(7") is indeed a central element in the RTT algebra (3.4.27) can be
obtained as follows:

g<12...N detq(T) TN+1 = g<12...N T1 T2 s TN TN+1 = (3435)

=Ena. N (Ring1--- Rynit) "I T Ty T (Rini1- - Byng) =
=q! Tnii&ao. NTi Ty T (Ring1 - Rvng1) = Ty dety(T) Eqa. v,

1Tt is not true for the half-matrix algebras (see definition after Eq. (3.4.26)).
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where we have used the definition (3.4.31), the RT'T relations presented in the form 7,,7,,.1 =
lem 1 L1 T Ry s, and the equations

N1 Ena.v = EnaN Riyny1-Rony1- By v
P ( o o (3.4.36)
q ANt ‘9<12--~N = 5<12--~N RN+1,1 ) RN+1,2 T RN+1,N-

In fact, we have only used the first equation in (3.4.36). The second one is needed if we apply
the RT'T relations in different manner: 75,7}, 11 = Rpt1.mTm+1Tm Rm me

The relations (3.4.36) are deduced from the expressions (3.4.32) for quantum determinants.
Indeed, we have

det (RE\:T‘:—H) €az.N R1 N+1T R%%Vﬂgm"'m =q " Ing, (3.4.37)

where matrices R™*) are representations for elements T; which were defined in (3.2.18), (3.2.19).

The last equality in (3.4.37) follows from the fact that R*) and R(7) are, respectively, upper
and lower triangular block matrices with diagonal blocks of the form

(R(:I:) ) 5Ic :I:&k

Assume that the quantum determinant (3.4.32) is invertible central element. Consider an
extension of the RT'T algebra (3.4.27) by the central element detq_l(T) which is inverse element
for the quantum determinant (3.4.32). Then one can use the E-tensor (3.4.29), the identity

Ejj..jn ET2IN = [N] D} (see Eq. (3.5.7) below; matrix D is defined in (3.4.16)), and the

inverse element det, " (T) to find an explicit form for the inverse matrix 771:
(T7Y); = My (D™ det,(T) = T/ (T7Y); =4, (3.4.38)

where M := ¢ N[Ny & jp..jy T2 -+ TIN¥ £12-i5 are quantum minors of the elements 77*. So,
the existence of the inverse matrix [(T—1)]| for the RTT algebra with R-matrix (3.4.10) is
equivalent to the invertibility of the central element det,(7"). We note that Eq. (3.4.31) can be
written as

Eun Tt Ty = ety (T) Epa oy, T Ty LERN) = £12Mdet-(T).  (3.4.39)

Definition 10. A Hopf algebra generated by unit element 1, N? elements T; (t,j=1,...,N)

which satisfy relations (3.2.1) with R-matriz (3.4.10) and element det, ' (T) is called the algebra
of functions on the linear quantum group GL,(N) and is denoted by Fun(GL,(N)).

The structure mappings for the algebra Fun(GL,(N)) are presented in (3.2.3), where elements
(T1); are defined in (3.4.38).

The algebra Fun(SL,(N)) can be obtained from the algebra Fun(GL,(N)) by imposing the
additional condition det,(7") = 1 and, in accordance with (3.4.37), the matrix representations
(3.2.19) for T} € Fun(SLy(N)) are given by formulas

(L3, 7)) = —<Ris, (Ly,T)) = ¢V Ry (3.4.40)

7 /N

Conversely, formulas (3.2.19), (3.4.40) can be interpreted as matrix representations of elements
(L*): which are generators (see Subsection 3.4.3 below) of the universal enveloping algebras

Uy(gt(N)), Uy(st(N)).

93



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

Remark 1. The complexification of the linear quantum groups can be introduced as follows.
We first consider the case of the group GL,(N) and assume that ¢ is a real number. We have
to define an involution #-operation, or simply #-involution (which is the antihomomorphism)
on the algebra Fun(GL,(N)) or, in other words, we must introduce the conjugated algebra

Fun(éfq(N )) with generators!?
T=(1h", Th=(T) & (T = (17), (3.4.41)

(2

and defining relations identical to (3.2.1):
R12 Tl TQ - TQ Tl ng = R12 Tl TQ - Tl TQ ng. (3442)

Then we introduce the extended algebra with generators {77, TF} that is the cross (smash)
product of the algebras (3.2.1) and (3.4.42) with additional cross-commutation relations (see,
for example, [24-26] and [42])
RT\T, =T, Ty R. (3.4.43)
It is natural to relate this extended double algebra to Fun(GL,(N,C)).
The case of SL,(N,C) can be obtained from GL,(N,C) by imposing two subsidiary condi-
tions on the central elements:

det,(T) =1, det,(T)=1. (3.4.44)
The real form U,(N) is extracted from GL,(N,C) if we require
T=T=(TH" (3.4.45)

and if, in addition to this, we impose the conditions (3.4.44), then the group SU,(N) is distin-
guished.

In the case |g| = 1, the definition of *-involutions on the linear quantum groups GL,(N) and
SLy(N) is a nontrivial problem that can be solved only after an imbedding of these quantum
groups into the algebra of functions on their cotangent bundles (see Remark 2 in the next
subsection).

3.4.3. Quantum algebras U,(gl(N)) and U,(sl(N)). Universal R-matriz for U,(g)

The quantum universal enveloping algebras U,(gl(N)) and U,(sl(N)) appear in the R-
matrix approach [42] as the algebras with defining relations (3.2.21), (3.2.22). To show this, we
consider the upper and lower triangular matrices L', L™ in the form (cf. [42, 112])

gh 0 ... 0 L A1 Afis ... *
H 0 1 Ap
0 ¢#2 ... 0
: 0 ... 0 1 Ao
H
1 0 0 q*ﬁl . ;
—\ey 1 0 0 0 A .
L =] —Xesi —Adey 1 0 . q | . | e
: : .. . . : : . :
* cee o —Xenyq 1 0 0 g Hn

12We recall that (T—1) # (T*)~! in the case of the quantum matrices (see (3.2.7)).
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where e, and f, denote, respectively, positive and negative root generators of U,(sl(NN)). Here
we took into account definitions (3.2.20) of matrices L and the convention that the universal
R-matrix has the form R ~ Y 7, (H;)(fs ® e,) that is in agreement with the low-triangular
expression (3.4.8) of the GL,(N) R-matrix. In particular, from (3.4.46) and (3.4.47), we have

(L=, (L)i=g ™, (LY, =A™ [ (L) = —deg ™ (3.448)

For R-matrices (3.4.8), (3.4.10) the relations (3.2.21), (3.2.22) are represented in the component
form as

(L) (L)1 = q (L) (L9, (L) (L)Y = (L)) (L7, (> ), (3.4.49)
(L), (LF)i2] = A(LR)2 (L5, (D22, (L5)2] =0, (i1 > i, j1 > jo),  (3.4.50)
(L (L) =q (L) (LY (LO)F(LDE =g (LN (L), (<), (3.4.51)
(L), (LF)R]1 =0, (i1 >is, j1 > ja), (L)L (L7)i] =0, (3.4.52)

(L5 (L)E) = A (L)L (L) = (L) (LD)?), (i > da, i1 < ja) (3.4.53)

(there is no summation over repeated indices). We have written only the terms and relations
which survive under the condition that (L*)"; = 0= (L7)’, i > j.
The substitution of (3.4.48) into Eqgs. (3.4.49)—(3.4.53) gives the Drinfeld—Jimbo [113] for-

mulation of Uy(gl(N)). Indeed, from Eqs. (3.4.49), (3.4.51), and (3.4.52) one can obtain that

qTi~fi are the central elements. Thus, the matrices L* can be renormalized (by multiply-

ing them with diagonal matrices) in such a way that elements ¢~
H; = H;. Then from Eq. (3.4.51) we find

i are fixed as units, i.e.,

fig" = Pt gt fi o eiqti = g0 gMie;, (3.4.54)

The first equation in (3.4.52) gives e;f; = fje; for i # j and, taking into account (3.4.53), we

derive

H;—H; H;1—H;

q —dq
eifj_fjez_6 \

The first equation in (3.4.50) yields a part of Serre relations

€i€; = €€, fzf] f]fl? (‘ ’ = 2) (3456)

and gives the expressions of the composite roots via the simple roots {e;, f;}:

fictimr = (fificr — g Hfisa fi) = A Hg i (L+)2+i,

(3.4.55)

1 (3.4.57)
€it1,i—1 = (€i—1€; — qe;ei_1) = At (L~ )§+1 g"i-1.
Using these definitions and Eqs. (3.4.49), we deduce another part of Serre relations
e?ein1 — (¢ + g eeime; +eel =0 (1<i,i£1<N),
(3.4.58)

fifion — @+ a ) fifirfi+ i f2=0 (1 <i,i£1<N).

So, we see that Egs. (3.2.21) and (3.2.22) (with the form of L* given in (3.4.46), (3.4.47)) not
only yield the commutation relations (3.4.54), (3.4.55) for the elements of the Chevalley basis,
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but also present Serre relations (3.4.56), (3.4.58) and define the composite root elements (3.4.57)
as the g-commutators of the simple root elements. In this sense, the generators (L*)} (3.4.46),
(3.4.47) play the role of a quantum analog of elements of the Cartan—Weyl basis for U,(gl(N)),
where ¢/, (L")} and (L7) (i < j) are, respectively, analogs of Cartan elements, negative
and positive root generators. The quantum Casimir operators are given by Eqs. (3.2.28) and
(3.2.29). The comultiplication, antipode and coidentity in terms of the generators {H;, ¢;, fi}

can be deduced from (3.2.23), (3.2.24)
Alg") =q" @q", A(f)=1® fi+ fiwd" i Ale) =01+ ¢ i1 @e,
S(H;) = —H;, S(e;) =—g¢Timrtie,  S(f;)=—fig" T+, e(H e, fi) =0.

Note that ), H; is a central element in the algebra U,(¢gl(/V)) and the condition ), H; =0
reduces U,(gl(N)) to the algebra U,(sl(N)) with generators {h; := H; — H;+1, e;, fi} subject
to the relations

[th, th] =0, fi=qfid", ¢e=q"eiq", (3.4.59)
dihi —d;hi
q "t —q
eifi — fiei=0y—0——— (3.4.60)
g% —q
and Serre relations
1—a;; 1
e I Ny} (3.4.61)
k 0
k=0 q%i
where
n [n]q! ¢ —q*
— We g =TT =), 02] - K, [0 = 1, 3.4.62
] - e e L - e e 3462

a;j = 26;; — 0ji+1 — 0;j41 is Cartan matrix for si(NV), d; are smallest positive integers (from the
set 1,2,3) such that dja; = a;}" is symmetric Cartan matrix (for sl(N) case d; = 1). For the
quantum algebra (3.4.59)—(3.4.61) the structure mappings are

Alg")=q"®q¢", Af) =1 fi+ fiwg ™™, Ale)=e@1l+q¢"" @,

3.4.63
S(hi) = —hi,  S(e:) = —g~""es,  S(fi) = —fig™™,  e(hi,ei, fi) = 0. ( )

Remark 1. By making use of the statements of Proposition 3.6, we construct the central
clements (3.2.29) for the algebras U,(sl(]N)) as

Cony = Trp (LM) = Trg (LM) , (3.4.64)

where L = S(L™)L*, L = L*S(L™) and the quantum trace matrices D and @ are defined in
(3.4.16). The elements (3.4.64) are quantum analogs of the Casimir operators for the algebras
Uy(sl(N)).

Remark 2. The relations (3.4.59)—(3.4.61) are used for the Drinfeld—Jimbo [10, 114] formu-
lation of the quantum universal enveloping algebra U,(g) for any simple Lie algebra g (the

,,,,,
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By using this formulation of the quasitriangular Hopf algebra U,(g), one can explicitly construct
the corresponding universal R-matrix (the definition via canonical element is given in (2.4.9)).
In the case of algebra U, (sly), the explicit multiplicative formula for the universal R-matrix has
been invented in [122]. This result was generalized in [123] for the case of U,(g), where g is any
semisimple Lie algebra. For the case of quantum Lie superalgebras the universal R-matrix has
been found in [163]. Finite-dimensional representations for the quantum simple Lie algebras
U,(g) (3.4.59)—(3.4.61) were considered, e.g., in [115].

Here we give (without proof) the explicit multiplicative formula for the U,(g) universal
R-matrix, where g is a simple Lie algebra. We give this formula in the form proposed by
S. Khoroshkin and V. Tolstoy [163] (see also [123, 165|). For this we need the notion of the
normal ordering [163] of the system A, of positive roots of Lie algebra g. We say that the
system A, is in the normal ordering Af), if each composite root a4+ € A, where a, 5 € A4,
has to be placed in the ordering between o and (. It is clear that there is an arbitrariness in
such a normal ordering Agf) of positive roots.

Proposition 3.10. For any quantized Lie algebra U,(g) with defining relations (3.4.59)-

(3.4.61) and for any normal ordering AS:L) of the positive root system A, of g, the universal
R-matriz such that R"'AR = A, where A is the comultiplication (5.4.63), is given by the
formula

—
R=K- [[ exp,,((ad—qa")(es® fa)). (3.4.65)
sea™
K = g%l exp (1) = a"/(n)!, (n)g:=(¢" —1)/(qg—1),

where gz = q#?, d;; s an inverse matriz for the symmetrized Cartan matriz als-;m = d;a;; (see

definition of d; after (3.4.62)) and the ordered product runs over the normal ordering A(f) of
the positive roots.

For the case of U,(s¢(2)) algebra
" —q" hoooh h
le, f] = f=a?fd", d"e=deq",

the formula (3.4.65) is simplified

R = ¢ oxp,a ((q —qN)(e® f))-
Finally, we note that in the paper [163], the authors used another comultiplication A’ for U,(g):
AN =d"oq¢d" Af)=10fi+fieg™ Al) =1+ e, (3.4.66)

which is related to the comultiplication (3.4.63) by twisting A’ = K ' Py APy K = K1 AP K.
This explains why our formula (3.4.65) differs by twisting from the formula for R given in [163].

Remark 3. The *-involution on the algebra U,(sl(N)) (3.4.59)-(3.4.61) for real ¢ is defined
if we note that the algebra with generators 7,7 (3.4.1), (3.4.42), (3.4.43) coincides with the
L* algebra (3.2.21), (3.2.22) after an identification: L™ = T~!, " = T~!'. Then, according to
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(3.4.41), we require (L*)" = (L7)~!. In terms of the Chevalley generators (3.4.46), (3.4.47), it
means that

hi=hi, ff=qq e, e =qfiqg" (3.4.67)
One can directly check that Eqs. (3.4.59)-(3.4.61) respect the antihomomorphism (3.4.67).

In the case |g| = 1, the definition of *-involutions on the linear quantum groups and algebras
is a nontrivial problem that can be solved [124] only after extension of the algebra of functions
on the quantum groups to the algebra of functions on their cotangent bundles, i.e., to the
algebra which is a Heisenberg double of Fun(GL,(N)) and U,(gl(NN)) with cross-multiplication
rules (3.2.55)(3.2.57).

3.5. Hecke-type R-matrices. Related quantum matriz algebras

The material in this subsection is based in part on the results of papers [47, 111], [232].
3.5.1. Definitions. (Anti)symmetrizers for Hecke-type R-matrices

Definition 11. Yang-Baxter R-matrices which obey (3.1.6) and the Hecke condition (3.1.68),
(3.4.11) are called Hecke-type R-matrices.

First of all, we note that the GL,(/N) matrices (3.4.8), (3.4.10) are examples of Hecke-type
R-matrices, since they satisfy the Hecke condition (3.1.68), (3.4.11). We also note that if R[q]
satisfies the Hecke condition (3.4.11), then R[—¢~!] and —R[g™"] also satisfy (3.4.11). In this
subsection, we present some general facts about Hecke-type R-matrices and related quantum
algebras.

The antisymmetrizers A;_,,, (3.4.34) can be explicitly constructed in terms of Hecke-type
R-matrices by using the following inductive procedure [113] (the same procedure was used
in [111]; see also Subsection 4.3.1 below):

Ri(gF1 R (gk!
ALy = Aoy (%) Asp = Ao (%) A1 = (3.5.1)
q q

1 . N .

]! Ay i1 Ryy (Clk_l) Ry (qk_2) .. Ry (q2) Ri(q), (k=2,3,...N),
4

where Ay, =1, R(z) = ('R —xR™1)/A — Baxterized R-matrix (see Subsection 3.8 below),
R is a Hecke-type R-matrix, [k], = (¢ — ¢7*)/\ and as usual

Ry = I @ R @ I®N=F ¢ Mat(N)2N+D), (3.5.2)

Definition 12. We say that the Hecke-type R-matriz is of the height N, if Ay_py =0VM > N
and rank(A; ) = 1.

Note that for the GL,(N)-type R-matrix (3.4.8), (3.4.10) the operator A;_,n+1 =0, and Ay,
is the highest g-antisymmetrizer in the sequence of the antisymmetrizers (3.5.1). Moreover,
we have rank(A;_y) = 1 in this case. The latter can easily be understood by considering the
fermionic quantum hyperplane (3.4.24). Since the operators A;_; (3.5.1) satisfy (cf. (3.4.29))

RiAip=A wRj=—q Ay (G=1,...,k—1), (3.5.3)

they are symmetry operators for the kth order monomials 2% ... z% in the g-fermionic algebra
(3.4.24). In view of the explicit relations (3.4.24), one can conclude that there is only one
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independent monomial of the order N and all monomials 2% ...z%, for k > N, are equal to
zero. This statement is equivalent to the conditions rank(A; ,y) =1 and A; ,n.1 = 0.
In view of the definition (3.5.1), the condition A;_,n1 = 0 leads to (for the arbitrary Hecke
R-matrix):
- N R +N
A Ry Ay = [QT] Aion I, Aosnii RV As iy = E]T] Ay oy Iy (3.5.4)
q

q

In the case of skew-invertible Hecke R-matrices, by applying (3.1.18) to Egs. (3.5.4), we obtain

N N
q q

and for completely invertible R-matrices we have in addition Q = ¢ Q, D = ¢*¥ D. Acting,
respectively, by Tr and Tr; to the first and second equation in (3.5.5), we deduce (cf.
(3.4.17)):

N+1

TH(Q) = T(D) = ¢ V[N], = Tx(@) = (D) = ¢"[N], (3.5.6)

while applying Tr(;. ny and Tr. y11) to the same equations, we obtain [47]:

rank(A;n)
(@)

On the other hand, applying quantum traces Trpv_g41..n) and Trgq. k) to the antisym-
metrizers Ay _y, we deduce [47] (0 < k < N):

rank(A;n)

™o0D) D;. (3.5.7)

Tr(l...Nfl)A1—>N = Qn, TT(2...N)A1—>N =

[]]X] Tl"D(k+1..N (A1 N) —q A1 k> Al...k\kzo =1, (3-5-8)
q

N _
[k] Troa.n (Arn) = ¢ " Agprn Apy1nNey =1, (3.5.9)
q

where ¢g-binomial coefficients are defined in (3.4.62) and we have used Eqs. (3.5.1) and identities

-1

T - 7t —xq 2N

A

TI‘D(k+1)Rk($) = Q(k 1)Rk 1( ) ( —|—SL’TI'(D)) Ik = Ik, (3510)

which follow from (3.1.22), (3.5.6). In view of Eqgs. (3.1.36), matrices D and ) can be considered
as one-dimensional representations of the RT'T algebra (3.2.1): pp(T}) = Dj, po(T}) = Q3.
Thus, we have

A1 ND1D>... Dy =dety(D) A1 n,  A1.n@1Q2...Qn = dety(Q) Ar.n, (3.5.11)
and taking & = 0 in (3.5.8) and £ = N in (3.5.9), we obtain
dety(D) = ¢, det,(Q) = ¢~V (3.5.12)

For the Hecke-type R-matrix one can construct (in addition to the g-antisymmetrizer A;_,;
(3.5.1)) the g-symmetrizer Sy_:

R 1—k ]% gtk
Sk = Sosk (%) Sok = S15k-1 (%) S1ok-1 (3.5.13)
q q
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(see also Section 4 below). Using identities (3.5.1), (3.5.13), and (3.5.10), one can calculate
g-ranks for the projectors A;_; and Sy_x:

F=1Tr(D) — [k — 1
(q ( ) [ ]q) TrD(l...kfl)Al—Hc—l ==

ranky (A1) == Trpa. kyAiok =

[k]q
1 o
= ;_11 (¢ *Tx(D) — [m - 1],) , (3.5.14)
and analogously
ok
ranky (S15k) = Trpa. k) S1ok = i 1 (ql—mTr(D) + [m — l]q) . (3.5.15)

By substituting (3.5.6) into (3.5.14), (3.5.15), we deduce for the Hecke-type R-matrix (of
the height N) the following “g-dimensions” of the antisymmetrizer and symmetrizer:

Trpa.mAioe =q ™ []]H (k< N), Trpa.rAise =0 (k> N),
q

Trpa. kySioe =g " lN +/f B 1} :
q

The general formula for ¢-dimensions of any Young g-symmetrizer (related to any Young
diagram), which is rational function of the Hecke-type R-matrices'?, is known and can be found
in [203, 208, 209] (see Subsection 4.3.6 below).

Sometimes it is convenient to have Eqgs. (3.4.36) not only for GL,(N)-type R-matrices, but
in a more general form which is valid for any Hecke R-matrix such that A; ,n,; = 0. For this
we consider identity (see, e.g., [232]):

Ay sy REV-REY - RE = (—1)N L g* N, Agosngs Arsn (3.5.16)

(we demonstrate a connection of (3.4.36) with (3.5.16) below). The mirror counterpart of the
relations (3.5.16) is also valid

REVCRFVCRF Ay vy = ()N G [N] Ay Ao (3.5.17)
Equations (3.5.16) and (3.5.17) can be readily deduced from the equation
A2*)N+1 Rlil [P Rjivl - Rlil SN Rﬁl Al%N, (3518)

which is obtained from the fact that antisymmetrizers are expressed in terms of R-matrices
(3.5.1) and by using identities

Re (R R = (R ... REY Ry, VYk=2,... N,

followed from the braid relations (3.1.11), (3.1.15). Acting on (3.5.18) by A;,y from the
left and making use of Egs. (3.5.3), (3.5.4) and again Eq. (3.5.18), we deduce (3.5.17). Equa-

13These symmetrizers are images of the idempotents of the Hecke algebra; see Subsections 4.3.3 and 4.3.4
below.
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tion (3.5.16) can be proved in the same way. Multiplying identities (3.5.16) and (3.5.17) by
As_, N, respectively, from the right and left, we find

ANy Ay v Ay = [N]q_Q Ay, A AN Asy = [N]Q_Q Asn, (3.5.19)

and then multiplying (3.5.17) by (3.5.16) from the left and (3.5.16) by (3.5.17) from the right,
we obtain equations

AlﬁN(ﬁ{N C. RQR%RQ R RN — q2) = O, A2*)N+1<.é1ﬁ2 c. R?V Ce ﬁ{gRl — q2) = 0,

which followed from (3.5.4) and are equivalent to A;_,ny41 = 0 (see (4.3.11) below).

The identity (3.5.16) is valid for any Hecke R-matrix of the height N and can be transformed
into Eq. (3.4.36). Indeed, for the case when rank(A;_x) = 1 and, thus, A;_,y is given by the
first equation in (3.4.33), one can act on (3.5.16) by £ n41 from the left and, as a result, the
counterpart of (3.4.36) is obtained

Es.ver BE R Ry = "N Epa (3.5.20)
Here we have introduced the matrix
N<$\>7+1 = ()" [N]y Ep. v g, (3.5.21)

which, for the case of GLy(N) R-matrix (3.4.8), is equal to the unit matrix N} = 6% (cf. (3.4.36)).
Analogously, by acting of £2-N*1 on (3.5.17) from the right, we deduce

Rﬁl o é;ﬂ ] Rlil £23..N+1) _ o g12..N) (N’1)<]1V+1>, (3.5.22)

where matrix

(N"H = (DN [N]g £y 24D (3.5.23)

is inverse to the matrix (3.5.21) in view of (3.5.19).
3.5.2. Quantum determinants for RT'T and RLRL algebras

For the RT'T algebra defined by the Hecke R-matrix of the height N (Definition 12), one can
introduce a generalization of the GL,(N) g-determinant by using the same formulas (3.4.30),
(3.4.32):

detq(T) g(lZ...N = 8(12...N T1 . T2 e TN, 812"’N> detq(T) = T1 . T2 ce TN 812”'N>,

(3.5.24)
detq(T) = 5(12...]\] (T1T2 e TN) 512--.N> — Tr12.~-N(A1~>N T1T2 e TN)

In the case when matrix N; is not proportional to the unit matrix, the chain of relations (3.4.35)
gives [111, 232]:

Ea..N de:cq(T) sz+1 =E1.nTh.. -T;N TNtl =
- g(lu,NPL;VI...R;lTl...TNTNJrlRl...RN ==

= q’l(N’l)é\lurD T 5(2.,.N+1 T .. .TN+1 Rl . RN =

= g {(NTY Y T dety(T) Epnven Ry - Ry = (NVTN) oy dety (T)Eq. v,

(3.5.25)

where an explicit form of N7 can be extracted from (3.5.23). It means that for RT'T algebras
defined by general Hecke-type R-matrix of the limited height, the element det,(7") is not nec-
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essary central. However, let the noncentral element det,(7") be invertible. In this case, one can
also define the inverse matrix 77! (cf. (3.4.38); see also Eq. (6.16) in [232]):

1 -1 N-1
s =

where the matrices N and N™! are given in (3.5.21) and (3.5.22).

In the case of the Hecke-type R-matrix of the height N, the structures (3.2.57) and (3.2.61)
of the cross-products (doubles) for the RTT and reflection equation algebras

RiyTVTy = TyThRyy, TiLy = R12L1R1€1T1, RisLyRisLy = Ly RysLy Ry, (3.5.26)

Ny det, (7)) Epnir To - Ty EVN) = (T_l)gm Ty = I<11>v+1’

RlZTlTZ = T1T2é127 Z1 T2 = T2R1232é1i217 RIQZQ é1232 = z2E12Z2R€12 (3527)

help us [47, 84, 91| to introduce the notion of the quantum determinants Det, (L), Det,(L) for
the corresponding reflection equation algebras (3.2.31) and (3.2.32) with generators L and L.
It can be done by using the definition (3.5.24) of det,(T’) for the RTT algebras with the Hecke-
type R-matrix of the height N. In view of the automorphism (3.2.58), the quantum matrix
(LT) satisfies the same RT'T relation (3.2.1) and, thus, one can consider the same quantum
determinant det,(.) for the quantum matrix (L7') as for the matrix 7. This determinant is
divisible from the right by det,(7") and the quotient depends on the matrix L only. This quotient
is called the quantum determinant for the reflection equation algebra (3.2.31). We consider only
the case of the double with structure (3.2.57) with upper signs in (3.5.26), (3.5.27) (the case
with lower signs is considered in the same way; see (3.2.63)):

1 1

Det, (L) := det, (LT =& LTy LyTy . .. LTy )ENN) =

ety(L) ety ( )detq(T) <1...N( 141 Liodo NTN) det, (T)
1 3.5.28
:g<1--~N(LTL§"'Lﬁ)Tl---TNgl N detq(T) :8<1--~N(LTL§"'L]V)51 Ny — ( )
= g(l...N(Lﬁ cee L§ L{)gl'”N> = Tl"l...N (A1_,,N LT Lg. .. Lﬁ) ,
where ) )

Lz = BilgBe, L= 1La (3.5.29)

are operators that form a commutative set [Lz, L;] = 0. The definition (3.5.28) is generalized
as follows:

For the second type algebra (3.2.32), (3.2.57) (the algebra (3.5.27) with upper sign) the
definition is analogous:

Detgy(L) = det, " (T) dety(TL) = det, (T) Eq.NT1 ... T (L Lz . .. L) &N =

= 8(1]\7(5& . .f§ ZT)ElmN) = TI'L..N (Al‘..N ZI Zi Ce LN) y

where ff,; = Ry Li—= Ry, | fﬁ = Ly and [EE, ZZ] =0.
Below, we restrict ourselves to considering only the case of the left reflection equation algebra

(3.2.31) (and the double (3.5.26) with upper sign), since the case of the right algebra (3.2.32)

is investigated analogously. An interesting property of the determinant Det,(L) (followed from

discrete evolutions (3.2.58), (3.2.59)) is of its multiplicativity [47]:

1

det, (T) aet, 0D DG, T T 3sa)

= (€ (L) ()" (Lg)" €Y) Dety(L) = Dety (L") Dety(L) = (Dety(L)",

Dety (L") := dety (L™ T) = det, (L™ T)
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where, for n = 1 we have Det, (L") = Dety(L).
In view of the automorphism (3.2.60) for n = 1, such that 7" — (L + x) T', one can define
(in the same way as in (3.5.28)) a quantum determinant Det,(L;z) [84]:

Det,(L; ) := det,((L+ x)T')

dot ()~ Tri. v (AL n(Lg+2) ... (Ly+2)), (3.5.32)

where x € C is a parameter and L; are given in (3.5.29). Thus, we introduce the characteristic
polynomial for the quantum matrix L. Here we prefer to use the notation Det,(L; z) instead of
Det,(L+x), since the dependence on (L+x) seems to be broken in view of the last expression of
(3.5.32). Taking into account (3.4.31), the determinant (3.5.32) can be also derived as follows:

1
EVN Dety(L;x) = (Ly + )Ty (Ly + )Ty ... (Ly + )Ty EMN det, (7) =
= ((Ly+2)(Lz+2)... (Ly +x)) EN. (3.5.33)
The expansion of (3.5.32) over the parameter x gives
N
Det,(L;z) = Y ¥ ay_4(L). (3.5.34)
k=0

Here ao(L) =1, an(L) = Det, (L),

an(L) =T (Avy Y Ll Iy, ) = o8 Trx (AuwLy L+ La) - (3.5.35)

1<k < <km <N

where in the second equality we applied identities (for all ky < -+ < k)

and [47]

o) = gl 1) Z g 2krthatkm) _ gm(m—N) [%} (3.5.36)
q

1<k < <km <N

(g-binomial coefficients [M were introduced in (3.4.62)). The sums in (3.5.36) are readily

q
calculated by means of their generating function

N N
a(t) _ Z tN_mq_m(m+1)O{§\7[n) — H (t + q—2m)’
m=0 m=1

which leads to the equation 045\7,1)1 = a%n) + qQ(m_N_l)Oc%nfl) solved by (3.5.36). We note that
by using (3.5.11), (3.5.12) and then evaluating the trace Trp(mn41..n) by means of (3.5.8), the
elements a,,(L) can also be written in the form [47]

o0

m2
am(L) = det, (D) Trpa.ny (Ar.nLi - Li) = ¢™ Trpaom (Armly---Ly).  (3.5.37)
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Then we have
LTL”Q‘ e Lfﬁ — [LI(R1L1>(R2PL1L1) [N (Rm,1 e ﬁilLl)]R(l—rm—l) . ﬁi(l_ﬂ)Rl =

N . ) (3.5.38)
= LLLQ . Lm(Rl C.e R(m—l(—l))(R(lﬁm—l) e Rl) = Lng o Lmyg yg e ym7

and analogously
LTL'QV- s Lm = Lﬁl tee L‘jLT =Y2Ys...Yn Lm. .. LfLT, (3539)

where we used notation ]%(lﬁm) and R(mgl) given in (3.2.47), matrices y; = 1, yo = R?, .
Ypr1 = }A%kyklf{k define a commutative set [yx, y¢] = 0 and the elements

Ly = RiLiR Ligy = R LRy

were introduced in (3.2.42). According to the identities (3.5.38), (3.5.39) and taking into
account (3.2.44), one can write (3.5.37) as

(lm(L) = qm TrD(l...m) (AlﬁleLg e Lm) = qm TrD(l...m) (Al_}mLm cee L§LT> . (3540)

The elements a,,(L) (3.5.35), (3.5.37), (3.5.40) are central elements for the reflection equa-
tion algebra (3.2.31). Indeed, these elements are obtained from the general center elements
(3.2.48) by substitution X = A;y_,,.

3.5.3. Differential calculus on the RTT algebras. Quantum group covariant connections and
curvatures

a. Bicovariant differential algebras and quantum BRST operator
For the Hecke-type R-matrix (3.1.68), (3.4.11) one can define [72-88] (see also references
therein) the bicovariant differential complex on the RT'T algebra:

RT'Ty =T\ TR, RdT\To=TidTy R, RdT,dTy, = —dTydTy R ", (3.5.41)

where R := Ry, and generators dT; (1,j = 1,...,N) are interpreted as differentials of the
elements T7. The algebra (3.5.41) is a graded (exterior) Hopf algebra [81] with structure
mappings [82, 88]:

AT)=T®T, «T)=1, S(T)=T7",
where in the first line we use the index-free matrix notation, the grading is gr(7%) = 0,
gt(dT%) = 1 and ® is the graded tensor product. We extend the graded algebra (3.5.41)

by adding [79, 80, 84-86] new generators 0 := 9/ OT? (quantum derivatives) and i’; (quantum
inner derivatives) with commutation relations (cf. (3.5.41)):

A

R&y0, =001 R, Riyd =iy R™', Riyiy = —ipiy R, (3.5.42)

Assume that the matrix 0 is formally invertible. Then the algebra (3.5.42) is a graded Hopf
algebra with structure mappings [84]:

A(Q)=0®0, €0)=1
All)=i®d+0o®i, €i)=0 S@i)=-0"1tio™},
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where gr(9%) = 0, gt(i%,) = 1 and ® is the graded tensor product. Now we define the cross-
product (Heisenberg double) of the algebras (3.5.41) and (3.5.42) with cross-commutation re-

lations ) ) R )
OLRdAT, =dTy R 0,, TyRi,=1i, R7' Ty, (3.5.43)

HWERT =Ty R0+ LI, i RdT,+dTyRiy = 1,15, (3.5.44)
where € = F1 and € = 41. These relations are postulated in such a way that they are bi-
covariant with respect to the left and right coaction of the RT'T" algebra:

T—T,T®Th, dT =T, RdI®@Th, 0—T;' @01, i—-T;'®ixT; "

Here elements of matrices Ty, and Tx generate two RT'T algebras (the first relation in (3.5.41)).
We note that the bicovariance does not fix uniquely the relations (3.5.43), (3.5.44). Actually we
have four graded bicovariant algebras A€ with generators {T', dT’, 9,1} and with different choice
of signs € and € in (3.5.44). It was shown in [84, 86|, that there are explicit inner automorphisms
in A%¢ which relates all these algebras.

Now we introduce the left L and the right L invariant vector fields in the algebra A€, cor-
responding left Q € A€ and the right Q € A°¢ invariant differential 1-forms, inner derivatives
Z,T € A°, and special invariant operators W, W € A€

L:=I1-e\oT, L:=1—-e\Td =TLT™,
Q:=7'4T, I:=iT, Q:=dIT'=T7TQT', I:=Ti, (3.5.45)
Wi=1-edidT=1—-e\IQ, W =1—-eXdTi=1-e\QZ,

where as usual A = ¢ — ¢~!. Last relations in (3.5.41), (3.5.42), and (3.5.43) lead to (see [34]):
Wy dTy = dTy REW, RS, dTy Wy = RE Wy REdTy, (3.5.46)
i, Wi = REW, Reiy, Waiy = i REW, R, (3.5.47)

and from these identities we immediately obtain [84]:
Wi Wo =WoWy, WyRWyR= R Wy R Wy, Wi RW, R =R W, REW;.  (3.5.48)

Operators (3.5.45) also obey (see, e.g., [79, 84, 86]) the following relations (cf. (3.2.31), (3.2.32),
(3.2.57)):

{ LTy =ToRLyR°, T Ly= R°L,RT, N
Oy Ly = R Ly R0y, LoOy =01 R° Ly R, (3.5.49)
Zl Lo= 1o Zl, R_g zg R_€ZQ = EQ ﬁ_g EQ R_g, RE Ly pLE Ly=1, PLE Ly Rg7

and in addition we have

4

i2 fl - R_l ZQ Rig, L2 i1 - i1 R_l L1 é,

Wy=WyR'IL,R, WiR'Li,R=R'L (3.5.50)
2

{ L1 dTy = dTLRILoR, dTiLy = R~'L,RdTy,
L

~
i

65



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

Proposition 3.11 (See [84]). The defining relations (3.5.41), (3.5.42) and (3.5.43), (3.5.44)

are in agreement with the formulas
RT1($)T2(33) = Tl(x)TZ(x>Ra RdT1(3J>T2(5U> = Tl(x)dT2(y)R_17 (3.5.51)
RATy(y) dTs(y) = —dTi(y) dTo(y) R~ & RedTi(y) dTo(y) = —dTi(y) dTo(y) R,

where x,y are parameters, R := R5 and

1 1 1 1

- y+dl'i m
Proof. We write the first relation in (3.5.51) as
(T;l T + 82)(T171 x -+ 31) R = ﬁ (T{l T+ 82)(Tf1 T+ 01)

The terms of order 22 and z° give, respectively, first relations in (3.5.41) and (3.5.42). The
terms of order z' yield relation compatible to the first relation in (3.5.44). For the second
relation in (3.5.51) we obtain

(y + dT2i2)<T1_1 T -+ 81) RdTl = dT2 R_l (T2_1 T + 82)(y + ildTl),

and in the orders (zy)°, x', (zy)!, y' we, respectively, deduce second relations in (3.5.42),
(3.5.43), (3.5.41) and first relation in (3.5.43). Finally, the third relation in (3.5.51) is repre-
sented as

1 1 .
—dTy = —dT}, ————————dTo R (y + i2dTy),
(y +1i1dTy) ? ! (y + dT»is) 2 (y + izdT)
and, after the change of parameter y — ye;/\l, introducing operators W, W (3.5.45) and applying
Egs. (3.5.46), we write it in the form

(y + RWLR) (y + W1)RdT, dTy = —dT, dTy R (y + W) (y + RW,RE).

The terms of order y? give the last relation in (3.5.41). The terms of order 3° and y' are
identities in view of the relations (3.5.46) and (3.5.48) which encode last relations in (3.5.42)
and (3.5.44). -

Corollary. The formulas (3.5.51) (incorporating the whole differential algebra (3.5.41), (3.5.42),
and (3.5.43)) have the structure of Egs. (3.5.41) for which one can easily establish the Poincaré—
Birkhoff-Witt (PBW) property. This indicates that the whole differential algebra (3.5.41),
(3.5.42) and (3.5.43), (3.5.44) is also of the PBW type (the flat deformation of the differential
algebra obtained in the classical limit ¢ — 1, R— P). We also note that the signs of powers of
R-matrices are flashing Rf — R~¢ in the first relation in (3.5.44) and not flashing R* — R¢ in
the second relation in (3.5.44). This is important, otherwise relations (3.5.51) are not fulfilled.

Here we present additional commutation relations for the invariant operators (3.5.45). These
relations are useful from a technical point of view.

W T =T R Qy R_l, Ti$)y = Rl? 0 ]%12 T,
WiTy=T, RW,R™, T\, W,=RW,R T,
T.T,=RT,RT,, TiI,=R'T,R'T,
L1dTy = dTy Ry} Ly Ry, dTy Ly = Ryy Ly Ryp dT,
RIYLR ' =—0 R0 R, Ry RO =—0 RO R,
RELy,R 0y =0 R'LyR, O R LR =R'L RO,

(3.5.52)
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RiwI, RiwTo = —Ir Rin I, Ry, Ry T, R} T, = I, Ry Th Rio,
1f51272 Rig Qy +Qy f‘iiz 7, ]:212 = ]:212, 7y Rig 0 R12 + ]%12 0 ]:?52 1, = R127
Oy RS, Wy RS, = Ro W,y Ry Qo R, Wi RS, Qy = Oy Ry Wi Ry
RS, Wy R, Ty =Ty Ro Wy Ry, Ty RS, Wy RS, = Ry Wi R T4,

where we denote Z = iT and Z = T'i.
Now instead of the left L and the right L invariant vector fields, we introduce new left and
right invariant operators [84]:

(3.5.53)

L=WL=1-e\idl)(1—-e\0T), L:=WL=(1-e\dTi)(1—-e\TJ).

As we mentioned above, all algebras A%¢ are equivalent for different choice of the signs €, €. For
simplicity, further we consider only the left invariant operators and fix e = 1 and € = —1. In
accordance with the formulas (3.5.52), (3.5.53) for € = 1 and € = —1, we have the following
statement.

Proposition 3.12. The complete set of commutation relations for the exterior differential
algebra T C A|.=_c—1 with generators T, L, T, Q) is [79, 84, 90, 91]:

RT\Ty=T\TyR, 0 To=TR 'R, R'QOLR'Qy=-0,R "R, (3.5.54)
LoRLoR = RLyRLy, RL,R = RLyROy, ToRLyR = RLyRI,,
LiTy = ToRLR, T Ty =RTyRTs, RiwIyRinTo=-IrRinI, Rﬁl,
ngfg ng 52 + QQ Eu 72 ng = ﬁlg, (3556)
where R := Ry is the Hecke-type R-matriz.

(3.5.55)

We note that, for the Hecke-type R-matrix, the differential algebra. (3.5.54)(3.5.56) is identical
to the dlfferentlal algebra I'", proposed in the papers [79, 90, 91], up to the relation (3.5.56)
which is written in those papers as R1212 ng Qs+, ng T ng = —Ru The change of the s1gn
in the right-hand side of the relation (3.5.56) can be achieved by the transformation Z — —Z.

By using the general construction [89] of the BRST charge for an arbitrary quantum Lie
algebra, we have constructed in [90] a BRST operator Q for the differential algebra (3.5.55) in
the following form®*:

~(L-1) = QI ) 1 = 1

Q- (1155 AaE) = 3 T+ T ) (3557
where © := Q£ (1-XQZ) " and Tr, (X) := ¢*! Tr(QX) is the second quantum trace in (3.1.39).
The normalization factor ¢*@ is introduced to have Tr,;(R™") = I, (see (3.1.28), (3.1.71)). We
note that the left invariant operator W := (1 — AQZT), appeared in (3.5.57), differs from the
operator W = (1 — A\Z Q) defined in (3.5.45). For the operator W we have

—~ A — —~— A —

WoRLyR=RL, RW,y, WoRO R =R 10 R,

I c T (3.5.58)
Wy RT,R™ = RLRW,, WoRWoR=RWyRW,, O,k W,k = RW,R6,.

1Tn all formulas in [90], we should make the change of notation: w — Q, J — —Z, L — L.
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In the definition (3.5.57), the differential 1-forms Wk, and the inner derivatives Tk play the role
of the ghost and antighost variables. One can check directly [90| that the BRST operator Q
given by (3.5.57) satisfies

Q*=0, [Q L]=0, (3.5.59)
Q T|=TQ=dT, [Q Q,=-0 =dQ, (3.5.60)
Q, I, = %(E —1). (3.5.61)

The (anti)commutator with Q (relations (3.5.60)) defines the exterior differential operator over
the differential algebra (3.5.41); it provides the structure of the de Rham complex on the
subalgebra with generators T]’ and ﬁ; (the de Rham complex over the quantum group GL,(N)
has been firstly considered by Yu. Manin, G. Maltsiniotis, and B. Tsygan [75-77]).

To obtain relations (3.5.59)—(3.5.61), one has to use the invariance property (3.1.38) of the
quantum trace Tr, and the relations

ROR'Q, = -0, RO, R, RO;R'0;=-0,R'0,R ™, (3.5.62)
R_l O- RZQ = ZQ }?@2 R_l, 0,1, =1, Rfl O, R, (3563)
ToRO R+ RO, RTy = Lo Wy ' RV W, (3.5.64)

which follow from (3.5.54)-(3.5.56) and (3.5.58). In particular, the condition Q* = 0 follows
from the last equation in (3.5.54) and equations (3.5.62) which lead to identities

— .2 —

(T, ()" =0, (Try(©))" =0, [T, (©), Tr, ()] =0. (3.5.65)

Here we take into account that Tr,(0%) =0 = T, (ﬁz) (see Section 4 in [84]). Finally, we note

(for details see [90]) that the operator Q given by (3.5.57) has the correct classical limit for

g—= 1, A=q—q ! =0, Ris — Ppand £ — 1+ AX, where elements X are interpreted as
Lie algebra generators.

b. Quantum group covariant connections and curvatures
To proceed further we introduce the Zs-graded algebra (denoted by &) of quantum hyperplane
with generators {e;, (de);} (i = 1,2,... N) satisfying commutation relations

R1261>62> = C€2>€1>, (i)Cng(d€)1>€2> = 62) (d6)1>, ng(d€>1> (d€)2> = —%<d6)2>(d€)1>

(3.5.66)
One can recognize in these relations (for (&) = +1) the Wess—Zumino formulas of the covariant
differential calculus on the bosonic (¢ = ¢) and fermionic (¢ = —1/q) quantum hyperplanes [42,

73, 74, 78, 79|, where e; are the coordinates of the quantum hyperplanes and (de); are the
associated differentials (differential 1-forms). The Zp-graded algebra & = Y, Q*(£) is the
sum of subspaces Q¥(€) of differential k-forms.

The left-coaction A; of the Zs-graded Hopf algebra (3.5.41) to the generators of the algebra
£ is given by the following homomorphism:

& = G =T ®e;,  (de); =5 (de); = (dT)y; ® e; + Ty ® (de);. (3.5.67)

The algebra £ with generators {e, de} becomes now a left-comodule algebra with respect to the
coaction (3.5.67), since all the axioms for the comodule algebras are fulfilled [82].
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.....

We also assume that the differential d can be extended onto the whole algebra £ and hence again
this algebra is decomposed as &€ =}, QF(E). Then we postulate, first, that the elements A,

belong to the subspace Q!(€) and, second, that the elements (Ve); € Q'(€) defined as

are transformed homogeneously under (3.5.67) as the left-comodule
(Ve): =5 Th; @ (Ve); = Ty ® ((de); — Ajeer). (3.5.69)

According to the classical case, we interpret the operator A;; satisfying (3.5.69) as a quantum
deformation of a gauge potential 1-form and the operator V as the quantum version of the
covariant derivative. The second action of V on both sides of (3.5.68) gives

(V(Ve)); = — (d(A) — AQ)Z.]. ej = —Fye;, (3.5.70)

where we define the noncommutative analog of the field strength (curvature) 2-form F. The
next action of the covariant derivative to the formula (3.5.70) yields the Bianchi identity which
is written in the standard form d(F) = [A, F|. Using (3.5.67), (3.5.69), and (3.5.70), one
can deduce the noncommutative analog of the gauge transformation for the noncommutative
connection 1-form and curvature 2-form as

A 25 Ay =TT @ Ay + dT;Ty @ 1, Fi;25F, = (T T};") ® Fu. (3.5.71)

As it was argued in [82, 83|, the possible choice of the covariant algebra of the connection
1-form A and curvature 2-form F' is given by the defining relations

F1R12A1R12 = é12141R12F117 F1R12F1é12 = R12F1é12F17 (3572)

R12A1R12A1 + AlﬁlgAléle = )\g (ngFl =+ F1RI21), (3573)

where A = ¢ — ¢~! and g is an arbitrary parameter. In particular, to check the commutation

relations (3.5.73) for the elements A;;, we remark that there is a representation for the generators
A;;, namely A = dTT~' ® 1, which is related to the flat connection Fj; = 0. Using this
representation and formulas (3.5.41), we conclude that the generators A;; have to satisfy relation
(3.5.73) with the r.h.s. equal to zero. In what follows, we consider only the case ¢ = 0. Note
that the algebra (3.5.72), (3.5.73) (for g = 0) is covariant not only under coaction (3.5.71) of
the RT'T algebra, but also is a braided comodule algebra with respect to the braided coaction
of the RLRL algebra [88].

Let R be a skew-invertible R-matrix for which we define the quantum traces (3.1.39) with
properties (3.1.38) (see also (3.2.12), (3.2.13), and (3.2.14)). By analogy with the classical case,
we can consider the noncommutative version of the invariant Chern characters [82, 83, 88]:

.F

Jk—1%>

C® = Tr,(F*) = Te(DF*) = Dy Fy;, F

Jjintgige - -

(3.5.74)

where we have used the quantum trace (3.2.12), with matrix D. Chern characters (3.5.74) are
central elements for the algebra (3.5.72) (the proof is the same as proof of (3.2.34)). Applying
(3.2.13), we immediately obtain that 2k-forms C*) (3.5.74) are coinvariants under the adjoint
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cotransformation of F' given in (3.5.71). Moreover, C**) are the closed 2k-forms. Indeed, from
the Bianchi identities dF' = [A, F| we deduce

dC®) = Tr,(AF¥ — F* A) =0, (3.5.75)
where we have taken into account (see Egs. (3.1.22), (3.1.36), (3.5.72)):

Tr,(AF*) = Trql'I‘rqg(lA%l_Q1 Ris A1 Ry FF) = Trq]_Tqu(Rl_Ql F} Ris A R12) =

. (3.5.76)

= TI'qlTI'qQ(Flk R12 Al) = Tl"q(Fk A)
We note that Tr,(A%*) = 0 for the algebra (3.5.73), when g = 0 (see Proposition 4 in [84]). In
view of this, the natural conjecture is that C'*) have to be presented, for g = 0, as the exact
form C%) = dLgCS), where the noncommutative Chern-Simons (2k — 1)-forms ngs) are

k _ 1 _ 1 3
LEJS) = Trq (A(dA)k 1y @Ag(d/l)k 240 WA% 1>’ (3.5‘77)

and unknown coeflicients hg»k) depend on the choice of the Hecke matrix R (in the classical case

ng = Pj» and ¢ = 1, all these coefficients are known [92]). We checked this conjecture in the
case k = 2, for GL,(N) R-matrix (3.4.8) and the special algebra (3.5.73), when g = 0. In this
case, we obtained [82, 83] a noncommutative analog of the three-dimensional Chern—Simons
term in the form

(2) L s (2)
CS Iq h§2) 1 q2 q_2 ( )

Remark. The elements of the differential calculus on the RLRL (reflection equation) algebra
were considered in papers [23-25, 88|, [93] (see also references therein).

3.5.4. a-Deformation of the Heisenberg double of RTT and RLRL algebras. Quantum Cayley—
Hamilton—Newton identities

Now for the right HD (3.2.57) (the algebra (3.5.26) with upper sign) we calculate the
commutation relations of the elements a,,(L) with generators T]’ of the RTT algebra defined
by the Hecke-type R-matrix. Note that in the case of the Heisenberg double of Fun(SL,(V))
and U,(sI(N)), we need to renormalize the Hecke R-matrix: R — ¢~'/~ R according to (3.4.40).
This leads to the following generalization of the cross-multiplication rules (3.2.57) (we consider
only the right HD):

TlLQ = ngLlﬁlng, (3579)

where R is a Hecke R-matrix (3.4.11) of the height N and for the special case of the SL,(N)-
type HD we have to fix @ = ¢~2/V (but generally the constant a # 0 is arbitrary). So, the
commutation relations (3.5.79) define the one-parameter deformation of the Heisenberg double
of RTT and RLRL algebras for the Hecke-type R-matrix. Note that the automorphism (3.2.60)
is only correct for the choice a =1 in (3.5.79). For example, in view of (3.5.79), the quantum
matrices (L + z)T start to obey the modified RT'T relations

Ry (L1 4 )Ty (0 'Ly + 2)Ty = (L1 4+ )Ty (o 'Ly + 2)T5 Ry. (3.5.80)
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However, for the general choice of «v in (3.5.79), the definition of the characteristic polynomial
(3.5.34) is not changed, since instead of (3.5.33), we can take

(Ly +2)Ty (@ Ly + )Ty ... (@' "N Ly + 2)Ty E+N) det;l(T) =
= ((Ly+2)(Lz+2a)...(Lg+ ) EN = M) Dety(L; )

(according to (3.5.80), we modify the first line in (3.5.33) but it does not affect the final
expressions for Det,(L; x) and coefficients a,,(L)). To calculate the commutation relations of
am(L) with T7, we find (by using (3.5.81), (3.5.80), (3.5.22), and (3.5.25))

(3.5.81)

(Ly + 2)Ty Det,(L; ax) E2-N+1) =
= (Li+ o) (@ Ly +2)Ty ... (a7 N Ly + )Ty £2-NHY de?ql\gT) -
N

= Rl R RN(Ll + iL')Tl R (Od_NLNJrl + x)TNJrl é;]l R Rfl 52'"N+1> de(txq(T) =
_ _1\N41) N
Dety(L; z) det,y(T') (O‘ NLny1+ x)TNH (N 1)<1+ > dety(T)
= aNEXNHIN Y Dety(L;x) (A(NTILN) ., +2)(NITN)

(N_l)N+1> —
= aN 2N+ Det, (L;x) (¢* Ly + x) Th,

(3.5.82)

_ c2. 1
= EX NN

N+1 <1

where we have taken into account the commutation relations of det,(7") and Lj» deduced by the
standard method:

En.ndety(T) Lyjy =Eq.nTh ... Tn Lyt =
= aN g(l,..N RN .. R1L1R1 ce RNTl ce TN = q2 OéN (Nil L N) detq(T) g(l...N
(Egs. (3.5.79) and (3.5.20) were applied). Thus, we have the following relations (see (3.5.82)):
(Ly + 2)Ty Dety(L; az) = o™ Det,(L; ) (¢* Ly + ) Ty. (3.5.84)

(3.5.83)

N+1

The expansion of (3.5.84) over « gives the recurrent equation for desired commutation relations
of ax(L) with T} (k > 0):

o FLTap+a kT Qg1 = q2 ap LT + a1 T, Tag=apT.

These equations are easy to solve by iteration, and the solution is

k
a*Tay = a,T — (¢* = 1) Z(—l)mak,mLm T. (3.5.85)

m=1
Since the matrix 7' is invertible, we write this equation in the form

k
a " Tap T =ap — (¢ — 1) Z(—l)mak,mLm. (3.5.86)

m=1

For the left-hand side of (3.5.86), by using the definition (3.5.40) of aj, we deduce
a g ha T = a7 F T Trp@.. k+1) <A2...k+1 L2R2L2R2_1 e RkeQLQR];ig) T =
= Trpe. k+1) (AQ...k:-i-l Ri...RyLi...LyRy... R AQ...k—i—l) =
= TrD(Q...kJrl) <R(1ak) Ark Ly... Ly Ai gk R(kel)) =
= Trpe ) (Rl L RyAL Ly Ly A k(R4 )N R(,HH)> _
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AN Trpo gy (ALl ... L),

where in the last transformation we apply the first identities in (3.1.22) and (3.1.38). By
repeating this transformation (3.5.87) for many times, we obtain

Oé_k q_k TlakT = q ak + )\(1 + q_2 + . ( ))TI'D(Q k) (Al kLl L ) =

=q " ay +q(1 — ¢ ) Trpea.p (A1 xLi... Ly). (3.5.88)

Comparing (3.5.86) and (3.5.88), we obtain the remarkable identities for quantum RE matrices
L (the so-called Cayley-Hamilton-Newton identities [125]):

k
K]y Trp@.ry (AL - == (—D)"ap_m L} (3.5.89)

m=1

It follows from (3.5.89) (apply Trp(1) to the both sides) that the two basic sets (3.2.29), (3.5.40)
of central elements for the RE algebra (defined by the Hecke-type R-matrix) are related by the
g-analogue of the Newton relations:

k
+) ()"t pm =0,  k=1,...,N, (3.5.90)
m=1
where we introduce power sums p,, = Trp(L™), m = 1,..., N, and we imply ag = 1. Note that

in view of (3.5.30), (3.5.38), and (3.5.8), we have
[N]q TTD(z...N)(AHNL;- --Lﬁ) = [N]q TTD(z...N) (A1—>NLI- -~LN(Z/2 - 'yN)_l) =

= [N],Dety(L) ¢V Trpo. wy(A1on) = Dety(L) [} = an I.

Thus, for £ = N the relation (3.5.89) provides the characteristic identity for the quantum
matrix L (g-analogue of the Cayley—Hamilton theorem):

S (L) ay-w(L) =0. (3.5.91)

This identity can formally be obtained by the substitution of x = —L in the characteristic
polynomial (3.5.34). Therefore, in view of (3.5.90) and (3.5.91), the elements a,,(L) can be
interpreted as noncommutative analogs of elementary symmetric functions for eigenvalues of
the quantum matrix L (see details in [129]).

Introduce generating functions a(t),p(t) for elementary symmetric functions and power

sums:
a(t) =Y apt*, p(t) =) pet".
k>0 k>1

Then it is worth noting [47] that quantum Newton relations (3.5.90) can be written as a finite
difference equation for a(t):
a(g”*t) — a(t)

a(t) p(—t) = p—— (3.5.92)
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This equation shows that the power sums p; can always be expressed as polynomials of the
elementary symmetric functions ay,.

The Cayley-Hamilton—Newton identities (3.5.89) for the G L(n)-type quantum matrix alge-
bra were invented in [125]. It seems that these matrix identities were unknown even for the case
of usual commutative matrices (¢ = 1). For the reflection equation algebra, in the case N = 2,
the identity (3.5.91) was considered in [141] and in [264]. For general N these identities were
proved in [126, 127]. The Newton relations (3.5.90) have been obtained in [127, 128|. Identities
(3.5.82)—(3.5.85) and their special cases were essentially used in [129] (see Propositions 3.21
and 3.24 there). Moreover, the spectral properties of the reflection equation matrices L; were
investigated in [129]. In fact, all algebraic relations and identities of this section were important
for the investigations [129] of the theory of the g-deformed isotropic top [98, 124].

For GL(m|n)-type quantum supermatrix algebras, Cayley—Hamilton identities were ob-
tained in [130]. For orthogonal and symplectic types quantum matrix algebras, Cayley—
Hamilton identities and Newton relations were derived in [131].

3.6. Multiparameter deformations of linear groups

In this subsection, we consider a multiparameter deformation of the linear group GL(N)
(see [57, 74| and [132-137]). A multiparameter quantum hyperplane is defined by the relations

a'r! = ryalat, i< g, (3.6.1)

which can be written in the R-matrix form (3.4.6) if we introduce an additional parameter q.
Thus, we have N(N — 1)/2 4+ 1 deformation parameters: r;;, i < j and ¢. The corresponding
R-matrix is (see, e.g., [57])

R12 =dq Z €i,i & €ii + Z (Gi,i X em)aﬂ + (q - qil) Z €i,j & €5 (362)

i#j i>j

where a;; = 1/aj; = r;;/q (for i > j), and it can be represented in components as

in i i i ivi Tigi “1ga g
Ry = 05905 <q5 "+ @mli + Oy ;1> +(g—471)03,05 01, (3.6.3)
1112

where ©;; is defined in (3.4.10). The R-matrix (3.6.2) is obtained by the twisting of the standard
one-parameter R-matrix (3.4.8) (see Subsection 2.5 and Egs. (2.5.6), (3.2.68)):

ng — F21R12F1_21 <~ ng — F12R12F1_217 F12 = Z(em & €j7j) fij7 (364)

,J

where a;; = f;;/f;i and F' = PF satisfies the twisting matrix conditions (3.2.67). Thus, the
multiparametric R-matrix (3.6.3) is reduced to the one-parameter R-matrix with the help of
the appropriate twisting (see also [57] and [137]).

By the construction, in view of the twisting procedure (3.6.4), (3.2.67), the R-matrix (3.6.3)
satisfies the Yang—Baxter equation (3.1.11) and the same Hecke condition (3.4.11) as in the one-
parameter case.

Now, to justify expression (3.6.3), we try to find the most general Yang-Baxter solution Ris
of the form (3.4.7). We only require that the R-matrix (3.4.7) has the lower-triangular block
form: b;; = 0 for i > j (as it was shown in 68|, this condition is not restrictive). When we
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check the fulfillment of the Yang—Baxter equation, it is convenient to use the diagrammatic
technique [46]:
R Rzl 2 611 512 (CL 52”2 + @1211 Aiyig + 6, + ) + b; 611522@@'21'1 = (365)

J1,J2 J27 51 iviz iy iy 192951 Vg2
11 19 1 _ 19 11 19 11 12
agl @iy a;;ig b
_.|_ + + 1112
J1 J2 J1 J2 J1 J2 J1 J2
It turns out that not all solutions of the Yang—Baxter equation (3.1.11) that can be repre-
sented in the form (3.6.5) are exhausted by the multiparameter R-matrices (3.6.3). Indeed, if
we substitute the matrix (3.6.5) into the Yang-Baxter equation (3.1.11), we obtain the following
general conditions on the coefficients a?, af;, by;:

Z]’

bij="b, ala; =c, (a))*—ba)—c=0 (V7). (3.6.6)

1] g

We normalize (3.6.5) in such a way that ¢ = 1 and choose for convenience, instead of the
parameter b, a different parameter ¢, setting b = ¢ — ¢~'. Then @) can take two values
+¢*!. For such a normalization, the solution of the Yang-Baxter equation of the form (3.6.5)
automatically satisfies the Hecke relation (3.4.11). If we set a? = ¢ (or a) = —¢™') for all 4,
then we arrive at the many-parametric case GLg,,,(N) (3.6.3) (up to exchange ¢ — —¢~' in
the case a? = —q~1). If, however, we set

al=q(1<i<M), a=-q¢' (M+1<i<N), (3.6.7)
then the R-matrix (3.6.5) does not reduce to (3.6.3) and will correspond to a multi-parameter
deformation of the supergroup GL(M|N — M):

Ry = Z(_l)m ¢ e, @ e + Z aj; e ® eji + A Z €ii @ €jj, (3.6.8)

i 1#] 7>

where 4,7 =1,..., N+ M, [i] = 0,1 (mod(2)), we take into account (3.6.7) and a;; = 1/a;; for
i > j. We consider this case (for a special choice of a;;) below in Subsection 3.7.

By virtue of the fulfillment of the Hecke identity (3.4.11) for the multiparameter case, we
can introduce the same projectors P~ and P* as in the one-parameter case (3.4.21); the first
of them defines the bosonic quantum hyperplane (3.6.1) (the relations (3.4.6) with R-matrix
(3.6.3)), and the second one defines the fermionic quantum hyperplane:

Prozy, =0 <&  (2")?=0, 22/ =—ryala’ (i >j). (3.6.9)

Regarding (3.6.1) and (3.6.9) as comodules for the multiparameter quantum group G'Lg,, (),
we find that the generators T} of the algebra Fun(GLy,, (N)) satisfy the same RTT rela-
tions (3.2.1) but with R-matrix (3.6.3). Note, however, that the quantum determinant det,(7")
(3.4.30) is not central in the multiparameter case [135]. This is due to the fact that in general
for the multiparameter R-matrix we have N # const - I in Eqgs. (3.5.21) and (3.5.25). There-
fore, reduction to the SL case by means of the condition det,(T") = 1 is possible only under
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certain restrictions on the parameters ¢,7;;. A detailed discussion of these facts can be found
in [135, 137].

The algebra (3.2.21), (3.2.22) (with the multiparameter R-matrix (3.8.3)) which is dual to
the algebra Fun(G L, (IV)) can also be considered. It appears that this algebra is isomorphic
to the one-parameter deformation of gli(/N) (3.4.54)—(3.4.58). One can find details about the
dual algebras for the special case of Fun(GL,,(2)) in papers [141, 142].

3.7. The quantum supergroups GL,(N|M) and SL,(N|M)

We choose the Hecke-type R-matrix (3.6.5), (3.6.8) and write it in the form (cf. [150-152])
R= Z( 1)[’] =2l e @ e + Z ik eij @ ej; + A Z eii @ €jj, (3.7.1)
i 1#£] 7>

where we have set (see (3.6.8))

al = (=)l = (a) " = (D) b=g—¢ " =\

)

We stress here that the matrix units e;; and tensor products in (3.7.1) are not graded, as follows
form the previous Subsection 3.6. The component presentation of (3.7.1) is

Riviz _ gia 512 (-1 )[11}[1'2] q6i1i2 (1-2{;, 1) + 6162 )\ 0,

71,72 J27 0 J17J2 i01

(3.7.2)

Thus, the parameters a! take the two values +¢*! and, as we assumed it in Subsection 3.6,

the R-matrix (3.7.1), (3.7.2) must correspond to some supergroup. Indeed, in the limit ¢ — 1,
we find that R tends to the supertransposition operator

Rivie _y — (=1 )[11 o] 511 5i2 = P, (3.7.3)

J1J2 J27

Suppose that the R-matrix acts in the space of the direct product x® y of two supervectors x and
y with coordinates z7! and 3’2, and [i] = 0,1 denotes the parity (grading) of the components!®
z' and y'. According to (3.7.3), we write the condition for the graded tensor product ® as

xil@yh — piiiz(l@yh)(lrl@@ 1) = le@yjé — (—1)[j1][j2](1@yj2)(le@ 1)'
For definiteness, we will assume that
[i]=0 (1<i<N), [iJ]=1 (N+1<i<N+M). (3.7.4)

As we noted in Subsection 3.6, the R-matrix (3.7.2) satisfies the Yang-Baxter equation
(3.1.11) (in the braid group form) and the Hecke relation (3.1.68). In addition to the matrix
R, we introduce the new R-matrix:

Rip = 7712R12 = (—)(1)(2)P12ff12 =

Z ¢ Mei@ei+Y ein®@e+A Y (—1)le; ®ey (3.7.5)

i#] i>j

5There are two equivalent descriptions of supervector spaces V. The first one is to consider the graded basis
vectors e;, while coordinates x? of supervectors e;2* € V are ordinary numbers Another (dual) approach is
that vectors e; form a bases of an ordinary vector space, but coordinates z* are graded in such a way that e;x
belongs to the superspace V. Here we use the second approach.
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with the semiclassical behavior (3.3.1). Here and below we use notation

Jije Ji 72t

Then, for the new R-matrix (3.7.5), we obtain from Eq. (3.1.11) the graded form [154] of the
Yang-Baxter equation:

Rlz(_)(2)(3)ng<_>(2)(3)R23 — Rzg(—)(z)(?’)R13(—)(2)(3)R12, (3.7.7)
where we have taken into account the fact that Rj, is an even R-matrix, i.e.,

R%2 0 if [iy] + [j1] + [i2] + [jo] = 0 (mod(2)) =

J1j2
(_1)[i3]([i1}+[i2])R;$225;§ - 3313225;2 (_1)[j3]([j1]+[j2}) o
(_)(3)((1)+(2)) RisI3 = Rip I3 (_)(3)((1)+(2))'
In the last relation, we set

((—)@F@Y2E _ (plisl(ial+ha)) s giz g

J1j2Js J1 732 g’
For the R-matrix (3.7.1), (3.7.2) we will also use the properties
Ry = (_)(1)(2)113512(_)(1)(2), (_)(1)+(2)[312 - Rm(_)(l)ﬂ?). (3.7.8)
Since GL,(N|M) R-matrix (3.7.2) satisfies the Hecke condition, we find

(é—l)ihig _ ﬁ{i.l’b . /\5“522 — 511522 (_1)[@1][12} qéili2 (2[’51]*1) - A(Sll 5742 @i1i27

J1,J2 71,72 J17J2 J27J1 J17J2

and we have the identities (cf. (3.4.12))
R[] = Ra[q)- (3.7.9)

Finally, the skew-inverse matrix W9 (3.1.18) for the GL,(N|M) R-matrix, defined in (3.7.1),
(3.7.2), has the form

Uy, = D€ ® esi(—1)gli=1 4 ;(_1)[i][j]€ij ® eji—
(2 ' i#j .
AT e ® eg5(—1) 1+l gD @2V )1 22N 1),
- (3.7.10)
@;11;22 _ (_1)[111[1'2] q6i1i2 (2[2'1]71) 5;;5;?_

Y il .. lia) , -
_(_1)[ 1+ 2])\(](—1) Y (2i1—2N-1) gV P(142N-2i2)) . . §i1 52

iat1 17520

which follows from the general formula (3.4.14) (for the case [i1] = [i2] = 0, we reproduce the
matrix (3.4.15)). The corresponding matrices of quantum supertraces are

N . i [i] .. .
Dy = Try <\1112> = D)= (_1)H M+ 2i-2N-1) o,
j?

. : i fi .
0y = Try (\1112> = Q= (—1)" g 2M+-D N +H-20) 5 (3.7.11)

To(D) = TH(Q) = (1= M) /A = ¢ [N = 1],
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Note that the quantum supertrace Trp, which is constructed by means of the matrix D (see
the first line in (3.7.11)), coincides up to the factor ¢ ~")/2 with the quantum trace presented
in [141]. For ¢ — 1 quantum supertraces Tr,, and Tr, tend to the usual supertraces.

The quantum multidimensional superplanes for the Hecke-type R-matrix (3.7.2) are de-
fined as algebras V4 with generators x; (i = 1,...,N 4+ M) and defining relations (see, for
example, |74, 153] and [141]):

Vi (R—q@aba? =0 & ziad = (=1)lgaizt (i <), (z)2=0if[i] =1,
(3.7.12)
Vi (R+qNala? =0 & go'e! = —(=1)Wala’ (i <j), (2')> =0if [i] = 0.

The super-hyperplane V. can be interpreted (see, e.g., [84]) as an exterior algebra of differentials
dx® of the coordinates z¢ for the first hyperplane V_.

We take the left coaction (3.4.3) of the quantum supergroup with generators T; to the
quantum superspaces Vy, defined in (3.7.12), and consider this coaction to the spaces Vi ® V.:

(T @) (T;@a") = (1) EFEN (TR T (27 o), (3.7.13)

where ® is understood as a graded direct product. We postulate the gradings of the elements
Tj and 2" as [T]] = [i]+[j] and [2] = [i]. In [154], the right coaction of the quantum supergroup
was considered with another signs in the formulas, but it can be shown that this difference is
not essential.

From the condition of covariance of the relations (3.7.12) under coaction (3.7.13), we deduce
the graded form of the RTT equations:

Riviz Tk (_1>[j1][k2] T]’zz (_1)[j1][j2} — lei (_1)[k1}[i2} TIZ (_1)[’91]['62} RFke (3.7.14)

kika = j1 Jij2
written, with the help of the concise matrix notation (3.7.6), as (cf. (3.2.66))
RTL (=) 0Ty (—) D) — Ty(—) DOy (—) DD ;o

(3.7.15)
RyyT1 ()N (—) D@ = (ORI () DRT Ry,

and in the component form (we use the one-parametric R-matrix (3.7.2); the multiparametric
case was considered in [74]), we have

T;ll T;j — (_1)([i1]+[j1})([i2]+[j2]) T;; lell =(qg—q") (_1)([Jé][i2]+[j1}([i2]+[j2]) T;; T;f
(i <2, J1 < Jo),
lell T]l; = (—1)([nl+D (] +=) T;j lell (i1 < i, J1 > Ja),
Ti T3 = (D)0l g TR (2] =0, iy <o),
TJ?'ll T]?'f = (=1) D) 41 -1 Tff T;f (] = 1, 41 < in),
T Ty = (=0)lelq TR T ([ia] = 0, 51 < o),
T2 Tjs = (~1) GG 1 TR T () = 1, Gy < o),
(T3:)* =0 ([ia] # L)
Relations (3.7.14)—(3.7.16) are the defining relations for the generators 77 of the graded quantum
algebra Fun(GL,(N|M)).

(3.7.16)
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By using (3.3.1), the semiclassical analog of (3.7.15) can readily be deduced:
{Tl, (—)(1)(2)T2(—)(1)(2)} = [Ty (=)YOT(—) DO )
or in the component form, we have

(_1)[j1]([i2} +[j2]) {T“ TZQ}_

J1?

= T]g (—1)allez] T,f; (—1)lallea] phrke_pivio Tk1 (—1)bnllk] T]k; (—1)bnlli=]]

Jljz Thikes

where {.,.} denotes the Poisson superbrackets

z i i1]+[4 io|+[7 % 7
{ 1 Tz}_ ( ) [i1]+[51]) ([22]+[52]) {T2 ’lel}

Ji? 727

The matrix ||T7]| is represented in the block form

T) = (%%) , (3.7.17)

where the elements of the N x N matrix [[Af[| and of the M x M matrix |[Dj|| form the
algebras Fun(GL,(N)) and Fun(GL,-1(M)), respectively. Indeed, from (3.7.16) we have
Ry [q)AM A% = A’ A% RM2lq), Reo2(q7'|\DY DV = D% DRI 2 (g7, (3.7.18)

ko™ “j1j2 Y172 8158219

where R?j,ﬁ [q] and Rf;ll?;[ '] are standard Fun(GLy(N)) and Fun(GL,-1(M)) R-matrices de-
fined in (3.4.10). We assume that the quantum matrices |[Af[| and ||Dg|| are invertible. It
means that the algebra Fun(GLy(N|M)) should be extended by the elements det,'(A) and
det;fl(D) (see (3.4.38) and Definition 10). In this case, from (3.7.18) and (3.4.12) we obtain
RS2 a) (D7, (D75, = (D792, (D7) R [a)
R IAY (A7) = (A, (A7), Rt i)

For the elements of the rectangular matrices ||Bj|| and [|C¢|| we obtain from (3.7.16) the

commutation relations

é?j}é [q]Bkal Bkg — Bu Bzz R,bﬁﬂg[ 71]7 Bi1 CQ@ — Caszl

a1 a1’
_Rg;g;z[ —1]051 052 CmcazR;llg[ ]

R5I5200)C D% = Plge DA O, B, D Plz = DY B3, RIE (),

A ORI = CY AR PR, RSB, = PR 4,

A’ng - DgA’j =(q— q_l)C’C;Biﬁ.

By using these relations, one can prove that the elements of the matrix X = (A — BD™'C)
satisfy the RT'T" commutation relations

R gl X" XM = X% X2 RIM2(g]. (3.7.19)
It means that elements X (i,j = 1,...,N) generate a subalgebra Fun(GL(N)) in

Fun(GL,(N|M)). Assume that the quantum matrix X = A — BD~'C is also invertible. Then
the same is valid for the matrix ||T}||, as it follows from the Gauss decomposition:

ro (AR (HEY (KLY () e
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and we have

X' |-x"'BD! X' |-A"'BY
= : (3.7.21)

= ( -plcx'| v —yoa'| v

where Y = D7'CX"'BD™' + D! = (D — CA™'B)~!'. By inverting relations (3.7.15), we
obtain that elements of the inverse matrix 7! satisfy

Ry (—) VAT (WAL — ()W (D@t Ris. (3.7.22)

Now we note that Eq. (3.7.19) is simply obtained from (3.7.18) and (3.7.22) if we take into
account (3.7.9) and (3.7.21).

In view of the existing of the inverse element (3.7.21), the algebra Fun(GL,(N|M)) with
defining relations (3.7.15) is a Hopf algebra with usual structure mappings (3.2.3):

A(TY) = T}o T]. (T}) =8, S(T) = (1),

where the product ® in the definition of A is understood as the graded direct product.

We define dual quantum multidimensional superplanes as a Fun(GL,(N|M))-comodule al-
gebra V* with generators y; (i = 1,2,..., N + M) and left coaction (cf. (3.4.3)):

yi = 0r(y:) = (1@y) (T} @1) = (D) (T @ y)). (3.7.23)
This coaction is such that the pairing

Q= (yia') (3.7.24)

is a co-invariant element d7(Q) = 1® Q if the generators x’ of the algebras V. (3.7.12) are
transformed according to (3.4.3). Assume that the grading of the coordinate y; is opposite to
the grading of 2, i.e., [y;] = [i] + 1. Then the dual algebras V*, which are covariant under the
transformations (3.7.23), have the following defining relations (cf. (3.7.12)):

VI yeya (f%l; — q> =0, Vi: yeyu (}?1’2 + q_l) =0, (3.7.25)

where we have used new Hecke-type Yang Baxter R-matrix: R, = (=) Ryo(—)®. We check
directly the covariance of relations (3.7.25) under coaction (3.7.23):

Yy (1?{2 + qﬂ) — yeTy 'ya T (f?{Q + qj”) =
= Yy (=) OO YO (_}?1/2 + q¥1> —
= Yoy (—) VAT @7 (gw + qu1> (—)® =
= ypyu(—) VR (ng + q¢1> Ty (—)OR=1 ()@ =

= gy (D) Ria() £ ™) () OHIOL ) R

Here we have used concise notation (1®y;) (T1)! ®1) = y;(T~')]. In the component form,
Egs. (3.7.25) are

Vi oqyiyy = — (=)W 00 (< 5),  (y)? =0 if [i] =1,
Vi gy = (DU gy g (i< ), (y)? =0 if [i] =0.
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Covariant (with respect to coactions (3.4.3), (3.7.23)) cross-commutation relations for genera-
tors 2' € Vy and y; € Vi are
z? Yo = (—)(2) Y1 Rio 2.

Using these relations, we define covariant algebras Vi §Vi and Vi V1 which are the cross-
products of algebras V. and Vi. For ¢* # —1 one can easily check that the element Q € V< § Vi
(defined in (3.7.24) and having the grading [Q] = 1) satisfies Q* = 0. Let d: V_§Vi — V_§V*
be the linear map d(f) = f - Q, where f € V_§V%, and we have d*(f) = 0. Put H(V_§V1) =
Ker(d)/Im(d). The map d defines the structure of the Koszul complex on V_§ V5.

Proposition 3.13 (see [74]). H(V_#V7) is a one-dimensional subspace generated by

I_IyZ H 2/ mod (Im(d)), (3.7.26)

i=0  [j]=1

and

or H i H ! :sdet T)® H Yi H 2/ mod (Im(d)), (3.7.27)

[]=0  [j]=1 (=0 [l=1

where A(sdet,(T)) = sdet,(T') @ sdet,(T"). The element sdet,(T') is called the quantum Berezi-
nian (or quantum superdeterminant).

We now compare the relations (3.7.15) with the graded Yang-Baxter equation (3.7.7). From
this comparison we readily see that the finite-dimensional matrix representations for the gen-
erators T} of the quantum algebra Fun(GLy(N|M)) (the superanalogs of the representations
(3.2.18)) can be chosen in the form

(T)s = () VO R () V) = R (Ty)3 = (R V)5 = R, (3.7.28)

From this, in an obvious manner, we obtain definitions of the quantum superalgebras which
are dual to the algebras Fun(GL,(N|M)) (cf. Egs. (3.2.19)):

(L3, Th) = (=) VP Ryy(—)V? = Ryy, (L3, Th) = Ry}, (3.7.29)
where operator-valued matrices L* satisfy

Ry LE ()@ LF (0@ = [F ()0 [F ()OO Ry,

) ) (3.7.30)

Ris L (—)0O) L= (0)0@ = L2 (0)O@ L (2)0@ oy,

By using the identity Ryp(—)M® = (=)D@ Ry, (see (3.7.8)) for the R-matrix (3.7.1), one can

deduce from (3.7.30) the standard reflection equation (3.2.31) for the matrix L = S(L~)L".
Recall that the R-matrix (3.7.1) for GL,(N|M) is such that its diagonal blocks R;'% [¢] and

R%l%?[ ] are standard Fun(GL,(N)) and Fun(GL,(M)) R-matrices of the Hecke type and we
have commutation relations (3.7.18), (3.7.19) for matrices D and X = A — BD~'C. Then one
can write the quantum superdeterminant for GL,(N|M) by means of the definition (3.7.27) in

the form |74, 155, 156]

sdet, ' (T') = dety-1(A — BD™'C) " det,—1 (D), (3.7.31)
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where det, is defined in (3.4.32). Then the algebra Fun(SL,(N|M)) is distinguished by the
relation sdet, (7)) = 1.

Remark. The standard formula for superdeterminant of supermatrix 7' is deduced from the
integral representation:

I3 m
sdet(TM) ~ / [[@EM dEy) expliEN (TY) Fy], TN = ( ’ég g;vn ) : (3.7.32)
M n n

where supermatrix 7" is given in the block form and we, respectively, divide the supervectors
EN = (b7, ") and Fy; = (c¢, Ym) on even {3, v} and odd {b, ¢} parts. Then we transform the
quadratic expression EV (T¥) Fy; to the “diagonal” form

E(T)F=b(A—=BD'C)c+ D7,

by making the linear change of even variables 8 = 3—bB D1, v =5 — D~'Cc. The Jacobian
for such change of variables is equal to 1. After integration over b,c¢ and 5,7 in (3.7.32), we

obtain
1

det D
The element Sdetq_l(T), which appeared in Eqgs. (3.7.27) and (3.7.31), is denoted as an inverse

of the superdeterminant sdet,(T'), since the element sdet,'(T') tends to sdet™"(T) for ¢ — 1
in view of the standard formula (3.7.33). We also note that the meaning of Proposition 3.13
is to find the Jacobian of the supercoordinate transformation for the measure (3.7.26) of an
integration over multidimensional quantum superplane.

sdet(Tw') = det(A — BD™C)

(3.7.33)

The quantum supergroup GL,(N|M) was studied in detail from somewhat different posi-
tions in [156]. The simplest example of a quantum supergroup, GL,(1]1), has been investigated
in many studies (see, for example, [141] and [157-160]). The R-matrices (3.6.5) can be used
(see next Subsection 3.8) to construct the supersymmetric Baxterized solutions of the Yang—
Baxter equation (3.8.5) obtained in [161]. The Yangian limits of these solutions'® were used
to formulate integrable supersymmetric spin chains (see, e.g., [162]). The universal R-matrices
for the linear quantum supergroups (and more generally for quantum deformations of finite-
dimensional contragredient Lie (super)algebras) were constructed in [163].

3.8. GLy(N)- and GL,(N|M)-invariant Baxterized R-matrices. Dynamical R-matrices

By Baxterization, we mean the construction of an R-matrix that depends not only on a
deformation parameter ¢, but also on an additional complex spectral parameter x. We wish to
find a solution R(z) of the Yang Baxter equation with spectral parameter z (see Eq. (3.8.2)
below) satisfying the quantum invariance condition

T\T, R(x) (I'T5) "' = R(z), (T} € Fun(GLy(N))).
Then we must seek it in the form [84]
R(z) = b(z)(1 + a(z)R) (3.8.1)

(here a(z) and b(x) are certain functions of z), since by virtue of the Hecke relation (3.4.11),
there exist only two basis matrices 1 and R that are invariants in the sense of the relations

16The corresponding RTT algebra defines the Yangian of the Lie superalgebra gl(n|m) [155].
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T\T, R (TyT;)"' = R followed from (3.2.1). The Yang Baxter equation with dependence on
the spectral parameter is chosen in the form

Ri3(x) Ras(wy) Ria(y) = Ras(y) Rua(ay) Ros(x). (3.8.2)

Only the function a(x) is fixed by this equation. Indeed, we substitute here (3.8.1) and take
into account (3.1.11) and the Hecke condition (3.1.68). As a result, we obtain the equation [84]

a(z) + aly) + Xa(z)a(y) = a(zy), (3.8.3)

which is readily solved by the change of variables a(x) = (1/X)(a(z) — 1). After this, we obtain
for the function a the general solution

a(r) = (1/\)(z* — 1), (3.8.4)

where for simplicity the arbitrary parameter ¢ can be set equal to —2. For convenience, we
choose the normalizing function b(z) = x. Then the Baxterized R-matrix satisfying the Yang—
Baxter equation (3.8.2) will have the form [113, 200, 237|, [84]

R(z) = b(x) (1+ (/N @2~ DR) = % ('R — xR, (3.8.5)

Remarkably, this matrix is written as the rational function of R

A

- (a'zr —ax™') R—ax?

_ _
R(z) = = Ryt a=Fq . (3.8.6)

Below we call this R-matrix the Hecke-type Bazterized R-matriz. For the normalization adopted
in (3.8.5) we obtain

R(g™), (3.8.7)

and the unitarity condition holds!?
12
R(z)R(z™") = (1 - %) . (3.8.8)

This unitarity follows from rational representation (3.8.6) and can be readily deduced from the
spectral decomposition

R() = (z”'q ; ¢ ) pr (2a = (;C")l)P—,

where projectors P* were defined in (3.4.21), (3.4.22). Note that we have obtained the Bax-
terized solution (3.8.5) of the Yang-Baxter equation (3.8.2) only using the braiding relations
(3.1.6) and the Hecke condition (3.4.11) for the constant matrix R. Thus, any constant Hecke
solution of (3.1.6) (e.g., the multiparametric solution (3.6.2)) can be used for the construction
of the Baxterized R-matrices (3.8.5).

7Strictly speaking, we have to renormalize the R-matrix (3.8.5): R(z) — Az~ 'q — x¢~")~'R(z), to obtain
the unitarity condition with the unit matrix in the right-hand side of (3.8.8).
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For the Baxterized R-matrix (3.8.5), constructed via skew-invertible Hecke-type R-matrix,
one can deduce the cross-unitarity conditions

Trp(9) (Rl(x)Pmﬁil(Z)) =n(x,2) Doy,  Trou) (R1<17>P23R1(2)) =n(z,2) Qs I, (3.8.9)

where ( _1)< _1>
xr—X Z—Z
77(937 Z) = )\2 9

Po1, Po3 are permutations, matrices D, () were defined in (3.1.20) and spectral parameters z, z
are constrained by the condition

1

1-\Tv(D)

(z2)”
We stress that for the GL(N|M)-type R-matrix we have b? = ¢2NV=M),

Let U1y be a skew-inverse matrix (3.1.18) for the Hecke R-matrix (3.1.68). Then, for the
Baxterized R-matrix (3.8.5), one can define the skew-inverse Baxterized matrix W(x):

- A - A
Wia(z) = O (‘I’12 + [ D1Q2), (3.8.10)
such that ) A A A
TI'Q (\1112(33) RQg(l’)) = P13 = TI'Q (R12<I‘) @23(%‘)) . (3811)

Let z; and p; (4,5 = 1,...,N) be generators of the Heisenberg algebra:
(7, pi] =ihoy; (1,5 < N —1), (3.8.12)

where h is a Planck constant. The dynamical Yang—Baxter equation is defined as follows
[109, 233, 234] (see also [232, 235, 236]):

(Q3" Rua(p) Qs) Ras(p) (Q3" Rialp) Qs) = Raa(p) (Q5" Rua(p) Qs) Ras(p), (3.8.13)
where @ := diag(e™,e™2 ... e™®N). We seek the solution of (3.8.13) in the form (cf. (3.4.7))
Ry = B2 (p) = 6102 iy (p) + 651072 biyiy (p) (3.8.14)

and require that this R-matrix satisfies the Hecke condition (3.1.68). Without limitation of
generality one can put b;(p) = 0. Now we substitute (3.8.14) to the dynamical Yang—Baxter
equation (3.8.13) and obtain the following constraints:

aij(ph cee 7PN) = aij(piapj)a bz’j<p17 cee 7PN) = bz’j(pmpj); (3‘8-15)

and equations [109]

ai —Aa; —1=0, by(pip;) +bjlpj,pi) =X, i# ], (3.8.16)
aij(pi, j) aji(pj, pi) = bi(pis pj) bjipjopi) = 1, i # 4, (3.8.17)
bij bjk bri + bin b b =0, 1 # 5 #k #14, (3.8.18)
bij (i, pj) @i bi; (pi, )/ a;
b1p2+h7p = ¢ 2 ) bszP"‘h :#7 3.8.19
il i) 1/a; + bij(pi, pj) Py ) aj — bi;(pi, pj) ( )
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where a; := a;;, Egs. (3.8.16), (3.8.17) are consequences of the Hecke condition (3.1.68), while
Egs. (3.8.18), (3.8.19) follow from (3.8.13). The general solution of these equations for coeffi-
cients b;;(p) are [109]:

)\a,i/ha._pj/hbq
i ij

bij(pispj) = ——— — (3.8.20)
! ! afzmajp]/hb%—l—ai_pz/h’a?]/hb?i
where constants b?j := b;;(0,0) have to obey the algebraic relations:

The first equation in (3.8.16) has two solutions a; = +¢*'. Recall (see Subsection 3.7) that
if we take a; = q, Vi (or a; = —q~', Vi), then we will have the case of the standard quantum
group G'Ly(N) (or GL_y/4(N)). But if we consider the mixing case, a;, = ¢ for 1 < i < K
and a; = —¢~! for K +1 < i < N, then we come to the case of supergroups GL,(K|N — K).
By considering the solution (3.8.20), it is clear that if a; = a; (indices ¢ and j ‘have the same
grading’), then b;;(p;, p;) = bij(p; —p;), but if a; = —1/a; (the case of supergroups when indices
i and j ‘have the opposite grading’), then we deduce that b;;(p;, p;) = b;;(pi+p;). Note that the
only conditions on the parameters a;;(p) needed for fulfillment of the dynamical Yang-Baxter
equation are listed in (3.8.17).

Now we demonstrate that every solution R(p) given in (3.8.14), (3.8.17), (3.8.20) will lead
to the solution R(p, z) for the dynamical Yang-Baxter equation with spectral parameters

1%12(207 y) Qs ]%23(277 yz) Q?Tl ]%(Z% z) = Q3 ]:1)23(29, z) le Rn(p, yz) Q3 RQ:;(P, Y) Q:;l - (3.8.22)

Indeed, it is not difficult to check, by using (3.8.13) and the Hecke relation for I%(p), that the
following matrices (cf. (3.8.5)):

R(p, y) =y ' R(p) -y R(p)™
are the solutions of (3.8.22). We note that these solutions satisfy the identity (cf. (3.8.8))
Rp, y) Rp, y™) = (N =y —y ™)),
which is a kind of unitary condition for R(p) (if y* = y ).
3.9. Quantum matrixz algebras with spectral parameters. Yangians Y,(gly) and Y (gly)

It is a remarkable fact that the relations (3.2.21), (3.2.22), with the Hecke R-matrix, are
written as follows: A A

Ris(x) La(zy) Li(y) = La(y) Li(zy) Riz(z), (3.9.1)

L(z) =2 'LT — 2L, (3.9.2)

where z and y are arbitrary spectral parameters and R(x) is Baxterized R-matrix (3.8.5).
Moreover, if we take the pairing of the relation (3.9.1) with the representation matrix T]Z acting
in the third space and use (3.2.19), we obtain the Yang—Baxter equation (3.8.2) for the solution
(3.8.5). Thus, in a certain sense, Eq. (3.9.1) generalizes (3.8.2).

Now we take the GL,(N)-type Baxterized R-matrix (3.8.5) and consider Egs. (3.9.1) as
defining relations for new infinite-dimensional algebras with generators (L(T));'-, which appeared
in the expansion

Li(x) =Y (L) (3.9.3)

r=0
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This algebra is called quantum Yangian Y,(glx) and it is a subalgebra in a quantum affine
algebra U, (gly) (the RTT definition of U,(gly) is given in [140], [112]). Formula (3.9.2) defines
a homomorphism Y, (glny) — U,(gly) which is called evaluation homomorphism.

Let R(z) be some solution of the Yang-Baxter equation (3.8.2) and there is an algebra with
defining relations (3.9.1). It is known that (3.8.2) are associativity conditions of the unique
ordering of monomials of the third degree L, (z)L2(y)L3(z) for the algebra (3.9.1). Indeed, we
have the following diagram (the so-called “diamond” condition):

L(y)L(x)L(z) — L(y)L(z2)L(x

L) L@)L() (y)L(2)L(x)

L(x)L(y)L(2) L(z)L(y)L(x)
\LmL(z)L(y) — L(2)L(z)L(y) 7

This diagram means that two different ways of reordering L(z)L(y)L(2) — L(z)L(y)L(x) (by
means of (3.8.2)) give the same result.

Now we stress that, for the quantum algebra (3.9.1) with special R-matrix (3.8.5), defined
by the Hecke R-matrix of the height N, the quantum determinant (the analog of (3.4.32)) can
also be constructed [113]:

dety(L(x)) Enz.n = Ena.n Ln(¢¥ 1) -+ Lo(qz) Ly (2) & (3.94)
dety(L(z)) = Tri.n (Aisn Ln(g" '2) -+ Lo(qz) Ly (2)) =

=Tri.n (Ln(2) Ly-1(qz) - - - Li(¢" '2) Aisn) (3.9.5)

det,(L(x)) A1 n = Ly(z) Ly _1(qz) - Li(¢" '2) Ay, (3.9.6)

where the rank-1 antisymmetrizer A;_,y has been introduced in (3.5.1). Equation (3.9.4) is
self-consistent, since its right-hand side has the same symmetry as the left-hand side (the action
on both sides of this equation by the projectors (3.8.7) P} ~ Ry(q~") gives zero). The last form
(3.9.5) of the quantum determinant det,(L(x)) is obtained with the help of (3.5.1) and (3.9.1).

Proposition 3.14. The g-determinant det,(L(x)) is a generating function of central elements
for the algebra (3.9.1) with the GL,(N)-type Bazterized R-matriz (3.8.5).

Proof. The centrality of dety(L(x)) means that [L}(zy), dety(L(x))] = 0 Vz,y. Indeed,
LN+1 ([Ey) TI'l_._N (LN(17> LN_l(QI') s Ll(qN_lfL‘) A1_>N) == (397)
= Ter v (B (9) - B 0" y) Lvia () -+ LoV 0) L ()

x Ri(q"Ny) ... Ry(y) AHN) .

Using the Yang-Baxter equation (3.8.2) and the representation of A;_,y in terms of the Bax-
terized elements (3.5.1), we deduce

(3.9.8)

~

Rl (ql_Ny) e RN(ZU) Ay = As g R1 (y)... RN(ql_Ny)-

By means of this relation and Eq. (3.9.6) one can rewrite (3.9.8) in the form

det,(L(2) Trr.on (B3 () - R (¢ Ny) Lulwy) Az X

x Ry(y)... Ry(g"N y)A1—>N> =

85



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

= det,(L(z)) (N(y)"" L(zy) N(1)) v, = detq(L(2)) Ly (), (3.9.9)
where matrices N(y) and N(y)~! are defined by

(N(y))gv-i-l = g<2...N+1 R1 (y)... RN(ql_Ny) 5‘1---N),

(N(y) )éV-H) g NR ( ) ”Rl—l(ql—Ny) £2-N+1)

and, for GL(N)-type Baxterized R-matrices, they are proportional to the unit matrix. Com-
paring (3.9.7) and (3.9.9), we obtain the statement of the Proposition. n
We stress here that not for all Hecke-type Baxterized R-matrices the element det,(L(x)) is cen-
tral for the algebra (3.9.1). The example is given by multiparametric Hecke R-matrices (3.6.3).

We now note that from the algebra (3.9.1), disregarding the particular representation (3.9.2)
for the L(x) operator, we can obtain a realization for the Yangian Y (gl(/N)) [10, 143] (see also
review papers [144, 145]). Indeed, in (3.8.2) and (3.9.1), we make the change of spectral
parameters

T = exp (—%)\(0 — 0’)) , Y =exp (—%/\9') . (3.9.10)
Then the relations (3.8.2) and (3.9.1) can be rewritten in the form
Ri2(0 — 0') Ros(0) Ri2(0') = Ro3(0') Ry5(0) Ros(0 — 0') = (3.9.11)
Ro3(0 — 0") R13(6) R12(0") = Ri12(0") R13(0) Ras(0 — 6'), (3.9.12)
Ri5(0 — 0') Ly(0) L1 (6) = Lo(6') L1 (0) Rio(6 — 6), (3.9.13)

where we redefine L-operator L(6) := L (exp(—40)) and R-matrix

~

RO):=R (e%e) — cosh (A0/2) + ; sinh (\/2) (R + R7Y). (3.9.14)

Equations (3.9.12) have a beautiful graphical representation in the form of the triangle equa-
tion [4, 5]:

~_

2 (3.9.15)

3y 3y 6—06
where the arrowed lines show trajectories of point particles, and the R-matrix

describes a single act of the scattering of these particles. We now take the limit A = g—¢ ' — 0
in Eq. (3.9.13). On the basis of (3.8.5), (3.9.14), we readily find that in this limit the matrix
R(0) is equal to the Yang matrix:

E). (3.9.16)

RO)=(1+0Py) = ng(e):9<1+ ;
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For the operators L(0), we shall assume the expansion

=> T® o, (3.9.17)

k=0

where 70 = 6} and T* (k > 0) are the generators of the Yangian Y (gl(N)) (see [10]). The
defining relatlons for the Yanglan Y (gl(N)) are obtained from (3.9.13) by substituting (3.9.16)
and (3.9.17) (we give these relations in more general form of the super Yangian Y (gl(N|M));
see below (3.9.22)). The comultiplication for Y (¢gl/(/V)) obviously has the form

A(L(0)) = L(6); ® L(6)". (3.9.18)

J

The Yangian Y (sl(V)) is obtained from Y (gl(N)) after the imposition of an additional condition

for the generators T(’“);:
det,(L(0)) =1,

where the Yangian quantum determinant [146]

dety(L(6)) = Tri..nv (A, y Ln(0 — N +1) -+ Ly(6 — 1) Ly (6)) (3.9.19)

is obtained from (3.9.5) after substitution ¢ = e", z = exp(—46) ~ e "’ and taking the limit

h — 0 (or A — 0). In (3.9.19), we denote by AS',\ a classical antisymmetrizer:

N'(1+PN 1+...+ P Pyq)--(1+ P+ PP)(1+ P).

ALy = Ary =
Since the R-matrix (3.7.1), (3.7.2) (for the group GL,(N|M)) satisfies the Hecke condition
(3.4.11), the same Baxterized R-matrix (3.8.5) is appropriate for the supersymmetric case.
Almost all statements of this subsection can be readily reformulated for the supersymmetric
case. In particular, the Yangian R-matrix for Y (gl(N|M)) is deduced from (3.9.14) and has

the form (cf. (3.9.16)) X
R(#) = (1 +0P1s), (3.9.20)

where Pjs is a supertransposition operator introduced in (3.7.3). The defining relations (3.9.1)
should be modified for the super Yangian Y (gl(N|M)) (cf. (3.7.15)):

Ris(6 = 6) (-)D® Ly(8) (=) V) Ly (¢) = (=) Ly(8) ()P Li(6) Ria(6 — 0'), (3.9.21)

while the form of the comultiplication (3.9.18) (where ® is the graded tensor product) is un-
changed. Taking into account (3.9.17) and (3.9.20), we obtain the component form of the
defining relations (3.9.21) for Y (gl(N|M)):

[T(T)i- T(s+1)§c} o [T(rJrl)i

], L T = (—1) W+ HL+ ] (T(s>f 0! T(r)f T(s)j) . (3.9.22)
where 7,5 > 0, T(O); = (1)1 6%, the grading [i] = 0,1 mod(2) is defined in (3.7.4) and [a, b}
denotes a supercommutator [a,b} := ab — (—1)pa, [a] = deg(a).

The relations (3.9.13), (3.9.21) play an important role in the quantum inverse scattering
method [7-9]. Equations (3.9.12) are the conditions of factorization of the S-matrices in certain
exactly solvable two-dimensional models of quantum field theory (see [4, 5]). The matrix
representations for the operators (3.9.2) satisfying (3.9.1) lead to the formulation of lattice
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integrable systems (see, for example, [103]|). These questions will be discussed in more detail
in the final section of the paper.

Another interesting presentations of the quantum operators L(x), which satisfy (3.9.1), are
given in [147, 148|. In paper [148], to construct L-operator, we use Eq. (3.9.1) with Baxterized
R-matrix which is defined by means of the multiparametric R-matrix (3.6.3). These L-operators
were applied to the formulation of 3-dimensional integrable models.

The super Yangians Y (gl/(N|M)) and their representations have been discussed in [149, 155].
The quantum Berezinian for the Yangian (an analog of (3.7.31) and superanalog of (3.9.19))
was introduced in [155].

3.10. The quantum groups SO,(N) and Sp,(2n) (B, C, and D series)

3.10.1. Spectral decomposition for SO4(N)- and Spy(2n)-type R-matrices

In the remarkable paper [42], the quantum groups'® SO,(N) and Sp,(N)|n=2, were studied
as Hopf algebras with the defining RTT relations (3.2.1). These quantum groups are quantum
deformations of Lie groups SO(N) (B,, and D, series, respectively, for N = 2n+1 and N = 2n)
and Sp(2n) (C,, series). It was shown in [42] that SO,(N)- and Sp,(2n)-type R-matrices (used
in the RT'T algebra (3.2.1)) have the form

Rip=2 q® e @ej; +AY ey @e =AY ¢ eiejen ® ey, (3.10.1)

i,J i>j i>j

Rl? = P12 R12 - Z q(aij_(sij/) €ij ® €ji + /\Z €i & €j; — A Z (]pi_pj € €5 €5 & €447y (3102)
i3 i<j 1>]

where
e = +1Vi (for SO, (N)),

g=4+1(1<i<n), ¢=—1(n+1<i<2n) (for Spy(2n)),

(n—3,n—3,...,5,0,—3,...,-n+1), B:(SO0,2n+1)),
(p1, ,PN) = (n,m—1,...,1,-1,..., 1 —n, —n), C : (Spq(2n)), (3.10.3)
n—1,n-2,...,1,0,0, —=1,...,1 —n), D : (SO4(2n)).

We deduce these R-matrices in Subsection 3.11.2 below. The matrices (3.10.1) satisfy not only
the Yang-Baxter equation (3.1.2), (3.1.6), but also the cubic characteristic equation (3.1.72)
(see Eq. (3.1.64) for M = 3):

(R—q1)(R+q "1)(R—v1) =0, (3.10.4)

where v = e¢" is a “singlet” eigenvalue of R, and the case ¢ = +1 corresponds to the
orthogonal groups SO,(N) (B, and D,, series), while the case ¢ = —1 corresponds to the
symplectic groups Sp,(2n) (C,, series). The projectors (3.1.66) arising from the characteristic
equation (3.10.4) can be written as follows [42]:

L (REqT1)(R—01) 1
(g+a )¢ Fv)  q+q!
po _ (R—q)(R+q7'1) _ K
v—q(g ' +v) ’

<iR gt uiK> ,
(3.10.5)

18We often use the short notation SO,(N) and Sp,(N) (for quantum groups) instead of more precise notation
for algebras Fun(SO,(N)) and Fun(Sp,(N)).
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where ( gt A )
q—Vv)lqg  +v +v T —v
n = )\V - A - (1+6[N_€]q)7
A v+ gt 1
=+ = Ai=q— .

We also give the relations between the parameters v, p, py that we introduced:

_ q+q!
Qpy —q e = vl po), pype=— P

which are helpful in various calculations with projectors (3.10.5). For convenience, we define
in (3.10.5) the operator K’ 2, which projects R onto the “singlet” eigenvalue v:

127
KR=RK=vK, (K?=_uK). (3.10.6)
Then the characteristic equation (3.10.4) is written in another form (cf. (3.1.68))
R—R'—A+AK=0. (3.10.7)
The spectral decomposition (3.1.67) for the SO,(NN)- and Sp,(2n)-type R-matrices is
R:qP+—q_1 P +v K.

Note that in the semiclassical limit (3.3.1), when ¢ = e — 1, the characteristic equation
(3.10.7) is reduced to the relation

1
5(7’12 +7r91) = Pio — GKg), (3.10.8)

where (Pm);ll;?z = (P);ll’f2 = 5;;5;? is the permutation matrix, and in the right-hand side of
(3.10.8), we obtain split Casimir operators for so and sp Lie algebras (see [176, 177| and
references therein). Thus, as in the GL,(N) case (3.3.8), the semiclassical limit (3.10.8) of the
characteristic equation fixes the ad-invariant part of the classical r-matrix. Here we have used
an expansion of the matrix K = K© + hK® + O(h?), where the first term is

(KO = (o) (Ci e = K = G (Ci e (3.10.9)
The matrices (Cp)”: (Cp)? = ¢, (Cy)! = €Cy are the metric (symmetric) and symplectic (an-
tisymmetric) matrices, respectively, for the groups SO(N) and Sp(2n). The semiclassical ex-
pansion for the projectors (3.10.5) and (3.10.47) has the form

P;=1(1+£P)+hPi—(1£ePY),
(3.10.10)
P’ = < (K<°> +hK<1>),

N

where the semiclassical matrix 7 (3.3.8) (which satisfies the modified classical Yang-Baxter
equation) is given by the formula

= 12 —P12 +€K1((2)) = —T921 —|—P12 —Eng)
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The ranks of the quantum projectors (3.10.5) are equal (for ¢ which is not the root of unity) to
the ranks of the projectors (3.10.10), which are readily calculated in the classical limit h = 0.
Accordingly, we have [42]:
1) for the groups SO,(N)

N(N +1 N(N -1
rank(P™)) = % — 1, rank(P)) = %, rank(P®) =1 ; (3.10.11)
2) for the groups Sp,(2n)
rank(P™)) = M, rank(P)) = w — 1, rank(P@) =1, (3.10.12)

Since the rank of projector P() is equal to 1, we can write

(PO = qCH2C ;= K12 =C"RC (3.10.13)

Jij2 Jij2
where in view of the second equation in (3.10.6), we have C ;,;,C"%2 = = o~ '.

3.10.2. Quantum algebras Fun(SO,(N)), Fun(Sp,(2n)) and their dual algebras

The number of generators 77 (i,j = 1,...,N) for the algebras Fun(SO,(N)) and
Fun(Sp,(2n)) (2n = N), which satisfy the RT'T relations (3.2.1)

Ry T T = T3 T3 REE, (310.14)

J1J2

coincides with dimensions of the groups SO(N) and Sp(2n) in the undeformed case, since for
Tj the following subsidiary conditions are imposed:

TCT'C ' =C0T'C ' T =1= (3.10.15)

TLC% =", CyTT = Cgy. (3.10.16)

These relations directly generalize the classical conditions for the elements of the groups SO(N)
and Sp(2n). The matrices C%, C,,', which are understood in (3.10.16) as elements in Viy ® Vi
(1 and 2 label the spaces Vy), are the g-analogs of the metric and symplectic matrices Cy for
SO(N) and Sp(N), respectively. The explicit form of these matrices, which is given in [42] (see
also Subsection 3.11), is not important for us, but we stress that the following equation holds:

Ct=eC, (3.10.17)

where ¢ = +1 and € = —1, respectively, for SO,(N) and Sp,(N) cases. Substituting the
R-matrix representations (3.2.18) for T} in the relations (3.10.15), we obtain the following
conditions on the R-matrices:

Ryy = Oy (RO = Co(R)™2Cy (3.10.18)

where, as usual, C1 = C ® [ and Cy = I ® C. As consequences of (3.10.18), we have the
equation

RiY? = OOy Ry Ci Gy (3.10.19)

and also subsidiary conditions
Ly Ly C" =C"™, Cpy Ly I = (3.10.20)
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on the generators of the dual U,(so(N)) and U,(sp(N = 2n)) algebras (3.2.21), (3.2.22):
Ry LFLf = L L¥ Ry, Ry Li Ly = Ly L Ry, (3.10.21)
The semiclassical analogs of the conditions (3.10.18) and (3.10.19) have the form
riz = —(Co)1r1h(Co)i" = —(Co)ar3(Co)y " = (Co)1(Co)ariy* (Co)y ' (Co)y

It follows from Eqs. (3.10.15) and (3.10.17) that the antipode S(T) = CT*C~! for the
Hopf algebras Fun(SO,(N)) and Fun(Sp,(N)) satisfies the relation

SY(T) = (cohr(ochH ™, (3.10.22)

which is analogous to (3.2.5). Thus, the matrix D that defines the quantum trace for the
quantum groups of the SO and Sp series can be chosen in the form

D=eCC" & D,=vC™Cy, (3.10.23)

where we take into account (3.10.17). Here we choose the numerical factor ev in order to relate
(3.10.23) with the general definitions of D-matrix (3.1.20), (3.1.22).
We now note that the matrix C'? Cfyy € Mat(N) @ Mat(N) projects any vector X2 onto

the vector C'?, i.e., the rank of the projector C'*?) C&; is 1. In addition, from (3.10.16) we have

CPCLT Ty =T T,CP Oy,

which means that the projector 012>C’<_1; should be a polynomial in R. Therefore, C’12>C’<_1§ ~
PY,, and, as it was established in [42] (cf. (3.10.13)),

C 0, = K, (3.10.24)
Using this relation, RT'T relations (3.10.14), and equations (3.10.7), one can deduce
T Ky =K T Th = 7(T) K, (3.10.25)

where we defined the scalar element 7 = ,rlq—l; T\T, C'?. Comparing Eq. (3.10.25) with
Egs. (3.10.15) and (3.10.16), we conclude that 7 = 1. Therefore, for the correct definition of
the quantum groups SO,(N) and Sp,(NN) we should require the centrality of the element 7 in
the RTT algebra (the centrality of the element 7 is discussed below after Eq. (3.11.37)).
We note that Egs. (3.10.6), (3.10.24) are equivalent to the relations
Ry C = v C"™, Oy By =v 0, (3.10.26)

127

which give the possibility to rewrite conditions (3.10.20) for the generators L} = (S(L™)L*)j,
L% = (L*S(L7))% of the reflection equation algebras (3.2.31), (3.2.32) in the form

Ly RlZ L,C? =y 012>a C(E; Ly R12 Li=v(C;}

(12>

ZQ Elg ZQ 012> =V Cl2>, C&; EQ ng zg =V Caé
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By making use of the statements of Proposition 3.6, we construct the central elements (3.2.29)
for the algebras U,(so(N)) and U,(sp(N = 2n)) as

Can =Trp (L) =Tr (D LM), (3.10.27)

where the quantum trace matrix D is defined in (3.10.23). The elements (3.10.27) are quantum
analogs of the Casimir operators for the algebras U,(so(N)) and U,(sp(N = 2n)).

We now present some important relations for the matrices R and K; many of them are
given, in the same form or other, in [42]. We note first that in accordance with (3.1.15) we have

K12 -FA{23 R12 = ﬁi23 RIQ K23 < RIQ -FA{23 K12 - K23 R12 ﬁi23- (31028)

Further, from Eqgs. (3.10.18) and (3.10.24) (or substituting the matrix representations (3.2.18)
in (3.10.25) for 7 = 1), we obtain

RE RE Ky = Py PysKyy = Kos Pry Pas,

(3.10.29)
Kip Risl R1i21 = K2 Pa3 Pra = Pa3 P12 Kas.
A consequence of these relations is the equations
R2i31 K12 R;E?} = Rigl K23 é?}l <~ ng Rgg K12 = K23 é;zl é;;,
(3.10.30)

Ros R1s Koy = Ky ﬁi2_31 }?1_21'
In particular, taking into account the characteristic equation (3.10.7), we obtain the identity
(F1o = A) Kog (Riz = A) = (Rag — A) Kz (Ros — A)
or
Ry Ko Ry = R;;),I Kiz R;;»,l =
A A A A A A (3.10.31)
= Ry3 Kip Ry + A(R12 Kos — Ky Ros — Ra3 Ko + Koz Rip) + A (Ko — Kog),
which will be used in Subsection 3.12. Equation (3.10.24) leads to the identities
K2 Koz = Kig Po3 Pra = Poz P1a Koz, Koz Ko = Pra Po3 Ko = Kag Pia Pog, (3.10.32)
from which we immediately obtain

K12 K23 K12 = K127 K23 K12 K23 = K23- (31033)

We now compare the relations (3.10.29) and (3.10.32). The result of this comparison is the
equations o o
{zétsl {%g Ko = K12 Koz = Ko 6%1]??:21, (3.10.34)
R Ray Kip = Koz Kip = Kog Ry Ry

We now apply to the first of the chain of equations in (3.10.34) the matrix K;5 from the right
(or Koz from the left) and take into account (3.10.6) and (3.10.33). We then obtain

K23 Rigl K23 = V$1K23, K12 R%%l K12 = I/¥1K12. (31035)
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The braid relation (3.1.11) and Egs. (3.10.6), (3.10.7), (3.10.35) define the R-matrix repre-
sentation of the Birman—-Murakami-Wenzl algebra [229] (see also Subsection 4.4 below). Equa-
tions (3.10.28), (3.10.30), (3.10.31), (3.10.33), and (3.10.34) directly follow from this definition.
As we shall see in Subsection 3.12, the relations for the Birman—Murakami—Wenzl algebra will
be sufficient for the construction of SO,(N) and Sp,(2n)-symmetric Baxterized R(z)-matrices.
The relations (3.10.28), (3.10.30), and (3.10.33)—(3.10.35) have a natural graphical representa-
tion in the form of relations for braids and links if we use the diagrammatic technique (only 3
of these operators are independent in view of (3.10.7)):

R:X R‘1:X 11[2:\ \ K:\v;i

3.10.3. Quantum traces and quantum hyperplanes for SO,(N) and Sp,(N)

(3.10.36)

We now give some important relations for the quantum trace (3.2.12) corresponding to the
quantum groups SO,(N) and Sp,(NN). Similar relations for the g-trace (3.2.14) can be derived
exactly in the same way. From the definitions of the matrix K (3.10.24) and the matrix D
(3.10.23), we obtain

Tree(Ki2) = v 1. (3.10.37)

We use the relations (3.10.19) and the definition of the quantum trace (3.2.12) with the matrix
D (3.10.23); then, for an arbitrary quantum matrix Ej, we obtain the relations

1% R?Q E1 K12 == TI'qQ(Klg E1 R?2>K127

(3.10.38)
14 K12 E1 R?Q = K12 Tqu(quz E1 K12)7 Vn,
14 K12 E1 K12 = TI'q(E)Klz. (31039)
Calculating Tr,s of (3.10.38), we deduce
Tryo(RY, By Kip) = Tre(Ko By RY,), Vn. (3.10.40)

Further, from the first identity of (3.10.35), averaging it by means of Tr,, we readily obtain
for the algebras Fun(SO,(N)) and Fun(Sp,(V)) the analogs of (3.2.16). These take the form

Trp(RE) = ev Tro(CC'RE) = v'F . (3.10.41)
Using this relation and Eq. (3.10.7), we can calculate
Tr,(I) =Tr(D) =v(l + €[N —¢,) = v p. (3.10.42)

We now separate irreducible representations for the left adjoint comodules (3.2.10). For an
arbitrary N x N quantum matrix EJZ we have

By = v ' Trp(ByKyp) = B9 + B 4+ B (3.10.43)

where B\ = v 1 Try(Ply E1Kys) = v Trpa(Kip E1 PYy). Tt is obvious that the tensors
E® | (i = £, 0) are invariant with respect to the adjoint coaction (3.2.10) and Try(PY EWK) =
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0 (if ¢ # j) by virtue of (3.10.38). Thus, (3.10.43) is the required decomposition of the adjoint
comodule E into irreducible components. It is clear that the component E® is proportional
to the unit matrix, (E(O))é. = e - 0% (e is a constant), and, thus, applying Tr,; to (3.10.43),
we obtain

Try(E) = eWTry (I) = vuEW, (3.10.44)

where we have used the property (3.4.18), which also holds for the case of the quantum groups
SO,(N) and Sp,(2n). To conclude this subsection, we note that, as in the case of the linear
quantum groups, we can define fermionic and bosonic quantum hyperplanes covariant with
respect to the coactions of the groups SO,(N) and Sp,(2n). Taking into account the ranks
of the projectors (3.10.11) and (3.10.12), we can formulate definitions of the hyperplanes for
SO,(N) (e =1) and for Sp,(N) (e = —1) in the form

(P~ + (e—1)K)zz' =0 (3.10.45)
for the bosonic hyperplane (number of relations N(N — 1)/2) and
Pt + (e+ 1)K)za' =0 (3.10.46)

for the fermionic hyperplane (number of relations N(N + 1)/2). For all these algebras, the
elements Kz’ are central elements, and it is obvious that for Sp,(N) bosons and SO,(N)
fermions we have Kz’ = 0. It is interesting that the projectors P= (3.10.5) can be represented
as

Pt =

. 1
= (iR’ + qu11) — 5o (10K (3.10.47)

i
where the matrix

R= R (40 + pue— DK

satisfies the Hecke condition (3.1.68). However, using (3.10.28)—(3.10.35), one can directly check
that R’ does not obey the Yang—Baxter equation (3.1.6).

Note that the conditions (3.10.15) and (3.10.16) can be understood as conditions of invari-
ance of the quadratic forms x1)C~'2(2) and y1)Cy2) with respect to left and right transforma-
tions of the hyperplanes (), y):

Ty = T ® $%k)’ Yky; = Yk); © T
3.11. The multiparameter deformations SOyq,;, SPga;; and q-supergroups Osp,(N|2m)

3.11.1. General multiparametric R-matrices of the OSp type

In this subsection, we show that it is possible to define multiparameter deformations of
the quantum groups SO,(N) and Sp,(2n) and also the quantum supergroups OSp,(N|2m) (as
RTT algebras) if we consider for the R-matrix the ansatz:

K
R = Z Q45 €45 X €ji + Z bij € & €j + Z d; €’ X (S = (3111)
1,j=1 i<j i>]
R;lli?z = 5]2%? @iyiy + 5;1553 bi1i2 @i2i1 + 5“126]'1% d321 62]2'1 = (3112)
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i i2 i i2 i 02

a’:“z? + bi1i2 + E 12

J1

A J2 J1 J2 n J2
where @ij = 0,5, )/ = K+1—j; K = N for the groups SO(N), K = 2n for the groups
Sp(2n), and K = N + 2m for the groups Osp(N|2m). The expression (3.11.2) is a natural
generalization of the expression (3.6.5) for the multiparameter R-matrix corresponding to the
linear quantum groups. Namely, the third term in (3.11.2) is constructed from the SO-invariant
tensor §1%24; j;» which takes into account the presence of the invariant metrics for the consid-
ered groups. The functions © are introduced in (3.11.2) (they are indicated as arrows in the
graphical representation) in order to ensure that the matrix Ry = Pi»R has lower triangu-
lar block form. This is necessary for the correct definition of the operators L*) by means of
the expressions (3.2.19). We demonstrate below that the ansatz (3.11.2) for the solution of
the Yang—Baxter equation (3.1.6) automatically defines the family of the Birman—Murakami—
Wenzl R-matrices with fixed parameter v which corresponds to the quantum groups SO,(N),

Spy(2n), and Osp,(N|2m).

We substitute the ansatz (3.11.2) for the R-matrix in the Yang-Baxter equation (3.1.6). It
is obvious that the first two terms in (3.11.2) make contributions to the Yang-Baxter equation
that are analogous to the contributions of the general R-matrix ansatz in the case of the linear
quantum groups (see Subsection 3.6). It is, therefore, clear that for the parameters a;; and

b;; we reproduce almost the same conditions (3.6.6), which in the convenient normalization
c=1, b=q— ¢! have the form

by=b=A (Vi,j), ag=a=%q" (i#7), ayau=1 (i#ji#f).  (3113)

Note that the conditions in (3.11.3) are somewhat weaker than in (3.6.6) (because of the
restrictions ¢ # i/, ¢ # j'). This is due to the fact that the contributions to the Yang—Baxter
equation proportional to a;s begin to be canceled by the contributions from the third term
in (3.11.2). The corresponding condition on a; fulfilling the Yang—Baxter equation can be
expressed as follows:

ajj =k (@) —0b), ay;=riad—b) (j£j) &

(3.11.4)
a}ajp = ki, afap;=r;  (JF#]),
where in addition for the constants a? and k; we have
Kikyp =1, aj =aj. (3.11.5)

Taking into account Eqgs. (3.11.3), the relations (3.11.4) are equivalent to the pair of possibilities

(G #9) 1
1) aj=q = apr; =¢ " =ak,

(3.11.6)
2) ) =—q' = ayjr;l=—q=a; kK.

We shall see below that if we restrict our consideration to the first possibility for all j (or only
the second possibility), then we obtain the R-matrices for the quantum groups SO,(N) and
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Sp,(2n). If, however, we consider the mixed case, when both possibilities are satisfied (for
different j), then we expect (by analogy with the linear quantum groups; see Subsection 3.6)
that the corresponding R-matrix will be associated with the supergroups Osp,(N|2m). The
case j = j' is obviously realized only for groups of the series B (SO,(2n + 1)) and for the
supergroups Osp,(2n + 1|2m), and it follows from the Yang-Baxter equation (3.1.11) that
K+1

ajy =1, k=1, for j=j = T+ (3.11.7)
For the groups SO, (2n), Spy(2n), and Osp,(2n|2m) the parameter a;; (j = j') is simply absent.
Further consideration of the contributions to the Yang—Baxter equation from the third term in
(3.11.2) leads to the equations

Q5 Ay = Ry, Qj; Ajir = :‘ij_l (VZ 7& i/), (3118)

ALk +dld =0 (3.11.9)

(there is no summation over repeated indices). The general solution of Eq. (3.11.9) has the

form

i Cj
d = —Mic—z, (3.11.10)

where ¢; are arbitrary parameters. The remaining terms in the Yang-Baxter equation that do
not cancel under the conditions (3.11.3)—(3.11.10) give recursion relations for the coefficients
C;.
Cit
CjrQjrj + )\Cj@j/j — )\Cj g /ﬁ)ic—i = V¢y. (31111)
i>j

These relations can be represented graphically in the form

Cj Cj Cy
ajj
+ A + i o=v
. .,
. ./ . ./ . ., j j
J J J J J J

Another equivalent forms of (3.11.11) are

Y ddi=d (,, L A@m/m) , (3.11.12)
k>m Cm
Z dj,dy = dj (—u‘l 4o al, — /\@mm/> , (3.11.13)
k<m Cm
which are related to each other by the identity
Y did = —Apd;, (pi=A-v+v)/N) (3.11.14)
k

used below. Now the R-matrix (3.11.1) is represented in the form

A

R = Q5 €45 & €ji + A @ji € & €jj + @z dZ €irj & €ij’y (31115)

J
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where the summation over the indices i, j is assumed and the parameters a;; and dj- are fixed
by the conditions (3.11.3)—(3.11.8), (3.11.10), and (3.11.11). This R-matrix satisfies the Yang—
Baxter equation (3.1.6) and additional relations (cf. (3.10.6), (3.10.7), and (3.10.35))

RP—)MR-1=-\wK, KR=RK=K, (3.11.16)
Ko R Ky = P Ky, K2 =K, (3.11.17)
where we have introduced the rank-1 matrix:
K:=-)\"! Z dé» eirj @ e;jr = Z /{Z e” ® ey & (3.11.18)
i,j Gi
Kzlzz Cilig C Cz 51]’ Kj C.. = 15
J1ja J1j2 € - s ij — Z ij'Ci - (31119)

J
To prove the relations (3.11.16), (3.11.17), we have used the definitions of a;; (3.11.3)-(3.11.7),
d’ (3.11.10) and take into account the identities (3.11.12)~(3.11.14) and

Ok Okj = OkirOk; (O + Ojir + 0irj) = ©;Oky + (Ojir + i) Oy;.

Thus, the R-matrix (3.11.15) with constraints (3.11.3)—(3.11.8), (3.11.10), and (3.11.11) auto-
matically leads to the R-matrix representation of the Birman—Murakami—Wenzl algebra (the
definition of this algebra is given below in Subsection 4.4). In (3.11.19), we define the quantum
metric, or quantum symplectic, matrices C' (cf. (3.10.13), (3.10.24)). The parameter € (see
Subsection 3.11) is introduced in (3.11.19) in order to match the definition of the matrices C'
to the study of [42], where € = £1.

Note that the conditions (3.11.3)—(3.11.8) can be solved as

Qi = (a ) (855—0,;51 fzy fijfi’j fj,j
i =
J 7 fji ) sz.sz., fjj’ ’

and, after substitution of (3.11.20) in (3.11.15), one can observe that the R-matrix (3.11.15) is

R=>(a))uo) ;” e ®eji+AY e ®ej; — Zf” (3.11.21)

2,7 1<J

= Kj (VZ;AZ/) = Rj =

(3.11.20)

and produced by the twisting (3.6.4) from the matrix

R="Y" (a?)0u % 6”®6ﬂ+>\zeu®ew—)\z iy @ e, (3.11.22)

2,7 1<J 1>7

where & = fivc; and the parameters a) = a, ¢; are determined in (3.11.6), (3.11.7), and
(3.11.11). In this case, the relations (3.2.67) lead to additional conditions on the twisting
parameters f;;:

fijfvy = Kv5, fiifie = v5, Vi, (3.11.23)

which are consistent with (3.11.8), (3.11.20). It is evident that for R-matrix (3.11.22) the
analogs of matrices (3.11.18), (3.11.19) are

Kiiz — i1io Y
Jljz Z G 6” ,]1 el]> O CJ1J2 =
(]

2
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o 1 o~ 1 S .
CU - 6(51‘7 -, Cij - _6ij/6i = CU Cjk - 5}; (31124)
Cj €
Now we show that the constant v is fixed by the relations (3.11.11) uniquely. We consider
the solution of Eqs. (3.11.11), which are written in the form

K
’Yjaj/j/‘ilj_l + )‘@j’j —A Z Yi = V, (31125)
i=j+1
where - 1
Cj/ Cj/
AN AP (3.11.26)
T Gy

Equation (3.11.25) is readily solved by the changing of variables: v; — X,

K
XJ = q2] Z Yis (XK = 0)7
i=j+1

where the inverse transformation is v; = ¢~ (¢*X;_1 — X;) and we fix v in (3.11.25) by taking
into account the properties (3.11.26).

3.11.2. The case of SO4(N) and Spy(N) groups

First, we consider the possibility 1) in (3.11.6). The possibility 2) gives, in view of a
symmetry of Eq. (3.11.25), an analogous result except for the substitution ¢ — —q¢~*. The
corresponding form of Eq. (3.11.26) for j7 > j is

q¢(Xjo1—X5) =¥ v,

and we obtain the solution:
oo 1 — g 2K 2K —2j+1 S

For the case K = 2n+1 the possibility j = j'(= K+1—7 = n+1) is realized and Eq. (3.11.25)
(in view of (3.11.7), (3.11.26), (3.11.27)) gives
Yop1 =vg" =1 = v=¢"" (3.11.28)

For the case K = 2n we take j = £, (' = £ + 1 > j) in Eq. (3.11.25) and obtain T =
v+t — \g. On the other hand, Eq. (3.11.27) gives Vg = vg®~!. Thus, in view of the

condition yx = fyzﬂ (3.11.26), we deduce the equation 1+ A\¢®v = v2¢*F with two roots:
2

n=q¢ % v=—q¢ K (3.11.29)

Y

We summarize the results (3.11.27)—(3.11.29), for the solution of (3.11.25), in the form

Cj s . . . . e—
v =2 =v TGS, y=1G=1), v=eaT" (3.11.30)
J

(parameters ¢; were introduced in (3.11.22)) and relate the cases (¢ = +1) and (¢ = —1) to the
groups SO,(N) and Sp,(N), respectively.

98



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

In order to determine from the conditions (3.11.30) the parameters ¢; and, thus, to fix
the matrices C' (3.11.24), we require fulfillment of the relation C% = e@j (cf. (3.10.17)).
Substitution of (3.11.24) gives the equation ¢;¢; = €, which together with (3.11.30) enables us
to choose ¢; in the form [42]

=g VD) (s Y & =€, (3.11.31)
where vi (for SO
i = 1Vi
@=LV (for SO,N)), (3.11.32)
=+1(1<i<n), g=—-1(n+1<i<2n) (for Sp,(2n)),
and (cf. (3.10.3))
n—2,n—2....20 - ..., —n+1) B:(S0,(2n+1)),
(p1,--pn) =X (nyn—1,...,1,—1,..., 1 —n, —n) C:(Sp,(2n)), (3.11.33)
(n—1,n— 2...,1,0,0,—1,...,1—n)D:(SOq(2n)).

We note that diagonal matrices p = diag(pi,...,pn) are equal to p = > 6 H;, where
elements H; = (e;; — ex—in—;) form a dual basis of the Cartan subalgebras in the Lie algebras
so(N), sp(2n) and § = (dy,...,0,) are Weyl vectors for root systems of so(2n), so(2n + 1) and
sp(2n) (see definitions in [178] and in Subsection 3.13 below; see also [139], Subsections 3.1.1
and 3.5.2).

Thus, the final expression for the R-matrix (3.11.21) corresponding to the multiparameter
deformation of the groups SO(N) and Sp(2n) (see [136, 137]) is

RlZ = Z q(éij ij &62’] ®€]1 + )\Z € ®e]j Y Z fZ’L Pz Pj € €5 €t ®eij’7

Ji 1<j 1>] f]j

where the parameters are defined in (3.11.23), (3.11.32), (3.11.33). The matrix R = PR is
represented in the component form as

R“ = 5115” [(q 5i1i2|i175i/2 + qil Kiy 5ilil2|i175i2 T Qigiy ‘h#h?’éﬁ + 511@/15221&] T <3'11'34)

J1.J2 J17J2

FAO102 Oy 5, — Nk, 07126,

oo e qPi P
3251 3174 @jl €, €, "L,

where

aij = 1/aj = ;TJ Vi#i# ], apr;=aR;t =q" Vi # g,
n L e (3.11.35)
Qij Qirj = Kj, Qi Qg = K; ™y Ki = (/ii’) = Fur
Now we clarify the role of the parameters ;. Consider the RTT algebra (3.2.1) with multi-
parameter R-matrix (3.11.34). We show that for x; # £1 the element 7 introduced in (3.10.25)
is not central [136]. Indeed, we take the identity Ki2Ko3K 15 = Kjs I3 (which is readily deduced
from the explicit representation (3.11.18), (3.11.19)) and multiply it by 717575 from the right.

For the right-hand side of the identity we have
Ko Th 1515 = 71 K12 T, (3.11.36)
while for the left-hand side we obtain

K12K23K12T1T2T3 = K12T1K23T2T3 K12 = K12T1K23 K12T = X3T3X3:1K12T7 (31137)
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where X! = C},C* = §i k;, (X71)! = Cy;C™ = 6} Ky and we have used the identity 71 Kos Kip =
K3 K15 X3T3X; ! followed from the definition (3.11.19). Comparing (3.11.36) and (3.11.37),

we obtain
rTT=XTX'7 = TT; ::‘iij?lij/ T

Thus, only for x; = +1 the element 7 is central and one can relate the multiparameter R-
matrices (3.11.34) with quantum deformations SOy ,,; (N) and Spyq,; (2n) of the groups SO(N)
and Sp(2n) (see discussions after Eq. (3.10.25)).

The conditions (3.11.35) show that, for k; = 41, the independent parameters are ¢ and
a;; for i < j < j. The numbers of these parameters are n(n —1)/2 + 1 and n(n + 1)/2 + 1,
respectively, for the groups of the series C, D (with N = 2n) and B (with N = 2n + 1). Note
that the last term in the square brackets in the expression (3.11.34) is appeared only for the
groups of the series B. If we set a;; = 1 (j' # i # j), ki = 1, then the R-matrices (3.11.34)
are identical to the one-parameter matrices R = PR (3.10.1) deduced from (3.11.22) and given
in [42].

3.11.3. The case of Ospy(N|2m) supergroups
For the groups Osp(N|2m) (K = N +2m) we choose a grading in accordance with the rules

jl=0for m+1<j<m+N

[j]=1for 1<j<m, m+N+1<j<N+2m. (3.11.38)

Thus, for [j] = 0 (j # j') and [j] = 1 the possibilities 1) and 2) in (3.11.6) are respectively
realized ' ‘ ' »
o = (-1 g% = (-1, ] = (). (3.11.39)

In this case, Eq. (3.11.25) is written as the system of equations

K
Ba+AY  vi=-v, (N+m+1<j<N+2m), (3.11.40)
i=j+1
K
Va—A+AY yi=—-v, (1<j<m), (3.11.41)
i=j+1
K
¥ 4% X0, =AY yi=v, (m+1<j<m+N). (3.11.42)
i=j+1

In (3.11.42), for the case j = j’, we take into account (3.11.7). The solution of (3.11.40) is (cf.
(3.11.27)):

vy = —v @V (N m+1< 5 < N +2m), (3.11.43)
and we have A\ Y. ;= v(¢7?™ — 1). Using this fact, Eq. (3.11.42) is written in the form
i>m+N
m+N
,qu(éj,j —-1) + A@j’j - A Z Yi = ]/q_Qm’ (31144)
i=j+1
and its solution is '
v = yq2(N7])+1’ (j/ <] < N—|—m) (31145)
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In addition, for N =2n+ 1 and j = 5’ = m + n + 1 we have

Ysnpr = vgh P =1, = N (3.11.46)

and for N = 2n we obtain the condition v, N = vgN=2mtl _\g =1 which is equivalent

m+J 417
to the quadratic equation on v:

gV =2 — ) (g™ =2 4 ¢~ = 0. (3.11.47)

Accordingly, we summarize the results (3.11.43), (3.11.45)—(3.11.47) as
= G _ (_1)[j}I/q(fl)[j](2N72j+1)f[j}4m (G>7) v= eqe2m—N (3.11.48)

where € = £1 and the case € = +1 corresponds to Osp,(N|2m), while the case e = —1 we relate
to a quantum group denoted as Osp/,(2m|2n). It is obvious that for the groups Osp,(2n+1|2m)
(as well as for SO,(2n + 1)) we have v; = v, = 1 for j = 5. Note that if in (3.11.48) we set
m=0,or N=0and ¢ — —¢~!, then we reproduce (3.11.30).

The analog of the relation (3.10.17) for the groups Osp,(N|2m) is the equation

éij == (—1)(1) Eéiju
which is equivalent to (—1)®) ¢ & = ¢, and taking into account (3.11.48), we obtain
= g ITINDE (5 ) 5 6 =g,

where [j] = 0,1 is the grading (3.11.38). The parameters (p1,...,px), (€1,...,€x) are fixed
according to the following cases:
1) The case € = +1, v = ¢V for Osp,(N|2m) (N = 2n + 1):

N N N 1 1 N N N
pi:(E—m,...,g—1;5—1,...75,0,—5,...,1—5;1—5,...,771—5)
m 2n+1 m (31149)
e =(—1,....,—1;+1,...,+1;+1,...,+1)
m 2n+1 m

2) The case € = +1, v = ¢" ™™= for Osp,(N|2m) (N = 2n):
pi=mn—-m,....n—1n—-1,...,1,0,0,—-1,....,1—n;1—n,...,m—n)

m 2n m
6 =(=1,...,=1;+1,...,+1;+1,...,+1) (3.11.50)

m 2n m

3) The case € = —1, v = —¢~ "2 for Osp},(2m|2n):

pi=n+1—m,....nsn,...,1,—1,...,—n;—n,....,m—1—n)
m 2n m
€= (=1L 41, 41,1, — 11, ., 1) (3.11.51)

To conclude this subsection, we give the final expression for the R-matrix (3.11.21) corre-
sponding to the quantum supergroups Osp,(N|2m) (e = +1) and Osp/,(2m|2n) (e = —1):

Ryp = Z (1)U O 0s=00 e @ e 4 A Z €ii @ ej; — A Z " eiejer; @eiy, (3.11.52)

i, 1<j >]
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where the parameters ¢;, p; are defined in (3.11.49)—(3.11.51). We stress here that the matrix
units e;; and tensor products in (3.11.52) are not graded, as follows form the discussion of the
general Yang—Baxter solution (3.11.21) in Subsection 3.11.1. To obtain (3.11.52), we used
the condition (3.11.39) and put f;;/f;; = (=D (Vi £ j # i), fii = fiw = 1 in (3.11.21).
This choice of the parameters f;; is such that Ry tends to the supertransposition matrix
(=1)W@ P, when ¢ — 1 (for the notation (—1)M®) see (3.7.6)). In the supergroup case, the
multiparameter R-matrices are restored directly from (3.11.52) by the same twisting (3.6.4) if
we take into account conditions (3.11.23).

The quantum supergroup Osp,(N,2m) is the graded algebra generated by elements T%
(4,k =1,...,N +2m) of (N +2m) x (N + 2m) supermatrix. As in the case of quantum
supergroups GL,(N, M) and SL,(N,M), the generators {T%} of the Osp,(N,2m) algebra
satisfy the graded RT'T relations (3.7.14), (3.7.15) but with the Osp,(NV,2m)-type R-matrix
(3.11.52). The Hopf structure of the quantum supergroup Osp,(N,2m) is introduced in the
same way as the Hopf structure of GL,(N, M) (see Subsection 3.7).

We note that the parameters v for the cases Osp, (3.11.50) and Ospj, (3.11.51) are related to
cach other by means of the transformation: ¢ <+ —g~!, n <> m. However, this transformation
does not relate the corresponding R-matrices (3.11.52). Our conjecture is that for the cases
Osp, (3.11.50) and Ospy, (3.11.51) the R-matrices (3.11.52) and corresponding quantum groups
are inequivalent.

The R-matrices constructed in this subsection for the quantum supergroups realize R-matrix
representations of the Birman—Murakami-Wenzl algebra, since they are the special examples
of the general R-matrix (3.11.15) which satisfy (3.11.16), (3.11.17). Some of these R-matrices
can be obtained on the basis of the results of [161], in which Baxterized trigonometric solutions
(see next Subsection 3.12) of the Yang—Baxter equation associated with the classical super-
groups Osp(N|2m) were obtained. Rational solutions, some special cases, and other questions
relating to the subject of the quantum supergroups Osp,(/N|2m) are also discussed in [162, 164]
and [167, 168].

3.12. SO,(N)-, Sp,(2n)- and Osp,(N|2m)-invariant Baxterized R-matrices

Arguing, as in Subsection 3.8, we conclude that the SO,(N)- and Sp,(N)- (as well as
Ospy(N|2m)-) invariant Baxterized matrices R(z) must be sought (by virtue of the fact that
the characteristic equation (3.10.4) is cubic) in the form of a linear combination of the three
basis matrices 1, R R2. Expressing R? in terms of K and R we can represent invariant
R(z)-matrix in the form [84]

R(z) = () (1 +a(x)R+ b(m)K) , (3.12.1)

where a(z), b(z), and ¢(x) are certain functions that depend on the spectral parameter . We
determine the functions a(x), b(x) from the Yang-Baxter equation (3.8.2). The normalizing
function c¢(z) is not fixed by Eq. (3.8.2). After substitution of (3.12.1) in (3.8.2) and using
(3.10.28)—(3.10.35), the following relations arise [84]:

ap +a3—|—)\a1 as = aog,

b3 — bg — )\l/al as “+ vay b3 — )\Cbl bg bg + /\2(11 as b2 +

3.12.2
—|—b1(1+i/a3—/\a3b2+ub3+V*1QQ b3+b2b3) =0, ( )

as b1 —|—a3b1 bg = a1 b2+)\a1 as bg, CL2Z)3+CL1 bgbg = a3b2 +)\CLl Clng,
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where we denoted
a; = a(x), ay=alzy), az3=aly), by =blx), by="0bzy), bs=>by).

The four relations (3.12.2) are equivalent to the three functional equations

a(z) + aly) + Aa(z)a(y) = a(zy), (3.12.3)

b(y) — b(xy) + a(z)[vb(y) — Ava(y) — Ab(zy)b(y) + Na(y)b(zy)]+ (3.12.4)
+b(2)[1 + valy) — Aa(y)b(zy) + ub(y) + v~ alzy)b(y) + b(zy)b(y)] = 0, o

a(zy)b(y) + a(x)b(zy)b(y) = b(zy)(aly) + Aa(z)a(y)), (3.12.5)

—~

since the third and fourth relations in (3.12.2) give the same equation (3.12.5). As was to be
expected, Eq. (3.12.3) is identical to Eq. (3.8.3) obtained in the GL,(N) case, and its general
solution is given in (3.8.4). By means of (3.12.3), we can transform the right-hand side of
Eq. (3.12.5) in such a way that (3.12.5) reduces to the equation

a@) _ bay) =by) _ ., by)(+by)t (3.12.6)

a(ry)  b(zy)(b(y) +1) b(zy)(1 + b(zy))

We now note that Eq. (3.12.3) can be rewritten in the form

ar) | _aly)Daly) + 1)

=1— 3.12.7
alay) ' aay)Oaey) + 17 127
and, comparing (3.12.6) and (3.12.7), we arrive at the result
a(y)(b(y) + 1) a+1
= const = , 3.12.8
(haly) + Db(y) ) (3.128)

where a denotes an arbitrary parameter. The specific choice of the form of the constant in the
right-hand side of (3.12.8) is made for convenience in what follows. Substituting the solution
(3.8.4) in (3.12.8), we obtain the following general expression for b(y):

(3.12.9)

It is a remarkable fact that Eq. (3.12.4) is satisfied identically on the functions (3.8.4) and
(3.12.9) if the constant « satisfies the quadratic equation

A1
2
~Za—— =0 3.12.10
o= —a—— ( )

The two solutions of this equation are readily found:

ay = iq—iﬂ, (3.12.11)
where we recall that
v=eq N for groups SO,(N) (e =+1), Spy(N) (e=—1);
v =eq“™?™N for supergroups Osp,(N|2m) (e = +1) and (3.12.12)
Osp,(2m|N) (N =2n, e = —1).
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Thus, the solutions of the Yang—Baxter equation (3.8.2) can be represented in the form!® [84,
237]

R(z) = c(x) (1 + %(xg —~1)R+ et K) (3.12.13)

and we have the two possibilities & = a (3.12.11), which are inequivalent (both for all the
cases SO,(N), Spy(N), and Osp,(N|2m)), since these solutions cannot be reduced to each
other by any functional transformations of the spectral parameter x. However, these solutions
are related by the transformation ¢ — —¢~*. For convenience, we choose c¢(z) = z and £ = —2
in (3.12.13); then for the R-matrices (3.12.13) we can propose four equivalent expressions:

a4 + 1

. 1/ = .

<qj:2$—1 _ :L’) (R + qile)

— _ = 3.12.15
(¢¥2 — 1) a2 (R + ¢*12-2) ( )
r—ax ! - 5 Alax +1)
v . R*l _ 71R - - 7 =
Mz + agx™t) ( v et - r—az! )
-1, —1 _ —1 +2,.—-1 —1
_ (x71q — zq )P++ (rq — (2q) )P’+ (¢ z z) (x +$ai)P0, (3.12.16)

A A (-1 (r+atas)

where projectors P* and P are defined in (3.10.5). The last expression is the spectral decom-
position of R(z), from which, for example, we can readily obtain the identities

R (+q) =+(g+¢ " )P", R (x¢')==+(g+q¢")P", (3.12.17)
. -1
lim RE(x)~P° RE¥1)=1 L) = i@(l — 2p%), (3.12.18)
2 —o4

From rational representations (3.12.15) of R-matrix, one can immediately deduce the identity

R*(z) R (271 = (1 - @_A—W> 1. (3.12.19)

Note that the relations (3.12.17)—(3.12.19) agree with the Yang-Baxter equation (3.8.2).
The cross-unitarity condition for the BMW-type R-matrix (3.12.14) can be written in the
matrix form as (cf. (3.8.9))

Trp) <RI_L(IL“)P01R§E(2)> =n(x)n(2) Do I,
(3.12.20)
Trqu (R () PultE(2)) = nt(2)n*(2) Qs I,

where the matrices D, @) are defined in (3.1.20) and

(axva? +v7h) o q
(22 +ag) ' v’

(w2)!=0i, 7 (x)=~(@—a7)

19The Baxterized trigonometric R-matrices (3.12.13), corresponding to the one of the parameter choice in
(3.12.11), were first found by V. Bazhanov in 1984 and were published in [169, 170]. The same R-matrices were
independently constructed in [171].
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The Baxterized R-matrices (3.12.13) and (3.12.14)-(3.12.16) determine algebras with the
defining relations (3.9.1). However, a realization of the operators L(z) in terms of the generators
L& of the quantum algebras U, (so(N)) and U,(sp(N)) (analogous to (3.9.2)) is unfortunately
missing (see, however, [101, 102| and discussion of the case ¢ — 1 in [103, 104]).

To conclude this subsection, we present the expressions for the rational R-matrices of the
Yangians Y (so(N)), Y(sp(N)), and Y (osp(N|2m)). We give the definition of Yangians in
Subsection 3.13 below. We make the ansatz x = exp(—A0/2) for the spectral parameter in
(3.12.14) and rewrite the R-matrix in the form (cf. (3.9.14))

A

RO) =R (e—%e) — cosh(M/2) [1 — K] + Lsinh(A0/2) [R + B~1] +
(3.12.21)
+ [cosh(N0/2) + B sinh(M\/2)] ' K,

L — 1
ay +1°
to the limit h — 0 (¢ = exp(h) — 1). Further, it is easy to see that the cases @ = ay, € = 1
(SO4(N)) and o = a—, € = —1 (Sp,(2n)) are reduced to the GL(N)-symmetric Yang’s R-matrix
(3.9.16). The nontrivial SO(N)- and Sp(V)-symmetric Yangian R-matrices for Y (so(/N)) and
Y (sp(IN)) correspond to the choice

where 3, = The Yangian R-matrices can be obtained from (3.12.21) after the passage

a=a_, e€=1 (SO4N)); a=ay, e=-1 (Sp,(N)) (3.12.22)

and have the form
. 26

_ (0)
R(6) = (146 Pp) + B (VT30 K. (3.12.23)

The matrix ng) is defined in (3.10.9). Nontrivial rational R-matrices for super Yangians
Y (0sp(N|2m)) and Y'(osp(2m|2n)) can be obtained from (3.12.21) in the cases:

a=a_, e=1 (0Ospy(N|2m)); a=ay, e¢=-1, N=2n (Osp,(2m|2n)).

The form of these supersymmetric R-matrices is

20

Kl 3.12.24
2¢ 4+ 2m — (N +26) 2’ ( )

R(O) = (1+0Py) +

where 73;35 = (—1)“1”12]5;;5;3 is the supertransposition operator (the parity [j] is defined in

(3.11.38)). The matrix (IC(O))?I?Q = C""2C;,;, is a classical limit (¢ — 1) of the rank-1 matrix
K in the supersymmetric case and the ortho-symplectic matrices C¥ = ¢;09', C;j = €;0; are
determined by their parameters ¢; (3.11.49)—-(3.11.51). Then the defining relations for the
generators (3.9.17) of the Yangians Y (so(N)), Y(sp(N)) and Y (osp(N|2m)), Y'(osp(2m|2n))
are identical to (3.9.13) and (3.9.21), respectively, while the comultiplication is given by (3.9.18).

The Yangian R-matrix (3.12.23) for the SO(N) case was found in [4, 5| and that for the
Sp(2n) case — in [166]. These R-matrices were used in [103] to construct and investigate exactly
solvable SO(N)- and Sp(2n)-symmetric magnets. Twisted Yangians for the SO(N) and Sp(2n)
cases have been considered in [144, 145]. The super Yangians of the type Y (osp(N|2m)) and
corresponding spin chain models were discussed in [167, 168].

3.13. Split Casimar operators and rational solutions of Yang—Baxter equations. Yangians

The material of this subsection is based on the papers [143, 172]; see also [173, 174, 176, 177].
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3.13.1. Invariant R-matrices for simple Lie algebras g

Let g be a simple Lie algebra with the basis elements X, |,—; dim(g) and defining relations

[Xa, Xo] = X3, Xa, (3.13.1)

where X% are the structure constants. We denote an enveloping algebra of the Lie algebra g
as U(g). Let g¥ be the inverse matrix to the Cartan-Killing metric

g = X4 X, = Tr(ad(X,) - ad(X3)), (3.13.2)

C

where ad denotes adjoint representation. Introduce the operator
C=g®X, ® X=X, ® X° € gog C Ulg) @ Ulg), (3.13.3)

which is called the split (or polarized) Casimir operator of the Lie algebra g. The operator
(3.13.3) is related to the usual quadratic Casimir operator

Coy=g" X, X, € U(g) (3.13.4)

by means of the formula A
A(Cr) =Cy@1+1®Ci+2C, (3.13.5)
where A: U(g) — U(g) @ U(g) is the standard comultiplication defined by A(X,) = X, ® [ +

I ® X,. Let u be a spectral parameter. One can check that the operator function

O X, ®X°
_U_ u

r(u) = 791(u), (3.13.6)

obeys the semiclassical Yang-Baxter equation (cf. (3.3.2)):
[Tlg(u), 7’13(11, + U)] + [7“13('& + ?J), 7”23(’0)] + [7‘12(11,), 7”23(’0)] =0. (3137)

The aim of this subsection is to find rational (as a function in the spectral parameter u)
solutions R(u) of the Yang-Baxter equations (3.9.12) (0’ = u, 0 = u + v):

ng(u) ng(u + U) RQg(U) = Rgg(v) ng(u + U) ng(u), (3138)

that are unitary

and possess semiclassical behavior Rip(u) — 1 as u — co. We then write the expansion

C X 1
Rus(u) = 1+Z+E+O<$>‘ (3.13.10)

The second term here is justified by (3.13.7). As we will see below, the solutions of this kind
are given (up to a renormalization) by (3.12.23) for Lie algebras g = so(/N) and sp(N)|y=2, in
defining representations.

First, we use the unitarity condition (3.13.9) to find X:

1 . 1
1= Rlz(U)Rgl(—U) =1- ECQ + E(Xlg + Xgl) + ...
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We search for the symmetric solutions X1, = X517, so we have
1 .
X9 = 502. (3.13.11)

Then we examine the limit v — oo of (3.13.8):

CA(13 X13 CAV23 X23
R 1 L)L) =
12(u)< P e )( =t )

. 6'23 X23 CA'13 X13
= (1+T+7+”'> <1+u+v+(u+v)2+...)R12(u).

(3.13.12)

We expand out the brackets in (3.13.12) and multiply both sides by v(u + v). As a result, we
obtain

R12<U) <U(ég3 + é13> + Uézg + 0136'23 + u;rngg + u:_UXlg + .. > =

R A A o (3.13.13)
= (U(023 + C13) + uCls + CosChg + 2 X3 + Xt ) Ris(u).
We see that the terms of order v give
[R12(u), (ég;; + 013)] =0 == [ng(u), I® Xa + Xa X I] = O, (31314)

which is the condition of the invariance of R(u) under the action of g. Thus, by Schur’s lemma,
one can express the image R,y (u) = (T, ® T,) R(u) of the operator R(u) in the representation
(T, ®T,) of g as follows:

Ruwm(u) =Y m(u) Py, (3.13.15)

TNCT, T,

where P, is the projector onto the irreducible subrepresentation 7, C 7, ® T, and 7)(u) are
some rational functions of u, which is yet undetermined. At this stage, we require that the set
of projectors P, form the complete system of mutually orthogonal projectors

> P\=1,®I, P\Py=DPdw. (3.13.16)
A

We also require that the decomposition 7, ® T, = >, T\ be without multiplicities, otherwise,
R(u) acts on the isomorphic components Ty, ..., T\, as matrix ||M;;(u)||; =1, , which is not,
in general, diagonalizable.

The terms of order v =1 in (3.13.13) give

.....

Rys(u) (UC'23 + 013623 + Xoz + X13> = (Ué23 + 023013 + Xo3 + X13) Rys(u). (3.13.17)
We rewrite it by using (3.13.11) and applying the identities
Ci3 O3 + 1O + C3) = L[Ch3, Cos] + 1(Chz + C3)?,
[Cis, Cos] = X& XP @ X¢® X, = —1[AC(), (I®X,)]® X,
so that, because of (3.13.14), we simplify (3.13.17) as

R 1 . . R 1 . .
Ry(u) <UC23 + 5[013, 023]) = (UOQS + 5[023, 013]) Ris(u) =
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Ris(u) (u([ ® X,) — LYACw), I ® Xa]> — (u(l ® X,) + LAC), I ® Xa]) Ris(u).
(3.13.18)
Now we consider the image of (3.13.18) in the representation 7, ® T,,, substitute (3.13.15) and
act by projectors P, and P, from the right and the left, respectively. As a result, we deduce
the relation between coefficients 7, (u):

(@) (1= 4 (Car() = C(0) ) P (1 @ X, P =
= ru(w) (u+ H(Ce(N) = Ca(w)) Pr (T & Xo) P

where C2)(A) is the value of the quadratic Casimir operator (3.13.4) in the representation 7’
and for brevity we write (/®X,) instead of (7,,(I)®7T,(X,)). We enumerate the representations
T) of the Lie algebra g by their highest weights A. In this case, the value of C(3)(A) is given by
the formula

(3.13.19)

Cay(N) = (M A +20), (3.13.20)

where § is the Weil vector of the algebra g. Finally, from Eq. (3.13.19), in the case when
P\ (I ® X,)P. # 0, we have

n(ui _u+3(Co(N) = Cr(x))) (3.13.21)

(@) u—1(Co(N) = Cay(r))
We consider the condition Py (I ® X,)P.; # 0 in more detail. Let V) be the space of the

representation 7). We note that (/ ® X, + X, ® I) - V) C V,, where V), C V, ® V,,, and, for
orthogonal projectors P, and Py, we deduce

1
PAI®X)Pe= 5P 0 Xo = Xa @ )P, (3.13.22)

One can interpret (I ® X, — X, ® I) as the tensor operator in the adjoint representation
and, according to the Wigner—Eckart theorem, the matrix (3.13.22) should be proportional to
Clebsch—Gordan coeflicients which transform the basis of V4 into the basis of V,q ® V... We note
that for existence of the R-matrix, it is necessary that the system of equations (3.13.21) have
a solution. However, in general, the system (3.13.21) is overdetermined and not always has a
solution.

Further we consider the equivalent representations 7, = T,, and require that the R-matrix
be symmetric ng = Ry;. Then the space V, ® V,, is splitted into symmetric P12 (V,®V,) and
antisymmetric P, (V, ®V,) parts, where P1(2) := 5(I £ Pyp). It means that the whole set of
projectors (3.13.16) is also divided onto subsets of symmetric and antisymmetric projectors

PY =pPYp, PO =PyP, = Y PO =pP® N pO=pO) (31323

and for matrices (3.13.22) we have Py (I®Xa—Xa®I)Péi) = 0. So, the nonzero contributions
to (3.13.22) are PP (]®Xa—Xa®])P,§jF). Thus, the representations T and T}, in Egs. (3.13.21)
should have the different symmetry, i.e.,

v, c Pt V®2 V, c P V®2 or VycP- V®2 v, c P V®2

and satisfy conditions
TnCad®T,, T,.Cad®T). (3.13.24)
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Below, by solving the system of equations (3.13.21), we present g-invariant R-matrices for all
simple Lie algebras g (except for g = sly, ¢g) in the defining representation 7, = 00 = [1] [175]
(see also [176, 177]).

1. The so and sp algebras
The expansion of the tensor product of defining representations of algebras so(/N) and sp(N )| y=2,
is [1]®? = [2] + [1%] + [0], and the highest weights of subrepresentations, Weyl vectors § and
corresponding eigenvalues C(sy(A), defined in (3.13.20), are

A =(2,0,...,0), Apz=(1,1,0,...,0), Ag =(0,...,0),

—)e, Coy(hp) = 2N, Cy(Auz) =2N =4, Ciy(Agy) =0, (3.13.25)

N
2
N N (i
0= E (? +1-— z)e( ), C(g)()\[g]) = 2N + 4, C(g)()\[p]) = 2N, C(g)()\[@]) = 0. (3.13.26)

Below we also need the expansion

1Y) @ [2] = [3,1] + [2,1%] + [17] + [2]. (3.13.27)

For the s0(N) case, the representations [2] and [(] belong to the symmetric part of [1]%?,

while the adjoint representation [12] = ad belongs to the antisymmetric part of [1]%*, and we
have (cf. (3.13.24), (3.13.27)) [12] C [1%] & [0], [1?] C [1%] ® [2]. Therefore, in view of (3.13.25),
the system of equations (3.13.21) is written as

o) (w) :u—%—i-l o) (u) _u+tl (3.13.28)
mey(u)  u+ S -1 Tzy(uw)  uw—1 o
and after a renormalization the so-invariant R-matrix (3.13.15) is
T[g](u) T[@](u) u+1 U—%*Fl
R(u) = P2 Po+ ——5 Py = P2+ —— P+ ——— P 3.13.29
(W) =Fey+ =y P T 7y T SRR ( )

This R-matrix is called Zamolodchikov’s solution [4, 5] of the Yang-Baxter equation.

For sp(IV) algebras the representations [12] and [(] belong to the antisymmetric part of [1]%,
while the adjoint representation [2] = ad belongs to the symmetric part of [1]%*, and we have
(cf. (3.13.24), (3.13.27)) [2] C [2] ® [0], [2] C [2] ® [1%]. Therefore, in view of (3.13.26), the
system of equations (3.13.21) is written as

T[m(u) :u—%—l T[lz}(u) :u—l (3 1330)
T[g}(u) u+%+1’ T[g](u) u+1’
and after a renormalization the sp-invariant R-matrix (3.13.15) is
N
T2 (u) 9 () u—1 u— 5 —
R(u) = Poy+ —— P2 + Py = Py + ——PFPy2 + ———F 3.13.31
(W) = Foy + 20 oy P+ 0y T = P+ gy Foe wr X ( )
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2. The g, algebra
Further we denote by [[n]] the n-dimensional representation of the Lie algebra g. The R-matrix
operator (3.13.15) of the algebra g, in the minimal fundamental representation [[7]] acts in the
reducible 49-dimensional space [[7]]? which can be expanded in the irreducible components as
follows:

([7] @ [[7]] = S7N®*) + A7) = (] + [271) + (7] + [[14])- (3.13.32)

Here the fundamental [[7]] and adjoint [[14]] representations of g, are embedded into the an-
tisymmetric A part of [[7]]®?, while the representations [[1]] and [[27]] compose the symmetric
S part of [[7]]®2. The highest weight vectors jup, of the representations [[n]] in the right-hand
side of (3.13.32) and Weyl vector ¢ are [178] (see also [139] and references therein):

iy = (0,0,0), gy = Ay = (0, =1,1),  pypay = A = (—-1,-1,2),

2 (3.13.33)
Him = 2>‘(1) - <07 _27 2)7 0= ; /\(i) = (_17 _27 3)7

where \(;) and A(2) are fundamental weights of g,, and we describe the root space of the rank-2
Lie algebra g, as a plane P, in 3-dimensional Euclidean space R?, normal to vector u = (1,1,1).
The values (3.13.20) of the quadratic Casimir operators of the representations of the highest
weights (3.13.33) are written as

cll—o, =12, =24 PV =28 (3.13.34)

For the case of Lie algebra g the conditions (3.13.24) are (see, e.g., [179] about tensor product
of g representations):

[} cade[[14]], [[27]] cad@[[7]], [[27]] C ad @ [[14]],
where ad = [[14]], and we write the system of equations (3.13.21) as

7'[[1]} (u) _ u—=06 T[m](u) _ u—4 7'[[14]](u) _ u—1
Tuag(w) w6 Teg(w)  u+td’ Tpge)  utl

(3.13.35)

Finally, after a normalization, the go-invariant R-matrix (3.13.15) in the fundamental represen-
tation [[7]] acquires the form [175] (see also [176, 177] with u — —u):

R{u) = Tn) Py + T () Py + Ty (u) Pl + Par) —
Tiry (u) Ti2ry (u) Tz (w) (3.13.36)
(u—"6)(u—1) u—4 u—1 o
P P+ ——P Py
(@ 6)(ut1) T g T g e

3. The f, algebra

The f4-invariant R-matrix (3.13.15) in the minimal fundamental representation [[26]] acts in
the reducible 676-dimensional space [[26]]®? which is expanded in the irreducible components
as follows:

[1261)°* = S([[26]]**) + A([[26]1*%) = ([[L]] + [[26]] + [[324])) + ([[52]] + [[273]]), ~ (3.13.37)
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where representations [[1]],[[26]], and [[324]] belong to the symmetric part of [[26]]%?, while
the adjoint representation [[52]] and representation [[273]] belong to the antisymmetric part of
[[26]]%.

The highest weight vectors of the representations in (3.13.37) and f4 Weyl vector 0 are [178]
(see also [139] and references therein):

mip) = (07 07 07 0)7 H[26)] = )\(4 (0 0 O ]') H[[52]] /\ (L 07 07 1)7
4
;L[[273” = )\(3) = %(1, 1, 1, 3), u[[324” = 2)\(4) = (0, O, O, 2), (5 = Z:l )\(i) = % (5, 3, 1, 11),
(3.13.38)
where A¢)|i=1,..4 are fundamental weights of §45. Now we deduce the values (3.13.20) of the

.....

quadratic Casimir operators, which correspond to the highest weights (3.13.33)
cll=o, clPV=12 cPP=15 P =04 =2 (3.13.39)
The analogs of the conditions (3.13.24) for the Lie algebra f4 have the form
[52]] c ad @ [[1]], [[324]] C ad ® [[52]], [[324]] C ad ® [[273]], [[273]] C ad ® [[26]],

where ad = [[52]], and the system of equations (3.13.21) is represented as

Ty (u) u— % T[[[52H](u) u—2 Thara) (u) U — % Tii26)) <u> u—3
9
2

Tiis2) (u) U+ 3

: = : = : = . (3.13.40)
7—[[324]] (u) u+2 7—[[324]] (u) U+ % T[[273]] (u) u+3

Finally, after a normalization, the f4-invariant R-matrix in the fundamental representation [[26]]
has the form [175] (see also [176, 177] with u — —2u):

(®) < oy (@) (u)
R(u) = Py + 729 Plogy + 7 oy ez + Ler @ 73]+ Pz =

T((324)) ( ) (w)

u—9/2)(u—2 2 — u—1
= —Eu+9§235u+2§ Py + —§u+3§§u+1§2§13[[2611 + 173 P2y — —u+1f2 Phiazs) + Plpsaay)-

(3.13.41)

4. The ¢ algebra

The 78-dimensional algebra eg has two inequivalent minimal fundamental representations [[27]]
and [[27]]. Here we consider eg-invariant R-matrix (3.13.15) which acts in the space of reducible
representation

[270)%% = S([[27]%%) + A([27)%%) = ([[27)] + [[351]]1) + ([[351]]2), ad =[[78]]. (3.13.42)

The highest weight vectors fip, of the representations in (3.13.42) and Weyl vector ¢ for eg
are [139, 178|
e = Ay = (=3, —3,1,0,0,0,0,3),  pyam = M) = 2(—1,-1,0,0,0,0,0,1),
fssul = 2A@) = (—%,-2,2,0,0,0,0,2),  pyss), = A = (—2,—%,1,1,0,0,0, 2),

6

y=>. )\(i) =(—4,-4,4,3,2,1,0,4),
i=1
(3.13.43)
where A(;)|i=1,.. 6 are fundamental weights of eg, and we numerate nodes of e Dynkin diagram
as follows:
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o
D)
at
—O
D)
=0

The values (3.13.20) of the quadratic Casimir operators, which correspond to the representations
with highest weights (3.13.43), are

clP =52 o — 12 ol _ 100, (3.13.44)
We note that, in view of the symmetry of the ¢s Dynkin diagram, the values (3.13.44) are
invariant under the change of the fundamental weights in (3.13.43): A1) <> Ag) and Ay <> A
This symmetry also means that the R-matrix in the representation [[27]]%? has the same form
as the R-matrix in the representation [[27]]¥2. The analogs of the conditions (3.13.24) for the
Lie algebra eg are (see, e.g., [179])

[351)]2 € ad @ [[27]],  [[351]]1 C ad @ [[351]]2,
where ad = [[78]], and the system of equations (3.13.21) is written as

o) _u—4 T, (W) w1 (3.13.45)
sy, (W) w+4 T, (W) 0= 1

Finally, the eg-invariant R-matrix in the representation [[27]] acquires the form [175-177|

u

R(u) = S22 P[mn

[[3 1]]

= Zﬁpmﬁ w1 Py + Pssis-

Py (@ 51+ Pssu, =

(3.13.46)

5. The ¢; algebra
Here we consider er-invariant R-matrix (3.13.15) which acts in the space of the representation

[156])%% = S([[56]]“%) + A([[56]]*) = ([[133]] + [[1463]]) + ([[1] + [[1539]]) , (3.13.47)

where [[133]] = ad is the adjoint representation of ¢7. The highest weight vectors pp of the
representations in (3.13.47) and Weyl vector § for the algebra e; are [139, 178|
py = (0,0,0,0,0,0,0,0),  ppssy = Ay = (—1,0,0,0,0,0,0, 1),

H1463] = 2>\(1) = <_17270707070707 1)7 K[1539]) = )\ ( 17 1717070707071)7 (31348)

7
’MHBGH - A(1) ( 2’]"0 0 0 O O )7 0= Z)\(’L) = (_%757473a271707%)7

where A¢;)|i—1,..7 are fundamental weights of ¢; and we numerate nodes in Dynkin diagram as
follows: 6 i

O N N A O

1 2 3 4 5 7

The values (3.13.20) of the quadratic Casimir operators, which correspond to the represen-
tations with highest weights (3.13.48), are

el _ st

2

02[[133” _ 36, 02[[1463” _ 60, 02[[1539]} _ 56 (31349)
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The analogs of the conditions (3.13.24) for the Lie algebra e; have the form (see, e.g., [179])
[[133]] c ad ® [[1]], [[1539]] C ad ® [[1463]], [[1539]] C ad ® [[133]],
where ad = [[133]], and the system of equations (3.13.21) is written as

T[[l]](u) _ u—29 T([133]] (u) _ u—2>5 T[[1463]](u) _ u-+1

: , . 3.13.50
Tssy(u)  w+9 Tssop(w) — u+5 Tinssop(v) — w—1 ( )

Thus, the e;-invariant solution (3.13.15) of the Yang—Baxter equation in the defining represen-
tation [[56]] has the form
(u—9)(u—>5) u—>5 u+1
R(u) = P —PF P P . 3.13.51

W) = G oywa s T+ o Fsar + =7 Puses) + Auss ( )
6. The ¢g algebra
For the exceptional Lie algebra eg the adjoint and minimal fundamental representations coincide
and have dimension 248. The tensor product of its two 248-dimensional representations has
the following decomposition into irreducible representations [179, 180]:

[[248]]%% = S([[248]]%%) + A([[248]]%%) = ([[1]] + [[3875]] + [[27000]]) + ([[248]] + [[30380]]) .
(3.13.52)
The highest weight vectors pup,) of the representations in (3.13.52) and Weyl vector ¢ for the
algebra eg are [139, 178]

H][248]] = )‘(1) = (17 07 Oa 07 07 07 07 ]-)7 H[[3875)] = >‘(8) = (07 07 07 07 Oa 07 07 2)7

H{[27000]] = 2)‘(1) - (27070707070707 2)7 H][30380]] = )\(2) - (17 1707070707072)7 (31353)

8
=2 Aug=(6,54,3,2,1,0,23),
i=1

=1,...

follows:

-3
—O
0O

O O O O O O
1

2 3 4 5 6

The values (3.13.20) of the quadratic Casimir operators, which correspond to the represen-
tations with highest weights (3.13.53), are

248 387 27000 30380
ciP¥l =60, ¥ =9, P00 = 194, 130300 — 190, (3.13.54)
The analogs of the conditions (3.13.24) for the Lie algebra eg have the form (see, e.g., [179])

[[248]] C ad ® [[1]], [[3875]] C ad ® [[248]], [[27000]] C ad ® [[248]],
[[30380]] C ad ® [[27000]], [[30380]] C ad ® [[3875]],

where ad = [[248]], and the part of the system of equations (3.13.21) is written as

Tas)(w) _ w—9  Traagy(u) _w—16  Trooo)(v) w41 Tsessop(u) u+6
T([3875]] (U) u+9 7 T([27000]] (U) u—+ 16 , T([30380]] (U) u—1 ’ T([3875]] (U) u—06 ‘
(3.13.55)
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It is clear that Eqgs. (3.13.55) are inconsistent. Thus, the eg-invariant R-matrix in the minimal
fundamental (adjoint) representation [[248]] does not exist. This fact is in agreement with
the general statement [143, 174] that the adjoint representation of eg can not be lifted to the
representation of the Yangian Y (eg).

In papers [176, 177|, the R-matrix solutions (3.13.29), (3.13.31), (3.13.36), (3.13.41),
(3.13.46), and (3.13.51) are written as rational functions of the split Casimir operators (3.13.3)
in the defining representations. In particular, for Lie algebras g = so, sp, ¢g we have [176, 177]

u+%(é+%)

R(u) = e iCra) (3.13.56)

where aq = 1, asy = —1, a,, = 2/3 and the split Casimir operators C are normalized such
that C% = Cy(A)d! (here X is a highest weight of the defining representation of g and the value
C5(A) is given by (3.13.20)).

3.13.2. Yangians Y (g)

The Yangians Y (g) can be defined by means of the rational R-matrix solutions (3.13.10),
(3.13.15) of the Yang-Baxter equations (3.13.8). First, we consider equations (cf. (3.9.13)

ng(u — "U) Ll (U) LQ(U) = LQ(U) Ll(u) ng(u — U), (31357)

where u, v are spectral parameters, indices 1, 2 numerate the spaces V' of the defining represen-
tation 7" in the product V ® V| and Rja(u) is the g-invariant R-matrix in the representation
T®T. We search the elements L’;(u) of the quadratic algebra (3.13.57) in the form (cf. (3.9.17))

, < i 1 1 /1 . : 1
i ) k —k i ) 2\1 i
k=1

where T(k); (k > 1) are the generators of the Yangian Y'(g) [10, 143] and we introduce the
notation

TW. =T = IY(T,);, T®. = 5(12)3 +J5, T = UYL

J J J

Here (Ta)ij = T"J-(Xa) are generators of g in the representation 7. Now we substitute expansions
(3.13.10), (3.13.11), and (3.13.58) into (3.13.57), multiply both sides by (u — v)? and consider
Eq. (3.13.57) in the limit u, v — co. We take into account identities (cf. (3.13.14))

(I + 12)6'12 = CA’12(11 + 1), (Ji+ J2)©12 = C’lz(Jl +Js),

where (5 is the split Casimir operator in the defining representation 7. Then the terms of
zero order in u, v of Egs. (3.13.57) give relations (3.13.1):

I, L] =Cpl —LCy, = [, L) = X% I, (3.13.59)

which means that coefficients I, are the basis elements of the Lie algebra g. The terms of order
u™?v and uv~? of Eqs. (3.13.57) give commutation relations

[Il, JQ] = éngl — Jlélg = Jgém — élQJQ = [Ia, Jb] = Jd X;lb, (31360)
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which means that the elements J, form the adjoint representation of g. We also note useful
generalizations of (3.13.59) and (3.13.60):

I, B =1:Chy — Cu Xt Ly, 35 =35 Chy — Cp JE. (3.13.61)

The commutator [J;, Jo] is not fully specified by Eq. (3.13.57) if we know the expansion of
R-matrix (3.13.10) only up to the order u=2.

We define the Yangian Y(g) as the enveloping algebra generated by the basis elements
Io|a=1,...dimg Of the Lie algebra g, the additional set of elements J,|q=1,. dimg, Which form the

adjoint representation (3.13.60) of g and with a nontrivial noncommutative coproduct A :
Y(g) = Y(g) ® Y(g) which is defined by

.....

A(LY(u)) = Ly (u) @ LY (u). (3.13.62)
The substitution of (3.13.58) into (3.13.62) gives
AT) =T,21+10T;, = A(l)=L®1+11 1,
AJ)=T,01+10 T + %(Pk oIk —TheI}) = (3.13.63)

1
A(‘]a) = Ja ®1+1® Ja + EXabc ]b ®[Ca
where X 5. = X% gg.. Finally, we remark that the commutator [J,, J;] is constrained by the
requirement that A be a homomorphism. Indeed, we have [143, 173]:

[Jaa [Jba [cH - [Iaa [Jb, Jc]] = a'abcefg {Ie>If7[g}7
([ Tay T}y ey Ja)] + [[Tes Ja)s [Las )] = (@apn®® Xnea + acan®? Xnap){1Le, L5, Iy},

where a9 = inaXJbeghXijk and {x1, 0, 23} = Y, Te, Ty, T4
e£f#g

3.14. Quantum Knizhnik—Zamolodchikov equations

In Subsections 3.8 and 3.12, by using R-matrix representations for the Hecke and Birman-—
Murakami-Wenzl algebras, we have found the trigonometric solutions R(z) of the Yang—Baxter
equations (Baxterized R-matrices). In this subsection, we show that, for every trigonometric
solution R(z) of the Yang-Baxter equations (3.8.2), one can construct the set of difference
equations which are called quantum Knizhnik—Zamolodchikov equations. These equations are
important, since their solutions are related (see, e.g., [181-183| and references therein) to the
correlation functions in spin chain models associated with the same trigonometric matrix R(x).

In this subsection, we follow the presentation of the papers [184-186].

Consider a tensor function WM (z,... 2y) € V¥V (3, € C, i = 1,..., N) which satisfies
a system of difference equations

Ty UM (2, ) = A% (e 2n) UM (2, 2, (3.14.1)
where operator 1{;) is defined as

T ‘IJI'"N)(ZM o 2N) = @1---N>(217 Cey %1, Dy Zigds - - 2N, (3.14.2)
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Agl:?_N(zl, ...,2y) € End(V®N) is called discrete connection and indices 1,..., N denote the
numbers of the vector spaces V in V®V. A consistence condition TiyTiyy = 1Ty of the

system (3.14.1) requires additional constraints on the discrete connection Agj) v(z1ozn):
T(i)Agj..).NT(?)lAg?.N = T(J)Agl.?.NT(;)lAgj..).N = (3.14.3)
Agj)N Agl)N = AgZ)N Agj..).Na AW = T(;)lAgz.?.N- (3-144)

Connections Agl) y and Agj) n which satisfy (3.14.3) and (3.14.4) are called flat (or integrable).
Now we introduce the following discrete connection [184]:

Agj)N(Zl, ce 7ZN) == T(j)Rjj—l e Rj2 Rj 1T_,1 D RX;JRX[l_l] R]_Jrlj =

y y o vt - " (3.14.5)
i1 p) ... Rja(Zp) Rj1 (£ p) Dy RN]< Ry ) Ry (R =),

where R;; := R;j(z;/z;) is the R-matrix which acts nontrivially only in the vector spaces V
with numbers i, j in V®" and satisfies the Yang-Baxter equation (3.8.2) in the form (R;;(z) =
By Rij(x)):

Rij(x) Riw(wy) Rjx(y) = Rjk(y) Rix(wy) Rij(x). (3.14.6)
The unitarity condition R;;j(z)R;;(z™') = 1 is also required (cf. (3.8.8), (3.12.19)) for these
R-matrices. The constant matrix D; acts in the ith vector space V; and obeys R;;D;D; =
D;D;R;;. Equations (3.14.1) with discrete connection (3.14.5) are called quantum Knizhnik-
Zamolodchikov (q-KZ) equations. It is convenient to rewrite the definition of the discrete
connection (3.14.5) in the form of commutative matrices (3.14.4) as follows:

~

A§J>N(z1,...,zN):T—,lAgj)N(zl,... an) = Ry RlXRN 1RN . R—
X : T(l) DiPi5Ps3... Py N,

(3.14.7)

where P = Pjy - P, ., and P, ., is an operator which permutes the spectral parameters z;
and z:

Poo [z, o225, an) = 200 25y 2y ooy 2N) - Poj 2y

such that R; == P, 1R, j11(2/%541) realize generators of the braid group By (see Eqs. (4.1.1)
in Subsection 4.1). We note that operator X satisfies the relations

R X=XR, (k=1,....N—2), RX =X Ry_1, (3.14.8)
and it can be considered as the image of an additional element which extends the group By.

Proposition 3.15 (see [184, 185]). Discrete connection (3.14.5) is the flat discrete connection
(i.e., satisfies (3.14.3)), and therefore the system of equations (3.14.1) with connection (3.14.5)
18 consistent.

Proof. Indeed, we have from (3.14.3) for j > i:
ToTgRjj1 - R TG DiRy; . Ry Ry R T DiRy; . R =
= T(Z)RZZ—I .o Rle(;)lDlT(])RRﬁ “ e R;_IMRjj_l e Rj 1T(;)1DjRR/vl R]-:l]'
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In the left-hand side, we obtain for j > i:

T Ty Ryj-1 - Rj1Riior ... Ru T T DDy Ry, . Ryl Ry R (3.14.9)

Then we use here identities for transfer-matrices
Rjj—l .. le(Rii—l . R’Ll) = (Rii—l ce Ril)Rjj—l ce Rji+1Rji—l . leRji7
(Ryj-- Ry RNV RN = Ry'Ryi .. Ry R R (Ry - Ry )
and obvious relations [T(;)IT (;)1, R;j] = 0 = [D;D;, R;;]. As a result, we obtain for the Lh.s.
(3.14.9):
T T (Riioy - Rin)Rjj1 - RjipaRjia ... R T T DiDy X

@ =) (3.14.10)
X Ryi.. Ryl Rz R (Ry; - Ry ).

In the r.h.s., we use [R;;Dy] = 0 = [R;;T}] for i, j # k and the identity
Ryi+ Ry iRjja- Rjn =Ry Rji Rjioy -+ Rjn Ry - Ry Ry Rily

which gives for the r.h.s. just the same answer (3.14.10) as for the Lh.s. =
At the end of this subsection, we present the definition of the q-KZ equations due to F. Smir-
nov [186]. Define the R-matrix and operator D; as follows:

\1le> (Zh cee s Rl By e - ZN) = RiiJrl(ZZ'/’ZiJrI)\Illn.]\[> (Z17 ceey By Rl e e 7ZN)7

(3.14.11)
UM (pay, 2o, . zn) = Dy W20 (29, 25, L 2y, 21).

One can explicitly show that Eqgs. (3.14.11) lead to Egs. (3.14.1), (3.14.2), (3.14.5). Indeed,
one can cyclically permute spectral parameters in W' by means of the first equation in
(3.14.11) and then use the second equation in (3.14.11). The self-consistence of Eqs. (3.14.11)
can be checked directly. It also follows from the self-consistence of the extended Zamolodchikov

algebra with generators {A4;(z),Q} (i=1,...,N):
Rus(21/25) AV (21) A% (22) = AV (25) A% (1), DiAY(21) Q = Q AV (p =),
and remark that Eqs. (3.14.11) can be formally produced from the representation
TNz, zn) =T (QAI)(Zl) A2 (z,) ... AN>(ZN)) :

The semiclassical limit of the q-KZ equations (if we take the the trigonometric R-matrices
(3.8.5) and (3.12.14) and consider their Yangian limits) gives [184] the usual Knizhnik-Za-
molodchikov equations. Moreover, the flat connections (3.14.5) (and their semiclassical limits)
are related to Dunkl operators for Calogero-Moser—Sutherland and Ruijsenaars—Schneider type
models.

Remark. In [187] (see also [188, 189]), the rather general classification for g-KZ flat connections
was proposed. This classification is based on the interpretation of q-KZ flat connections (3.14.4)
as images (in R-matrix representations) of commutative Jucys—-Murphy elements for affine braid
groups defined by Coxeter graphs. We discuss such braid groups below in Subsection 4.1. In
particular, the connections (3.14.7) are images of the Jucys-Murphy elements .J; for affine braid
group By (CW) (see Proposition 2.1 in [187]).
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3.15. Elliptic solutions of the Yang—Baxter equation

In this subsection, we consider Zy ® Zy-symmetric solutions of the Yang—Baxter equation
(3.9.12) (see [190]). The elements Rﬁ’]";(é’) of the corresponding R-matrix will be expressed in
terms of elliptic functions of the spectral parameter 6.

We construct this solution explicitly, following the method of the paper [190]. We consider
two matrices g and h such that ¢ = hY = 1:

100 ... 0 010 ...0
0w O ... 0 001 ...0

g=1 . . , h=| . : (3.15.1)
000 ... Nt 100 ...0

where w = exp(27i/N) and h g = w g h. The matrices g and h are Zy-graded generators of the
algebra Mat(/N), the graded basis for which can be chosen in the form

Is =1p0, = g"'h*?, a12=0,1,...,N — 1. (3.15.2)
On the other hand, the matrices (3.15.2) realize a projective representation of the group Zy ®
Zn: Ialz = wo‘251[&+5 . Any matrix Ri3(0) = R}}2 () can now be written in the form
Ria(0) = W, 5(0) Iz @ I3
(the sum over o, §; is assumed). We consider the Zy ® Zy-invariant subset of such matrices:

Ria(0) = Wx(0) 1z @ I, (3.15.3)

where I = h™2g~% = w2 5 The invariance of the matrices (3.15.3) is expressed by the
relations

Rix(0) = (I; ® I) Ria(0) (I; @ I5) ™1 V9, (3.15.4)
which obviously follow from the identity
I Iz 1;1 = w5, <,y >= o7 — Q.
It was noted in [190] that the relations
Rip(0+1) = gi' Ri2(0) g1 = g2 Ri2(0) g5

Ri3(0 + 1) = exp(—inT) exp(—27wif)h{* Ri3(0) hy = (3.15.5)

= exp(—inT) exp(—27if)hy Ri2(6) hy*,
Rix(0) = Iz ® I;' = Pp, (3.15.6)

where 7 is some complex parameter (period), are consistent with the Yang—Baxter equation
(3.9.12) and can be regarded as subsidiary conditions to these equations (the last identity in
(3.15.6) follows from (Iz®1;") ;01 = I;®1; (Iz®1-")). Moreover, for the Zy ® Zy-invariant
R-matrix (3.15.3) the conditions (3.15.5), (3.15.6) determine the solution of the Yang—Baxter
equation uniquely. Indeed, substitution of (3.15.3) in (3.15.5), (3.15.6) leads to the equations

W@(é + 1) = w*? W&(Q),
(3.15.7)
W5(0 + 7) = exp(—inT) exp(—2mif) w™* W5(6), W5(0) =1,
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the solution of which can be found by means of an expansion in a Fourier series and has the

form
Wa) = Z57 0. (Waol) = Wasplu) = Walu), (315.3)
where v = (N,0), 7' = (0, N),
Oz(u) = Z exp [zﬁrr(m + %)2 + 2mi(m + %)(u + %)] , (3.15.9)

and we recall that oy 5 € Zy. The parameter n in (3.15.8) is arbitrary. For N = 2, the
solution (3.15.8) is identical to the solution obtained by Baxter [1, 3, 191] in connection with
the investigation of the so-called eight-vertex lattice model.

Direct substitution of (3.15.3) in the Yang-Baxter equation (3.9.12) shows that the functions
Wx(0) must satisfy the relations

> W0 = 0') Was(0) Wy, o(0) (w77 — w7} = 0. (3.15.10)
¥

As it was proved in [192-195|, these relations hold when the functions (3.15.8) and (3.15.9) are
substituted. We will see later that the identities (3.15.10) are intimately related to a version of
the Yang-Baxter equations appeared in Interaction Round Face models (see Subsection 5.3).

Remark. In the paper [196], (Zy x Zy)-invariant solutions R(6) of the Yang-Baxter equation
are interpreted as matrix analogues of elliptic functions. A matrix analogue of the Weierstrass
sigma function o(#) is introduced in [196], which is an entire matrix function with zeros at the
points of a 2D lattice L and satisfies quasiperiodicity conditions similar to (3.15.5). Then the
(Zn X Zy)-invariant R-matrix is constructed as the ratio

R(O) =00 +n)a(0 —n), (3.15.11)

where 7 is an additional parameter. It turns out (see [196]) that the representation (3.15.11)
remains valid with degeneracy of the lattice L to a one-dimensional lattice (the trigonometric
case) or to a zero-dimensional lattice (the rational case). In the latter case, the sigma function
is chosen in the form o¢(0) = Py 4+ 0P_ (here Py = %(I + P)), i.e., it is represented as the
polynomial of the first order in 6. Interestingly, there is an inverse procedure when the complete
elliptic Weierstrass matrix function o(6) and also the R-matrix (3.15.11) can be obtained by
using a special multiplicative averaging of matrices oo(#) and Ry = o5 ' (6+1n) 0o(6 —n) over the
lattice L. Finally, we note that for trigonometric solutions R(f) analogous representations, as
a product of ratios of entire matrix functions, were studied in detail in [197]|. The entire matrix
functions introduced in [197] can be considered as matrix generalizations of the trigonometric
functions.

In connection with this remark, we also recall the representations (3.8.6), (3.12.15) in
the form of rational functions for trigonometric solutions R (in defining representations of
SLy(N),SO,(N), and Sp,(2n)), obtained by using the Baxterization procedure. For Yangian
solutions the analogous formula is given in Eq. (3.13.56).

4. Group algebra of braid group and its quotients

4.1. Affine braid groups and Cozeter graphs
A braid group By is generated by elements o; (i = 1,... M) subject to the relations

0;0i4+10; = 0;410; 041, [O'i70'j] =0 for |Z —jl > 1. (411)
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By definition the elements o; are supposed to be invertible and represented graphically as
(cf. (3.1.14)):

1 2 1 1+1 M+1

| /

Definition 13. An extension of the braid group By by one invertible generator oy subject to

the relations
OMOM—-10M = OM—-10MOM—-1, 01001 = OMO10)0,

(4.1.3)
[O'M, O'k] =0 (k:2,,M—2)
is called a periodic braid group By = B (AW).

Definition 14. An extension of the braid group Byrq (M = 1) by one invertible generator iy,
which satisfies the relations

Y01y101 = 011011, (o5, y1] =0 Vi > 1 (4.1.4)

is called the affine braid group BMH = Bu1(C) of the C type. The extension of the group
Byri1 by one more additional generator yyr.1 with the defining relations

YM+1OMYM+10M — OMYM+1OMYM+1, [Uz‘, yM+1] =0 Vi <M, [yl, yM+1] =0 (4~1~5)

is the affine braid group of the CV) type which is denoted as Bysy1(CM).

It is clear that the affine group Bys41(C) is the subgroup of the affine braid group By (CW),
while the braid group By, is the subgroup of By 41(C'). The defining relations (4.1.1), (4.1.3),
(4.1.4), and (4.1.5) (where we denote y; = 0o and Y41 = opr41) of the (affine) braid groups
can be written in the unified form as

0,0;0; ...=040;,05 ... (416)
A ~~ NS ~ >y
m;; factors m;; factors

where m;; = m;; are integers such that m;; = 1, m;; > 2 for i # j. The set of data given by the
matrix ||m;;|| is conveniently represented as the Cozeter graph with M (or M + 1, or M + 2)
nodes associated with generators o;, and the nodes ¢ and j are connected by (m;; — 2) lines if
m;; = 2,3,4 and by 3 lines if m;; = 6. Thus, the Coxeter graph for the braid group relations
(4.1.1) is the A-type graph:

oo 0 (4.1.7)

01 ()] 03 ... OMp

and, for the affine braid group relations (4.1.3), (4.1.4), and (4.1.5), the Coxeter graphs are
respectively

A = /Ox@ (4.18)

01 g9 O3 ... 0O

M—-1
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oy o1 Oroa O
C — O———C— ++-++- O O (419)
00 01 Ony O Oy
O(l) — O <**+--- O————C—0

(4.1.10)

In the same way, one can also define the affine braid groups of BM and D™ types (see, e.g., [187]
and references therein).
Consider the affine braid group By = B41(C). The elements {y;} (i = 1,... M + 1)
defined by
Y1, Y2 = 01Y101, Y3 = 0201Y10102, ..., Yit1 = O;Y;04, (4.1.11)

are called Jucys—Murphy elements and generate an Abelian subgroup in BM—H- For y; = 1, the
Jucys—Murphy elements (4.1.11) generate an Abelian subgroup in the braid group Bj;.;. Note
that condition y,vy,+1 = Yni11yn is equivalent to the reflection equation for y,,:

YnOnYnOn = OnYn On Yn- (4112)

Then we have Y, Ynt10n = Op Yn Yns1, and the element Z = y1ys - - - yas11 is obviously central
in BM+1.

Proposition 4.16. The product of m elements of BM+1-' y,(;j:)l = Ypr1Uk2 - Ykrm (B +m <
M + 1) satisfies the following relations:

y;(cnj)l = Upr) 9™ Upniy (4.1.13)
where (cf. (3.2.46))
Ukym) = O(ksm+k—-1) - - - O2=m+1) O(1=m) = O(k-1)0 (k+1¢-2) 0 (k+m—1em)s (4.1.14)

and (k < n)

O(k—n) = OkOk+1---0Ony,  O(nek) = On...0kt+10k-
Proof. First of all, we show that

y/(ﬁ)l = O(k—k+m—1) Z/;(gm) O (ktm—1k)- (4.1.15)

This identity is proved by induction. For m = 1 we obviously have yi1 = opyrox. Let (4.1.15)

be correct for some m. Then, for y,(ﬁfl) we have
(m+1) _ _(m) _ (m) _
Ye+1 = Yis1 Ye4+m+1l = O(k—k+m—1) Y~ O(k+m—1<k) Ok+m¥Yk+mOkt+m =

— (m) —
= O(k—=k+m—-1)Yx ~ Ok+mYk4+mOk+m O (k+m—1+k) =

= Olhbrm1)Tktm (U™ Yhtm) OhtmO (ke tm 1),

which coincides with (4.1.15) for m — m + 1. Applying (4.1.15) several times, we deduce
(4.1.13). .

One can graphically represent elements U .,y (4.1.14) (by means of the rules (4.1.2)) in the
following form (cf. (3.1.61)):
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k+m+1 M+1

(4.1.16)

From this representation it becomes clear that the following braid relations hold:

Utkm) (TnUten)) Uy = (TkUimny) Uty (TnUemy ), (4.1.17)

where we have introduced jump operations T,,: 0; — ;1. One can check relations (4.1.17)
by direct calculations.

Remark. The sets of commutative Jucys—Murphy elements for all affine braid groups of the
AW BMW MW and DM types were constructed in [187]. These elements were realized in
R-matrix representations of Birman-Murakami-Wenzl algebras and then used in [187] for the
formulation of the special q-KZ equations.

4.2. Group algebra of the braid group Byryq and shuffle elements

We denote the group algebra of the braid group Bjs;1 over complex numbers as C[By1].
Consider the elements %, ,, € C[By1], for n = m, m + 1,..., M + 1, that are defined
inductively

Zm—ﬂ’b = fm—m Zlrn—)n—l - fm—>n fm—m—l e fm—>m+1 fm—)ma (421)

where the subscript m — n denotes the set of indices (m,m +1,...,n), ¥, ., =1 and

Sk =1 fion=140n1+0n90u 1+ +0k0k10p = (4.2.2)
=14 frsn-10n-1, k<n.

Note that, by means of braid relations (4.1.1), we derive the mirror set of expressions for the
elements ¥y ,, (4.2.1):

Shon = Shon—1 Frosn = Tk Fooker Fhono1 frons (4.2.3)

where

fioe=1 fin=1l40n1+0m10n o+ +0,1...0010% =
k—k k— M + (4.2.4)
=140 1fpn, Fk<n.

The elements X, 1, play the role of symmetrizers in C[B); 1] and, in view of the projection
o; — 1 for (4.2.1)—(4.2.4), they are algebraic analogs of the factorials (n — m)!. The important
properties of the elements fi_,, € C[By41] are

Jionfion—1- . fismy1 = H-[Yf{;l_m) Ymiion  (0<m < n), (4.2.5)
where we introduce elements III{™" ™™ € C[Bjs.1] with initial conditions I\ = 1" = 1,
™5 — ¢, The identities (4.2.5) and definition (4.2.1), written in the form

21—>n = f1—>nf1—>n—1 cee f1—>m+121—>m7
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lead to the right factorization formula

Sion = I ™ 81 S (4.2.6)

1—n

(m,n—m)

Thus, taking into account the interpretation of ¥,,,, as factorials, one can consider III;",,

as an algebraic analog of the binomial coefficient.

Proposition 4.17. The elements ng’iﬁ‘m) are defined inductively by using the recurrent

relations [47, 199] (braid analogs of the Pascal rule):

IH(m,n*Flfm) — ]:H(mzn*m) + m(mflvn‘i’l*m) OpnOpeq---Om. (427)

1—n+1 1—n 1—-n

Proof. We denote f; := fi; and consider formula (4.2.5) for n — (n + 1):

mgﬁﬁiiim) Ymtiont1 = fosifn e fmrr = (L4 foon) fafa1 - fpr =
= fufo-1- foir + faon(L+ focr0n1) fuifo2- " frnpa =
= fo fm1(L+00) + fufn1000n1(1+ fa20n o) fno - fpr =+ =
:fn...fm+1<1+gn+0no'n_1+...+Jn...0'm+1)+fn...fm0'n...0'm:

— qqimenm) 7 (m—1n—m+1) _
o ml—ﬂl Zm—l—l—m fm+1—>n+1 + ]—Hl—)n Y OnOp—1 " Oy =

(4.2.8)

o (m,n—m) (m—1,n—m+1)
— ]—Hl_>n Em—i—l—)n—f—l + ]—Hl_>n OnOp—1-"°"0m Zm+1—>n+17

where we used (4.2.2)—(4.2.4). After dividing both sides of (4.2.8) by ¥,,11,+1 from the right,

we obtain (4.2.7). =

In particular, Eq. (4.2.7) is written for m = (n—1) as ngriifl) = (from+ 11" 2P 6, 0,01),

(n > 2) which gives

H—Igﬁ;@lfl) = fiom + fism-1 (Um O'm—l) + fism—2 (Um—1 O'm_z) (Um Um_1)+ (4 ) 9)
+---+ f1_>2 (03 02) e (Om Um—l) —+ (02 01) s (Um Um—l)-
The next relation is T{"; %) = 1", >% + 1" ** o, 6,1 0,5 for (n > 3), ete.

Note that H_[Yi’g_m) are sums over the braid group elements which can be considered as
quantum analogs of (m, n — m) shuffles of two piles with m and (n — m) cards if we read all
monomials in Lﬂgni;z_m) from right to left (the standard shuffles are obtained by projection
o; — s;, where s; are generators of the symmetric group Syr41). As it follows from (4.2.5), the
elements fi_,,, = ngrﬁ;nl’l) are the sums of (m — 1, 1) shuffles. One can use the operators ¥;_,,
(4.2.1) and identities (4.2.6) for the definition of the associative products that are analogs of the
wedge products proposed by S. Woronowicz in the theory of differential calculus on quantum
groups [70]. In view of (4.2.6), these products are related to the quantum shuffle products
(for quantum shuffles and corresponding products, see [198, 199]). The associativity of these
products is provided by the identities

1 CR 11 KA § | L 11 A ¢ P I (4.2.10)

1—n 1—m 1—n k+1—n
which are the consistence conditions for the definition of a 3-pile shuffles (k,m — k,n —m):

o (k,m—k,n—m)
2l—m - H;[lg)n El—ﬂc EIf—',—1—>m Em+1—>n-
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Going further, one can introduce m-pile shuffles ]_Hgn_;? 2-mm) of the pack of n cards (n =

ny 4+ ng + -+ + npy). Then we observe that the “symmetrizer” ¥, (4.2.1) is nothing else but
the n-pile shuffle Trp{bteb,

1—n
By means of the mirror mapping (when we write generators oy, € Bj/4; in all monomials in

opposite order) we obtain from (4.2.6) a left factorization formula

—=(m,n—m)

Yion = Yiom Em+1—>n H—[1_m ) (4-2-11)

=—==(m,n—m)

where the elements III; ) " are defined by recurrence relations [47, 199] (cf. (4.2.7))

—=(m,n—m+1) —=(m,n—m) —=(m—1,n—m+1)
1 Rt =L,  +om...o D,
with initial conditions Eﬁ”jﬁ = Eﬁojz =1, Eﬁfj o fin, and Eﬁ’,’j‘m) is a sum over

(m,n —m) quantum shuffles (if we read all monomials from left to right). The mirror analogs
of the factorization identities (4.2.10) also hold

) ==(m,n—m) —=(m—k,n—m)

)
Hll—)n

—=(k,n—k
=1, ,, 10 .

1—n

m(k,mfk

1—m

4.3.  A-type Hecke algebra Hpy1(q)

4.3.1. Jucys—Murphy elements, symmetrizers and antisymmetrizers in Hpy;iq

A-type Hecke algebra Hps41(q) (see, e.g., [201] and references therein) is a quotient of the
braid group algebra (4.1.1) by the additional relation

ol —1=Aoy, (i=1,...,M). (4.3.1)

Here A = (¢q—q¢™ '), and ¢ € C\{0, 1} is a deformation parameter. Note that algebras Hys,1(q)
and Hy;1(—q ') are isomorphic to each other: Hysy1(q) =~ Hyro1(—q™1). The group algebra of
B (4.1.1) has an infinite dimension, while its quotient Hps41(q) is finite-dimensional. It can
be shown (see, e.g., [203]) that Hys.1(q) is linearly spanned by (M + 1)! monomials appeared
in the expansion of ¥, /41 (4.2.1) (or in the expansion of (4.2.3)).

The A-type Hecke algebra is a special case of a general affine Hecke algebra. The affine
Hecke algebra is the quotient (by additional constraint (4.3.1)) of the affine braid groups with
generators {o;} subject to general relations (4.1.6). As it was shown in Subsection 4.1, the
Coxeter graph for the braid group relations (4.1.1) is the A-type graph (4.1.7). That is why
the Hecke algebra with defining relations (4.1.1) and (4.3.1) is called the A-type Hecke algebra.
The A-type Hecke algebra H)yy1(q) is a semisimple algebra.

An essential information about a finite-dimensional semisimple associative algebras A is
contained (see, e.g., [138]; see also Subsection 4.5 in [139] and references therein) in the structure
of its regular bimodule, which is decomposed into direct sums:

A:éA-ea, A:éeauA
a=1 a=1

of left and right submodules (ideals), respectively (left and right Peirce decompositions). Here

the elements e, € A (& =1, ..., s) are mutually orthogonal idempotents resolving the identity
operator 1:
€o €3 = 0n8€a, 1= Zea. (4.3.2)
a=1
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Making use of left and right Peirce decompositions simultaneously, we have two-sided Peirce
decomposition

S S
A= @ eq Aeg = @ Aop, Aap=ceaAes. (4.3.3)
a,B=1 a,B=1
Here the linear spaces A, s are, generally speaking, neither left nor right ideals in A. Instead,
products of elements of A, g obey the relations: A, 5- A, . = 0s Aq,x, Which resemble relations
for matrix units.

The number s depends on the choice of the type of idempotents in A. There are two
important types of the idempotents in .4 and correspondingly two decompositions of the identity
operator:

(1) Primitive idempotents. An idempotent e, is primitive if it cannot be further resolved into
a sum of nontrivial mutually orthogonal idempotents.

(2) Primitive central idempotents. An idempotent €’y (A =1,...,s’) is primitive central if it is
central element in A and primitive in the class of central idempotents.

One can expand any central idempotent e4 in primitive idempotents {e,}: ea = > o4 €a;

where A is a subset of indices from the set {1,2,...,s}; i.e., central orthogonal idempotents
{ea} are conveniently labeled by non-intersecting subsets A C {1,2,...,s}, which cover the
entire set of indices {1,2,...,s}.

Let A; (i =1,...,s") be non-intersecting subsets in {1,2,..., s} which cover the entire set

and define central idempotents e4,. Let o« € A;, B € A; and @ # j, then, in view of orthogonality
ea;-ea; =0, for any element a € A we have a, 3 = e,-a-eg = 0. This tells us that the two-sided
Peirce decomposition (4.3.3) of semisimple algebra .4 does not contain terms A, g, if o € A,
p € Ajand i # j, so that we have

A= @eA A€y _@ & 6aAeﬂ—€B B Acs (4.3.4)

i=1 «a,B€A; i=1 a,BEA;

where, again, s’ is the number of primitive central idempotents e 4,. Thus, the regular bimodule
of the semisimple algebra A decomposes into direct sums of irreducible sub-bimodules (two-
sided ideals) A = @flzl A-ey = @flzl ¢!y, - A with respect to the central idempotents €;. For
semisimple algebras A the subspaces A, 5 in (4.3.4) are one-dimensional and for any a € A we
have e, -a-eg = c(a) eqp, where c(a) are constants and basis elements e, € A, s are normalized
such that eqs - €,5 = 03y €q5. In view of these relations, the elements e,3 € A are called matrix
units. The diagonal matrix units coincide with the primitive idempotents: e,, = €,.

Now we return back to the consideration of the Hecke algebra Hy;y; (here and below
we omit the parameter ¢ in the notation Hys,1(q)). First of all, we construct two special
primitive idempotents in the Hecke algebra H,;,; which correspond to the symmetrizers and
antisymmetrizers. For this purpose, we consider two substitutions o; — go;, 0; — —q o; for
the braid group algebra element 3, (4.2.1). As a result, for the algebra Hj;,1 we obtain two

sequences of operators Sy, and Ay, (n=1,... M +1):
St = ay, S15n(q03),  Aisn = a) Sisn(—q ' oy) (4.3.5)
n(n 1)
- = (" —q™)
aiz—, nl,! = [1],[2l,- - [n]g, [n], = ——7],
( [n]q‘ [ ]q [ ]Q[ ]q [ ]q [ ]q (q—q_l) )
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UiSlﬁn:Sl_mai:qSl%n (Z: 1,...n—1),

4.3.6
UiAlan:AlﬁnUi:_éAlﬁn (i=1,...n—1), ( )

which are symmetrizers and antisymmetrizers, respectively (see [111]). The normalization
factors a have been introduced in (4.3.5) in order to obtain the idempotent conditions S,
S1n and A2 = A;_,,. Here we additionally suppose that [n], # 0, Vn=1,...,M + 1. The
first two idempotents are

1 1

512 = —(q_1+01), A12 = —(q—O'l). (437)
2], 2l

Note that Eqgs. (4.3.6) immediately follow from the factorization relations (4.2.6), (4.2.11), the

form of the first idempotents (4.3.7) and the Hecke condition (4.3.1). The projectors S, and

Aqy, (4.3.5) correspond to the Young tableaux which have only one row and one column

1

P () = Sl—ma P =A_,.

n

It follows directly from (4.3.6) that the idempotents Si_p11 and Aj_p.1 are central in
H1(q)-

Consider now the elements y; (i = 1,..., M + 1) (4.1.11) which generate a commutative
subalgebra Yy;1 in Hy 4. It can be proved that Y),.; is a maximal commutative subalgebra
in Hyy1. The elements y; are called Jucys—Murphy elements and can be easily rewritten in the
form (by using the Hecke condition (4.3.1) and braid relations (4.1.1)):

_ _ _ 2 _
yi=1, Yy =0 1Yi-10i-1 = 04_1...020{02...04_1 =

_ 2 _ _
=N0j_1...020109...0;-1+0i_1...030503...0;_1="--+=

=\ Z Oij—1-+-0k4+10k0ky1.-..04-1 + /\Ui—l +1= (438)

:)\i O'k...O'i_ZO'Z‘_la'i_Q...O'k+)\O'Z‘_1+]_, 222,,M+1

It is interesting that the idempotents (4.3.5) which correspond to the symmetrizers and an-
tisymmetrizers (the Young tableaux are only one row or column) can be constructed in the
different way as polynomial functions of the elements y,,.

Proposition 4.18. The idempotents Sy, and Ay, (n=2,... M + 1) (4.3.5) are expressed

i terms of the Jucys—Murphy elements as

. ( Y2 —¢q -2
*—q

Sl%n — ( (y?) - C]72> . (yn - q72) (439)

)
(a7 (P =)
)

g~ e-d) —d) =)
PTG (=) (@0 — g7y

Proof. We note that expressions (4.3.7) for the first two projectors are written as

(4.3.10)

2 _ -2 _
312 — (01 q ) A12 — (01 q
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and therefore Eqs. (4.3.9) and (4.3.10) are valid for n = 2. We prove Egs. (4.3.9) and (4.3.10)
by induction. Let Eqgs. (4.3.9) and (4.3.10) be correct for some n = k. We need to prove these
equations for n = k + 1 or we have to show that

_ g2 )
Sioskt1 = Sk - %, A1 = Aok %kﬂ—_q) (4.3.11)

We prove only the first equation in (4.3.11) (the proof of the second equation in (4.3.11) is
analogous). We substitute in (4.3.11) the last expression for Jucys—Murphy elements yy 1
(4.3.8) and take into account (4.3.6). As a result, we obtain for the first equation in (4.3.11):

Slﬁk+l (qQTSl;)k ()\(qk_lak...al +qk_20'k...0'2+"'+0'k) +1 —q_2> =
(4.3.12)
= [k-i—l S15k (qkak...ol—{—qk_lak...ag—i—---—i—qak—i—l),

which coincides with the definition of symmetrizers (4.2.3), (4.3.5). This ends the proof of the
induction and hence this Proposition. [

Note that the idempotents S;_,y.1 and Aj,p41 are central in the algebra Hys1(q) and
represented as the polynomials ~ (yo — t)(ys — t) - (yy41 — t), where t = ¢ (see (4.3.9),
(4.3.10)), which are symmetric functions in variables {y;} (i = 2,..., M + 1). In view of this,
one can conjecture that all symmetric functions in y; generate the central subalgebra Zj,;,; in
the Hecke algebra Hj;,1(q). Indeed, to prove this fact, we need only to check the relations:
[0k, YUn + Yns1] = 0 = [0k, YnYns1] for all &k <n + 1.

New identities for the elements y; follow from the representations (4.3.9) and (4.3.10) (if we
use Egs. (4.3.6)):

(yi — ¢ )Sl—m =0= (4 — "N —a)ys—q¢ ) (yn—q?) =0,  (43.13)

(4= ") A = 0= (4 = ) — ) ys — ¢°) -+ (yn — ¢°) = 0, (4.3.14)
(1 =2,...,n). Then two new types of idempotents (which are primitive orthogonal idempotents
for the subalgebra H,, € My;,1) are obtained from these identities:

= _
P(i ---\"-1\):<y < H nglq 5 = (4.3.15)

q

n—1
- Sl—>n—1 - Sl—)n - [ [’I’L] ]q Sl—>n—1 Un—l(Q) Sl—>n—17
q

e _ (=) ﬁ (e —d*)  _ (4.3.16)

(2 — ¢20-m) - (20=F) — ¢2)

[n —1],

(]

Ain Un—1(61_1) Al n—1,

where [113, 200]

on(x) =X 2 o, — 20, t)
are Baxterized elements for the algebra Hjyi1(g) (the R-matrix representations of these ele-
ments are given in (3.8.5)). We consider properties of these elements below; see Eq. (4.3.38)
and further discussion. The idempotents (4.3.15) and (4.3.16) are not central in Hy/.; but they
are the elements of the commutative subalgebra Y 1.
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4.8.2. Primitive orthogonal idempotents in Hy;r1 and Young tableauz

Now we describe the general construction (see [208, 209] and references therein) of all
primitive orthogonal idempotents e, € Hj;1 which are elements of Y41 (i.e., functions of the
elements y;). All these idempotents are common eigenidempotents of y;:

yica = eayi = Ve (i=1,...,M+1),
(@)

where a; are eigenvalues. We denote by Spec(y1,...,ym+1) the set of strings of (M + 1)
cigenvalues A(e,) = (aga), . ,ag\?)ﬂ) (Va). The eigenidempotents e, define left (and right)

submodules Hy 11 - e, (and e, - Hyry1) in the regular bimodule of Hy/ .

Lemma 1. The eigenidempotents e and € with eigenvalues a; = a (Vi = 1,..., M) and
ani1 # ahyyq define different left (right) submodules in the regular bimodule of Hpyy1.

Proof. We proof this Lemma only for the left submodules Hy; 1 - e, Hyiq - €. The case of
the right submodules can be considered analogously. Let v and v’ be, respectively, elements of
submodules Hysyq - e and Hyyq - €. Consider central element Z = yyys - - ypro1 (Symmetric
function of y;). There are no elements X € Hj;,1 such that v = X v, since the left action of
Z on elements X v and v" produces different eigenvalues. [

Now we introduce the important intertwining elements [84] (in another form these elements
appeared in [204]):

Uni1 = OnlYn — YnOn = Onln — Oy Ynil = Yni10p ' — YnOp = (4.3.17)

= (yn—l-l - yn>0n - )‘yn—l-l = Un<yn - yn—i—l) + /\yn—l-l (1 < n < M)> (4318)

subject to relations?

Un—i—lyn = yn+1Un+1> Un-i—lyn-l-l = ynUn—i-la

(4.3.19)
[Un-‘rlv yk’] =0 (k 7£ n,n -+ 1)7
Un Un+1 Un = Un+l Un Un+17 (4320)
Uriy = (@ = ¢ Yns1) (qUns1 — ¢ ). (4.3.21)
Lemma 2. The eigenidempotents e and €' with eigenvalues
a; =a;, (Vi=1,...,M —1),
(4.3.22)
) 4 +2
am = Ay, QM1 = Ay, AM F G Ay
belong to the same irreducible sub-bimodule in the reqular bimodule of Hpryq.
Proof. Since the algebra Yy,41 generated by {y1,...,yn+1} is maximal commutative subalge-

brain Hy 1, we have ¢/ = ¢” if A(e’) = A(e”). Then, using intertwining element Upy4q (4.3.17),
we construct the eigenidempotent
" 1

e = U elU ¢"? =¢"
(@ant — ama){aws — g 2ang) Dt € Uneen ()7 =¢%

20The definition (4.3.17) of intertwining elements is not unique. =~ One can multiply U,y; by a
function f(yn,yYn+1): Un+1 — Uns1f(YUn,Yn+1). Then Egs. (4.3.19)—(4.3.21) are valid if f satisfies

S Wns Yns1)f Wns1,yn) = 1.
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which is well defined in view of the last condition in (4.3.22). The element Upsy1 € Upr4q is not
equal to zero, since U3, eUd 1 = (¢*am — ans1)?(ans1 — ¢ 2an)?e # 0. This inequality
follows from the last condition in (4.3.22). For the element €” ~ Upy1 e Upry1 we have A(e”) =
A(€') in view of (4.3.19). Thus, ¢’ = € = € ~ Upr41eUpy1 and the eigenidempotents e and
¢’ belong to the same irreducible sub-bimodule in the regular bimodule of Hp 1. [

Consider a Young diagram [v]p41 with (M + 1) nodes. We place the numbers 1,..., M +1
into the nodes of the diagram in such a way that these numbers are arranged along rows and
columns in ascending order in right and down directions. Such a diagram is called a standard
Young tableau Tj,),,,,. Then we associate a number ¢*" =™ (the “content”) to each node of the
standard Young tableau, where (n,m) are coordinates of the node. Example:

N

T P g [C o0

52 P1 P

m T
(4.3.23)

In general, for the tableau Ty, ,, the ith node with coordinates (n,m) looks like iqZ‘(n—m) .
Thus, to each standard Young tableau [v],, one can associate a string of numbers A = (aq, ..., a,)
with a; = ¢*™). For example, a standard Young tableau (4.3.23) corresponds to a string

A=(1,¢q7%¢"1,¢q¢" 7).

Now we associate Young tableaux Tp,,,,, (related to the primitive orthogonal idempo-
tents) with paths in Young-Ogievetsky graph. By definition Young-Ogievetsky graph is a
Young graph with vertices, which are Young diagrams, with edges, which indicate inclusions
of diagrams (or a branching of representations), and with numbers (colours) on the edges cor-
responding to the eigenvalues of the Jucys-Murphy elements?'. For example, the coloured
Young—Ogievetsky graph for H, is

:y2

= Y3

= Ys

L \A

21To our knowledge, O. Ogievetsky was the first who proposed to associate the eigenvalues of the Jucys—
Murphy elements to the edges of the Young graph. Usually the indices on the edges of the graphs of Young type
correspond to the multiplicity of the branching. In this case, the Young graph is called the Bratelli diagram. In
our case, all multiplicities are equal to 1.

° Figure 4.1. Young—Ogievetsky graph for
[
S Hay(q).
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The paths (associated to Young tableaux) start from the top vertex () and finish at the vertex
labeled by the Young diagram of the same shape as the tableaux. The dimension of the
corresponding representation of the Hecke algebra is equal to the number of standard tableaux

of this shape or, as we see, the number of paths which lead to this Young diagram from top 0.
112
3|4
the shape of the tableau (Young diagram) is given by the shape of the last vertex of the path,
while the numbers in nodes of the tableau show in which sequence the points e appear in the
vertices along the path. The edge colours of the path (or contents of the nodes of the standard
tableau, as it is explained in (4.3.23)) are the eigenvalues of the Jucys—Murphy elements y; = 1,
Y2 = ¢, y3 = ¢ 2, ya = 1 obtained by their action on the idempotent P :1)) Z ) . Then the
explicit formula for this idempotent can be constructed by induction. Namely, we take the
1]2]
3

4

2 -2
For example, the path {§) > e £ ee L5 2® L ¢@ 1 (responds to the tableau

, l.e.,

explicit form of the previous idempotent P (related to the previous vertex of the

path) and multiply it by the factors (y4 — 1), (y4 — ¢*), and (y4 — ¢~*), which correspond to
[ J

possible colours of outgoing edges from vertex 3¢ , to obtain characteristic identity

P ( 12 ‘) (v — D(ws — ¢"Yn — g~ = 0. (4.3.24)

Then, to forbid the moving from the vertex $® along the edges with labels ¢* and ¢~* and

move along the edge with the index 1 to the vertex g4e , we remove from the left-hand side of

(4.3.24) the factor (ys — 1). As a result, we obtain (after an obvious renormalization)

. ( 1]2 ) _p (éﬂ) (92— a)(ya—a") (4.3.25)

3|4 (I—¢)(1—q")

In the same way, one can deduce the chain of identities

P ( :1)) : ‘) =P () ((y32—_(1q4)) =P () (E?__qq_z))(;%z__qqz)’ (4.3.26)

q
where we fix P () = 1 by definition. Using (4.3.26), the final formula for (4.3.25) can be

written as
s ( e ) _ = a) ) - )y —a?)
34 (@>=q?)a?-q¢") Q-1 —q*) "
We note that the described procedure leads automatically to the idempotents which are or-
thogonal to each other.

This example has demonstrated that all information about primitive orthogonal idempo-
tents for the A-type Hecke algebra is encoded in the Young—Ogievetsky (YO) graph given in
Figure 4.1. Thus, we need to justify this graph and its edge colours. First of all, we prove the
following statement.

(4.3.27)

Proposition 4.19. The spectrum of the Jucys—Murphy operators y; (possible edge indices of
the YO graph) for Hyryy is such that

Spec(y;) C {*%} Vi=1,2,....,M+1, (4.3.28)

where Z; denotes the set of integer numbers {1 —j,...,—2,—-1,0,1,2,...,5 — 1}.
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Proof. We use the important intertwining elements (4.3.17), (4.3.18) and prove (4.3.28) by
induction. From the Hecke condition (4.3.1) we have

(v2— ) (2 —q7?) = 0. (4.3.29)

Thus, Spec(ys) satisfies (4.3.28). Assume that the spectrum of y;_; satisfies (4.3.28) for some
j = 3. Consider a characteristic equation for y;_; (cf. (4.3.29)):
Fyiza) = [ Jwi—1 - a\”) =0 (a\) € Spec(y;_1)).

[0}

Using operators U; and their properties (4.3.19), (4.3.21), we deduce

0=U;f(y~)U; = f(y;)U; = fui)(@yi—1 — y)(y; — a7 *yj-1), (4.3.30)

which means that
Spec(y;) C (Spec(yj_1) U ¢** - Spec(y;_1)) , (4.3.31)
and it justifies (4.3.28). n

4.3.3. Irreducible representations of Hyriq and recurrence formula for primitive idempotents

In |231], A. Okounkov and A. Vershik developed new approach to the construction of the
irreducible representations of symmetric group (we review this approach in [139], Section 4.6).
Here we generalize (following [201], [202-205], [208, 209]) the Okounkov—Vershik approach to
the case of the Hecke algebra.

Consider a subalgebra ]:IQ(Z) in Hyq with generators y;, y;+1 and o; (for fixed i < M). We
investigate (see [208, 209]) representations of H{ in the case when the elements y;, yi;1 are
diagonalizable. Let e be a common eigenidempotent of v;, y;11: yie = ae, y;r16 = a;11e. Then
the left action of f[éz) closes on elements v; = e, vy = 0;e and is given by matrices

(01 [ ai —Aaiq | Qi1 Aai
0; = ( 1 )\ ) y Yi = ( 0 it ) y Yi+1 = ( 0 a; ) (4332)

where we have used the standard convention yv; = v;y;; to produce matrix representations
||y;i|| for operators y.
The operators y;, y;11 (4.3.32) can be simultaneously diagonalized by the transformation

y — V7 lyV, where
Aaiqr1 . Aair
V = 1 a;—ai41 , V_l — 1 Q;—ai41 .
0 1 0 1

As a result, we obtain the following matrix representation:

_Adig (ai—q2622'+1)(ai—)q2_2ai+1) 0 0
o ;=041 i —Qiy1 o a; L Q41
= | 5 o= () = () s
A —Qi+1

where a; # a;1, otherwise y;, ;11 are not diagonalizable. We note that the form of matrix o;
in (4.3.33) is not unique, since one can multiply V' by any diagonal matrix D from the right.
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For a;y1 # ¢*2a; one can perform additional similarity transformation of operators (4.3.33)
with diagonal matrix D = diag(d;, d3) to make the matrix o; symmetric:

_ i d

0 — D to; D = G d : ﬂ _ :|:\/<ai —q%aiy1)(a; — g2 az’+1)‘
di _Aa; d2 (ai — aiJrl)
da a;—0;41

When a;,1 = ¢*2a;, the 2-dimensional representation (4.3.33) is reduced into the 1-dimensional
representation with o; = +¢*', respectively. We summarize the above results as following.

Proposition 4.20 (¢-Vershik—Okounkov [208, 209, 231]). Let

A= (a1,...,a;,0i41,...,0,) € Spec(y1, ..., Yrr+1)

be a possible spectrum of the commutative set (y1,...,yn+1), which corresponds to a primitive
eigenidempotent ex € Hyr 1. Then a; = ¢*™, where m; € Z; (4.3.28) and

(1) a; # ajxq1 for alli < M +1;

(2) if aiy1 = q¢T2a;, then o; - en = £qFley;

(3) if a; # q*2a;y1, then

A/ = (al, ey Qg 1, GGy e - ,CLM+1) c Spec(yl, C ,yM_|_1),
and the left action of the elements o;,y;,y;+1 in the linear span of vy = ep and

Ay
(N :O'iBA—f——@A
Q; — Aij41

is given by (4.3.33).

From this Proposition we conclude that the only admissible subgraphs in the Young-—
Ogievetsky (YO) graph (subgraphs which show all possible two-edges paths with fixed initial

and final vertices) are
a b
) (b # ¢**a)
b a

*
Yi = J( a
(0; = £¢*
aq*?
Figure 4.2 Figure 4.3

Yi+1 =

where stars in the vertices denote Young diagrams. These subgraphs are related to the 1-
dimensional and 2-dimensional (it corresponds to the number of paths from the top vertex to
the bottom one in Figure 4.2 and Figure 4.3) representations of the subalgebra generated by
{Yi, Yir1,0:}. In view of the braid relations o;0;110; = 0;110;0,4+1 and possible values of o’s
presented in Figure 4.2 for 1-dimensional (1D) representation subgraphs, we conclude that the

i2a
chains * — * — % — * of the 1D representation subgraphs in the YO graph in Figure 4.1 are

qi2a qi4a

forbidden. While admissible chains of 1D representation subgraphs are % S xSk
These statements and the form of only admissible subgraphs in Figures 4.2 and 4.3 justify (for
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the A-type Hecke algebra) the YO graph presented in Figure 4.1. Indeed, we know the top of
the YO graph which consists of 3 edges with indices 1, ¢?, ¢~2 (see Figure 4.1). Then one can
explicitly construct “step by step” moving down the whole YO graph (with all indices on edges)
by using (4.3.31), the form of only admissible subgraphs in Figures 4.2, 4.3 and rules for the
chains of 1-dimensional representations. We also stress here two important properties of the
YO graph:
1) to each vertex of the graph the number of incoming edges Fj, is less than the number of
outgoing edges Fou on 10 Eoy = Eiy + 1;
2) to each vertex of the graph the products of indices aj, for incoming and ay,; for outgoing
edges are equal to each other: Hf:n]_ ai () = Hf“f Aout (5)-

Finally, we summarize all results about the spectrum Spec(y1,...,ym+1) of the Jucys—
Murphy elements y; € Hyr11(g) and YO graph for the Hecke algebra Hy;11(q) as following.

Proposition 4.21 (/208, 209, 231]). There is a bijection between the set of the standard Young
tableauz T, with n nodes, the set Spec(yy,...,y,) and the set of paths Xz in coloured YO
graph which connect the top diagram () and the diagram [V],.

Since the YO graph is explicitly known, we can deduce the expressions (in terms of the
elements yy) of all orthogonal primitive idempotents for the Hecke algebra (in the same way as
it has been done in (4.3.25)—(4.3.27)). We stress once again that the method of construction
of explicit expressions for such primitive orthogonal idempotents is known and was discussed,
e.g., in [202, 205, 208, 209|. Now we explain the operation of this method by using an arbitrary
standard Young tableau as an example.

Let A be a Young diagram with n = nj rows: A\ = Ao > ... > A, and |A| := > | \; be the
number of its nodes. Consider the case when A\ = -+ = )\m /\( > A+l = A2 = 00 =
Ay = A@) > > Ay 1 = 0 = AN = Ay:

A 1
N = ”2*1111 "1’)‘(1)
n2,/\(2)
"t (4.3.34)

N —N— 1:]nk ’)\(k)

Here (n;, A)) are coordinates of the nodes corresponding to the inner corners of the diagram
A. Consider any standard Young tableau Tp,, of shape (4.3.34) with M = |A| nodes. Let
e(Tp,,) € Hy be a primitive idempotent corresponding to the tableau T,,,. Taking into
account the branching rule implied by the coloured Young-Ogievetsky graph for Hy; 1, we fix
all possible eigenvalues g2 —mr-1) (r=1,...,k+1) of the element yy;41. Then we conclude
that the following identity holds:

k+1
e(T/\M) H (yM—i-l — q2(’\(*>_”“1)) = 07

r=1
where A\(y4+1) = ng = 0. Thus, for a new tableau TAgMH, which is obtained by adding to the

tableau Ta,, of the shape (4.3.34) a new node with coordinates (n;_1 + 1, A¢;) + 1), we obtain
the following primitive idempotent (after a normalization):

k1 <yw+l _ qQ(A(T)—nr71)>
(Trg,,,) = e(Taw) H (QQ(/\U)—NJ‘—H _ q2()\(7")_nr71)) = e(Tay) 11; . (4.3.35)

r=1
r#j
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With the help of this formula and “initial data” e () = 1, one can deduce step by step explicit
expressions for all primitive orthogonal idempotents for Hecke algebras.

Remark. The elements found by inductive formula (4.3.35) give by construction a com-
plete system of mutually orthogonal idempotents in the Hecke algebra Hp(q). Let T,a
(a=1,..., fa) be standard Young tableaux of the shape of the Young diagram A = M and fp —
the number of such Young tableaux of the shape A. A primitive idempotent e(T,a) € Ha(q)
corresponds to such tableau. Central idempotents e(A) correspond to the Young diagrams
A+ M and are expressed as the sum e(A) = S22 e(T,a). Then the completeness of the prim-
itive orthogonal idempotents e(T, ) is written as the resolution of unit operator 1 via central
idempotents e(A) € Hp(q):

IA
1= ") e(Tan) = > _e(h)

One can find explicit formula for the number fa in [139], Subsection 4.3.2 (see also references
therein).

4.8.4. Idempotents in Hyry1(q) and Baxterized elements. Matrix units in Hyyiq

Another convenient recurrent relations for Hecke symmetrizers and antisymmetrizers (4.3.5),
(4.3.9), (4.3.10) are (see, e.g., [111, 113, 232]):

O 1-n o 1-n
Sl—)n - Sl—m—l L Sl—m—la Sl—m - S2—>n M SQ—m; (4336)
[nlq [n]q
n—1 n—1
Alﬁn = Al*)nfl M Al%nfly Al%n = A2%n M A2ﬁn> (4337)
[nlq [nlq
where o, (z) are Baxterized elements [113, 200] (cf. (3.8.5)):
on(z) = A"z o, — wo) ), (4.3.38)

for the algebra Hjr.1(q). We have already used these elements in definitions of the idempotents
(4.3.15) and (4.3.16). The elements o, (z) obey the Yang-Baxter equation (the proof of this
statement is the same as in (3.8.1)—(3.8.4)):

on(2) on_1(2y) 00 (y) = 0n_1(y) on(zy) opy (). (4.3.39)

These elements are also normalized by the conditions o,(£1) = £1 and satisfy

Cx—a! yr~ ! — oy !
y—yt y—yt
oi(x) 0i(y) = oi(zy) + (v — 27y —y~HA ™ (4.3.40)

The special case y = 27! of (4.3.40) gives the “unitarity condition”

O-z<x) O-Z(y) + ) vxay 7é ilv

- (z—a7")? (gr~' —¢7'z)(gz — ¢~ 'a™)
oi(x)os(z7h) = (1 e ) = 2 : (4.3.41)
One can write the Baxterized elements (4.3.38) as rational function of o; (cf. (3.8.6)):
a 'z —axr '\ o; —ax? (a) o; — ax?
() = , o 0W@) = 2T 4.3.42
%il®) ( Ax? ) o; —axr—? 7 (@) o; —axr—?2 ( )
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where a = —q, or a = (q)_1
i

elements 0" (z) obey ¢\ (z)0'” (z~1) = 1.

Equations (4.3.40), (4.3.41), and (4.3.42) follow from the Hecke relation (4.3.1). The equiv-
alence of both representations for (anti)symmetrizers given in the first and second equations
of (4.3.36) and (4.3.37) is demonstrated by means of the Yang-Baxter equation (4.3.39), or
by means of the obvious mirror automorphism oy — o/ for the Hecke algebra Hy(q). The
equivalence of (4.3.36), (4.3.37), and (4.3.5) can be easily demonstrated if one writes the first

representations of (4.3.36), (4.3.37) in the form

, and it becomes clear, for both choices of a, that the normalized

Slﬁn == @ 01 (q_l) 02<q_2) o O'nfl(ql_n) Sl%nfla
(4.3.43)
Ay, = ﬁq. 01(q) 02(q*) ... on1 (" 1) A1y,

and then we should use (4.3.6) to compare (4.3.43) with (4.3.5) and (4.2.1). According to
(4.3.36), (4.3.37), the first two projectors are (cf. (3.4.22), (4.3.7)):

P T L,
P(I12) = Su = gr o). P ((3]) = An =g o)

and their orthogonality readily follows from the Hecke condition (4.3.1), or from (4.3.41). One
can also express another types of the orthogonal idempotents (not only symmetrizers and
antisymmetrizers) in terms of the Baxterized elements:

P (; 2 ‘) — [31!0'1((]1>0'2(Q)01<ql)7 P ( ; & ‘) S o1(@)o2(g7)o1(9),

P (é 2]3 ‘) ~ o1 oalg Do (g oa(@)oalaDon(a ™),

P é 3[4 ‘) ~ o1(q)o2(q os(q?)o2(q Ho(q),

2]4]

P

) ~ 1(q Vor(@)or (g oa(@)oa(q Dor(a oala ™),

1
13
d ( ;’ ‘21 ) ~ o1 o2(q)oi(q os(q®)oa(q)or(q  os(q™).

The method of presentation of all primitive orthogonal idempotents for the Hecke algebra in
terms of the Baxterized elements was developed in [230] (see also references therein) by means
of the fusion procedure.

Remark 1. Consider the quotients of the Hecke algebra H);,1(q) with respect to the additional
relations A;_,, =0 (n < M + 1), which are equivalent (see (4.3.37)) to the identities

n—1

Aln10p1 A = h Al n_1. (4.3.44)
q

This is the way how the generalized Temperley-Lieb-Martin algebras [206] are defined. As
it was mentioned in [113], the quotient of Hy; 1(q) with respect to the identity A;_,3 = 0 is
isomorphic to the Temperley—Lieb algebra.
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Remark 2. By using intertwining elements (4.3.17) and Baxterized elements (4.3.38), one
can immediately construct off-diagonal matrix units®?* (see Subsection 4.3.1) in a double-sided
Peirce decomposition of the Hecke algebra Hyry1 = @, 5 ealliries. Let P(Xz) == e(Tp,,,,)
be orthogonal primitive idempotent which corresponds to the Young tableau Ty, , or to the
path Xz on the coloured Young—Ogievetsky graph labeled by the eigenvalues

a=(1,az,...,anm+1) € Spec(yr, -, Yart1),

(4.3.45)
ylP(Xg) :P(Xa)yl :CLZP(X[}‘) (VZ: 1,,M+1)

In the case a; # ¢™aj;1 (see the proof of Lemma 2 in Subsection 4.3.2), we introduce the
element P(X,,.z) € Hyry1:

1

(¢%a; — aji1)(aj — g 2a;)

P(ij.a’) = Uj+1 P(X(i) Uj+1 (VJ = 1, NN ,M) (4346)

such that
P(XSJ-E)Q = P(ij.a’), gP(XSj'ﬁ) = P(XS"ﬁ)?j: (Sj ’ 6)P(X8j'5)7

J
(¢°y; — yir) (Y1 — ¢ %)
P(ij'a) — 75 ]_ JA+ ]‘+ P J‘ (SJ'P)<X5)7
(¢ a; a]+1)(a3+1 q a])

P(X,,a) P(Xa) = P(Xg) P(Xs,4)

0, (4.3.47)

where s; - d = (a1,...,aj41,0j,...apm4+1) € Spec(yi, ..., Ym+1) is the vector with permuted
coordinates a; and aji1; (sj-P)(Xz) denotes the function P(Xj;) with permuted variables y;
and y;+1. The identity (4.3.47) follows from the fact that P := P(X;) P(Xz/) = 0 for all
a# ada' (e, 3j: a; # aj) in view of the equations y;P = a;P = a;P which follow from
y; P(Xa) = P(X3) y;.

According to (4.3.21) and (4.3.46), we obtain

Ujt1 P(Xa) = P(Xs;4) Uj = P(X;6Xa) (G=1,..., M),

» (4.3.48)
P(Xa) Upr = Uja P(Xy,a) = P(Xa|Xga) (G=1,..., M).
In the case a; # ¢*%a;41, in view of Lemma 2, we have s; - @ € Spec(yi, ..., ym+1) (the path
X,,.q exists in the Young-Ogievetsky graph and corresponds to the standard Young tableau).
Then, taking into account (4.3.17), (4.3.18), we deduce

0j(aj,a541) P(Xa) = —P(Xy,a) 0j(a;41,0;) = P(X,;.4|Xa),
= (4.3.49)
—P(Xa) 0j(a;,aj11) = 05(aj41,a;5) P(Xs,.0) = P(Xal Xs,.a),
) )\aj+1 J) — R o )\a]’ o P(XSj-Elxd)
(05 + (aj—aj+1)> P(Xa) = P(XSJ"“) (o (aj—aj+1)) = (aj—ajq1) (4.3.50)
)\a]‘ 1 )\aj P(XEIXSJ'%Y) e
P(Xa) (05 + Gmary) = (05 — Gamy) PXea) = o=y
where we used the Baxterized elements (cf. (4.3.38))
on(r,y) =x0, —yo, =(x—y)o, +y\ (4.3.51)

22Recall that the orthogonal primitive idempotents are diagonal matrix units.
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subject to the Yang-Baxter equation (4.3.39) written in the form

O-n<m7 y) O'n+1($, 2) gn(yv Z) = Un+1(ya Z) O'n(ZL‘, Z) 0'n+1(ZL‘, y)

It was shown in [205] that the elements P(X,,.4/Xz) play the role of the off-diagonal matrix
elements in the Peirce decomposition (see Subsection 4.3.1). In the case a; = ¢*?a;11, we have

U1 P(Xa) =0=P(Xz) Ujpn =

(4.3.52)
(0 £ q¢™) P(Xa) = 0= —P(Xa) (0; £ ¢7"),

where the second line in (4.3.52) follows from (4.3.50) and defines the 1-dimensional represen-
tation for the generator o; corresponding to Figure 4.2 in Subsection 4.3.3.
Since the Hecke algebras Hj, ;1 are semisimple, we have the following identity:

P(Xz) B P(X5) = Ca(B) P(Xz), VB € Hyya, (4.3.53)

where P(X3) is any primitive idempotent in Hjs4; and Cz(B) is a constant which depends on
the element B and the path X in the coloured Young—Ogievetsky graph (i.e., it depends on the
vector d from the spectrum (4.3.45)). To justify identity (4.3.53), we check it for any monomial
B =0, 0, ...0;, in generators o; € Hy 1, of any order . We require that the monomial B can
not be reduced to the polynomial of order less than r by means of relations (4.1.1) and (4.3.1).
Then we use the induction to prove (4.3.53). We note that by using the definition (4.3.17) of
Ui;+1 and then (4.3.18), we obtain the base of the induction:

0= P(Xa) Uip1 P(Xa) = P(Xa) ((Yis1 — ¥i)oi — M\yiy1) P(Xa) =

= (a,-+1 — ai)P(Xd) 0; P(X@') — )\aiH P(Xgi) = P(Xa‘) ; P(Xa) = (CL)\a—lJrla)P(Xg)
i+l — G
Let the identity (4.3.53) be correct for all monomials B = oy, ---0;, when k£ < r. We need
to prove (4.3.53) for monomials B = oy, ---0;,,, of order (r 4+ 1). Consider the element
P(Xa)Ui41- - U;, .41 P(Xz) and start to commute left idempotent P(X5) to the right with
the help of (4.3.48). We have two possibilities.
1. The first one is

P(Xa) Uis1 Uiy P(Xa) = Ui 1 -+ Uy P(Xa0) Uiy 41 P(Xg) =

(4.3.54)
== Uy Ui oy i1 P(Xg0i0) P(X5) =0,

(k) .__ —>(k—1 —>(0) ._ = _
(l( ) =Sy, 'CL( ), a( ) =a, S (Ul,---,Ui,Ui+1,-~-) = (U17~~-;Ui+1avi7---->;

where (@¥);, ., # ¢**(@");,,+1 (V& = 0,...,7) and we used the orthogonality P(Xz) -
P(Xz) =0 for @’ # d in the last equality in (4.3.54). In this case, by using (4.3.49), we deduce

0=P(Xz) U1+ Uipyy1 P(Xz) = Uiy11 -+ - Ui 1 P(Xao) Ui 1 P(Xa) =
= (=1) U1+ Uppys P(Xge) Ui (@) 0 4y) P(Xq) =+ =

ir+1 ) 7‘r+1 +1

r 0 0 r—1 r—1 r r
= (=)' P(X2) 03, (a0l ) 0 (0l D 0l ) 0 (@) e L) P(Xa),  (4.3.55)

i1 0 br1? i+l
where o;(z,y) are Baxterized elements (4.3.51). The substitution of the r.h.s. of (4.3.51) gives

1 _
P(X3) 03,01, P(Xa):(a(o) I —P(Xz) B P(Xa),  (4.3.56)

ir+1 +1 7f"r‘«‘ﬁl
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where B is a polynomial in ¢; € Hys41 of order less than (r 4+ 1) and, therefore, in view of the
induction conjecture, we obtain (4.3.53).
2. The second possibility occurs if at some step k in (4.3.54) the condition (a*) =

)ik+1 -
q*2(@®);,,,+1 arises. In this case, in view of (4.3.52), we obtain for any element A € Hy41:

P(Xgi) Ui1+l e Uik+1+1 AP(X@') - Ui1+1 s Uik+1P(X&'(k>)Uik+1+1 AP(X&‘) — O (4357)

We take here A = 0y, 4105, and write (4.3.57) with the help of (4.3.49) and (4.3.52) (in
the same way as in (4.3.55)) in the form

0= P(XtY) Ui1+1 to Uik+1+1 O+l " Oipyy P(Xﬁ) =

_ 0 0 k—2 k—2
= (_]‘>k 1P(X(_7:) Uil (a’gl)’ aﬁil—l) U O-ik—l(a/gk_l )7 agk_l—)‘rl)(o-lk :|: q:Fl) O-ik+1+1 e O-ir+1 P(X(‘i) :>

1 —
(k—1) (k—1) P(Xz) B+ P(X3), (4.3.58)
: (aikJrl —a;, )

P(X&’) 0+ 'O'ir-H P(Xa‘) = 0 0
(az(l)Jrl - agl)) o
where B are polynomials in o; € Hysyy of order less than (r 4+ 1) and, thus, in view of the
induction conjecture, we again prove (4.3.53).

Finally, we note that equations (4.3.55), (4.3.56), and (4.3.58) give us the possibility to
calculate explicitly the constant Cz(B) in (4.3.53).

4.8.5. Affine Hecke algebras and reflection equation

1. In this subsection, we consider the infinite-dimensional Hecke algebra, which corresponds
to the affine AM-type Coxeter graph (4.1.8), with generators o; (i = 1,..., M) subject to
relations (4.3.1), (4.1.6). Thus, this algebra is the quotient of the algebra C[Bys41(A™M)] with
respect to additional Hecke relations (4.3.1). We call this algebra a periodic A-type Hecke
algebra?® and denote it as AHp;,;. For the algebra AH,;,; one can construct the set of
(M — 1) commuting elements

M
Iy =) 0i0i41 ... i (k=0,...,M—2), (4.3.59)
i=1

where we have identified o5;1; = 0;. The first element in (4.3.59) is I, = Zf\il o; and, in the
R-matrix representation, this element gives a Hamiltonian for periodic spin chain (see (5.1.14)
in Subsection 5.1).

Let {o1,...,0n_1} be generators of the braid group Bj;. We extend the group B, by the
element X such that

Xoy X '=o0py (VE=2,...,M—1), (4.3.60)

X X t=X"'oy 1 X = ou. (4.3.61)

It is not hard to check that the new element o), satisfies Eqs. (4.1.3) and, therefore, the
elements {oy,...,0)} (where o), has been defined in (4.3.61)) generate the periodic braid

group By = By (AW).
Note that X (4.3.60), (4.3.61) can be realized as the inner element of By C By (AM).
Indeed, the operator X which solves Eqgs. (4.3.60), (4.3.61) can be taken in the form X =

23 As we will see below, in Subsection 5.1, this algebra appears in a formulation of the integrable periodic
spin chain models.
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oM—1c1 € By, where the notation op; 1.4, = Opr—1...0me1 0, has been used. Then we
define the additional generator o, (4.3.61) as

o -1 _ 1 _ 1
o =X01 X =0M_141010, 101 = OM—-1c107_1. 9 (4.3.62)

and its graphical representation is

(4.3.63)

It is evident that o, satisfies (4.1.3) in view of its graphical representation (4.3.63). According
to Egs. (4.1.1) and (4.1.3), the elements {oy,...,05} of the group By, (where o) has been
defined in (4.3.62)) generate the periodic braid group By, and, therefore, Eq. (4.3.62) defines
the homomorphism: By, — Bay.

2. Another infinite-dimensional Hecke algebra is an affine Hecke algebra H m+1(q). We recall
that the affine Hecke algebra Hy,1(q) is defined?* (see, e.g., [207], Chapter 12.3) as algebra gen-
erated by elements o; (i = 1,..., M) of Hy41(q) and additional generators y (k =1,..., M+1)
subject to relations (cf. (4.1.11), (4.1.12)):

Ykt1 = Ok Yk Ok, Y'Y =Yj Y, Yj0i=03y; (J#14,1+1) (4.3.64)

(the generators {y,} form a commutative subalgebra in Hjs4q1(¢)). We note that, in view
of the first relation in (4.3.64), the minimal set of generators of f[MH(q) is {o1,...,0m, U1}
Symmetric functions of the elements y;, generate the center of the algebra H m+1(q). Below,
to be short, we omit the parameter ¢ in the notation Hy,1(q) and H v+1(q). The interesting
property of the algebra Hy4, is the existence of the important intertwining elements [84] (cf.

(4.3.17) and elements ¢; in [204], Proposition 3.1):

Uiv1 = (o3yi — vios) f(yi,yip1), (1 <i< M),

where function f satisfies: f(y;, vit1)f(¥it1,y:) = 1. The elements U; obey the same relations
(4.3.19)—(4.3.21) as in the case of the non-affine A-type Hecke algebra Hj/ .

Now we describe the procedure how one can construct (M + 1)-dimensional representation
for the Hecke subalgebra Hy;.1 C H Mm+1- Let v be a vector in the space of 1-dimensional
representation of Hysy; such that o;v = qov (Vi = 1,..., M). Consider the induced (M + 1)-
dimensional space with the basis {vy,va,...,vp41}, where vy = ygv. Then, according to
(4.3.64) and the Hecke condition (4.3.1), we obtain (M + 1)-dimensional representation for
generators o;:

oivg=quy (k#£i,i+1), 0,0 =q "Vig1, 0ivVie1 = AVig1 +qup,
which is called the Burau representation of Hp;.1. The matrix form of this representation is

. 0 ¢
. =d ( , .. ) 4.3.65
o 1agq'IQ(1/q A)q ‘q ( )

11— M—i

24This algebra is isomorphic to the quotient of the braid group algebra C[Bys41(C)], where the generators
0; € By+1(C) (i=1,...,M, i # 0) are constrained by additional Hecke conditions (4.3.1). The definition of
Bar+1(C) is given in Subsection 4.1 and is related to the Coxeter graph (4.1.9).
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One can start from another possible one-dimensional representation o; v = —¢~ v (Vi) of Hyyy1,
which leads to a new Burau representation resulting from (4.3.65) by replacing ¢ — (—1/¢).

The affine Hecke algebra H m+1 makes it possible to formulate the universal Baxterized
solution of the reflection equation (see (4.4.48), (5.2.3) below):

on(w 271 Ky (1) 0 (2 2) Kn(2) = K (2) 00 (2 2) Ky (2) 0 (2271, (4.3.66)

where x,z are spectral parameters and Baxterized elements o, (z) € Hjyy1 are defined in
(4.3.38). The reflection equation (4.3.66) appears, e.g., in the theory of integrable spin chains
with boundaries [263] and in 2D quantum integrable field theories [262] (see also Subsection 5.2
below). Taking the reflection operator K, (x) in the form
Yn — é xz
Ky(z)= P52 4.3.67
(@) = L=t (4367
where ¢ is any constant, we find [211] that this K,(z) is a solution of (4.3.66) if y,, are the affine
generators of Hy, 1. In particular, one can easily reduce (4.3.67) to the solution

n+/30/§+f+51$2

xr2 — r—2

K,(r) =1y (4.3.68)

of the reflection equation (4.3.66) if, in addition, we require that y,, satisfies a quadratic charac-
teristic equation 42 + B1y, + B0 = 0 (Vfo, 81 € C\0). The solution (4.3.67) is obviously regular:
K,(1) =1, and obeys a “unitary condition”:

Ky(z)K,(z7") = 1.
We stress that the simplest solution (4.3.68) of the reflection equation (4.3.66) was considered
in [217-219] (another special solutions were found in [220]).

If one has a solution of Eq. (4.3.66) for n = m, then a solution for n = m + 1 can be
constructed by means of the formula

Kpii(z) = (/\m)Q O () K (T) 0 ().

In particular, one can take K, _i(x) = 1 and, using (4.3.39) and (4.3.40), directly check that
(cf. (4.3.68))

Kn _ —1)\2
) 2ot (@)= 22 (an_1<x2>+—<“’ > ) =02+

solves Eq. (4.3.66).
Remark 1. Consider the following inclusions of the subalgebras H 1 C ﬁQ c---CcH Ml

2 — (24 A?) 22
5172 _ 3372

{yis00,.. 000} = -Hn C -E[n—i-l ={y;01,..., 001,04}
Then, following [211, 212|, we equip the algebra Hprs1 by linear mappings
TrD(n+1) : [:[n+1 — H—n,

from the algebra If[nﬂ to its subalgebras Hn, such that for all X, X’ € ﬁn and Y € If[nﬂ we

have
TrD(n+1) (X) = Z(O) X, TI'D(n+1) (X YX/) = XTID(n+1) (Y) X, 5

Trpman (o' XoF!) = Trpey (X),  Trpapin(XonX') = X X7, (4.3.69)
Tepm (1) = 2%, Trpe Trpwen(04Y) = Trp Trpeen (Y o),

140



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

where Z*) € C\{0} (k € Z) are constants. We stress that Z®*) could be considered as additional
generators of an Abelian subalgebra Hy which extends Hys41 and are central in Hy;.1, but for
us it is enough to put Z*) to constants.

Using the maps Trp(,41), one can construct the elements

A

To(x) = Tr ) (Jn(az) oy (z) Ky (z) oy () - - -an(a:)) € H,, (4.3.70)

where o;(x) are Baxterized elements (4.3.38) and K;(x) is a solution (4.3.67) of the reflection
equation (4.3.66) for n = 1. The elements (4.3.70) are generating functions for a commutative
family of elements in H,, since we have (see [211, 212])

[7a(2), T(2)] =0 (Va,2).

Moreover, the elements (4.3.70) are analogs of Sklyanin’s transfer-matrices [263] and, making
use of the elements 7,,(x), one can formulate [212] the integrable open Hecke chain models with
nontrivial boundary conditions. These models generalize the quantum integrable spin models
of the Heisenberg type. The local Hamiltonian of the open Hecke chain is

Ho =Y om—=yi(1). (4.3.71)

This Hamiltonian (up to a normalization factor and additional constant) can be obtained by
differentiating 7, (z) with respect to spectral parameter « at the point = 1. The Hamiltonian
(4.3.71) describes the open chain model with nontrivial boundary condition on the first site
(given by the second term in (4.3.71)) and free boundary condition on the last site of the
chain. In [212|, we show that the transfer matrix elements 7,(z) satisfy functional relations
generalizing functional relations (7" — @) relations) for transfer matrices in solvable open spin
chain models (see, e.g., [215, 216] and references therein).

Remark 2. Interrelations of periodic AH,; (see point 1. above) and affine Hy (see point
2. above) Hecke algebras has been discussed in [205]. Here we present more explicit construc-
tion [210] of these interrelations which is valid even for the braid group case (when the Hecke
condition (4.3.1) is relaxed).

Consider the affine braid group By = Ba(C) (see Definition 14 in Subsection 4.1) with
generators {oy,...,0-1,y1}. The generator y; satisfies reflection equation and locality condi-
tions

O1Y101Y1 = Y101Y1 01, [yl,O'k]:O (]{?22,,M—1)
Then the operator )
X =0om-141% € Bu
solves Eqs. (4.3.60), (4.3.61) and one can introduce new generator oy, € By according to
(4.3.61):
OM = OM-1c1Y101Y1 Oaf—1e1s (4.3.72)

which satisfies (4.1.3). Thus, Eq. (4.3.72) defines the homomorphism By, — By,.

This homomorphism of affine braid groups is readily carried over to the Hecke algebra case.
Indeed, the definition (4.3.61) of the additional generator o), (needed to close the set of the

generators o, € Hy/(q) to the periodic chain) looks like the similarity transformation of o;.
Thus, the characteristic Hecke identity (4.3.1) for the elements o7 and o) coincides.

141



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

4.8.6. q-Dimensions of idempotents in Hy(q) and knot/link polynomials

Here we follow the approach presented in [208, 209]. Consider a linear map Trp
H,.1(q) — H,(q) from the Hecke algebra H,1(q) to its subalgebra H,(q) which is defined
by formulas (4.3.69), where we take y; = 1 (it means that Z*) = Z(0) Vk) and fix the constant

o_1-a Lo
VA = W, VA = TI'D(n)<1), (4373)
for later convenience. Then one can define an Ocneanu’s trace 7r*): Hy;(q) — C as a sequence

of maps
T?“(M) = TrD(l)TrD(Q) tee TYD(M). (4.3.74)

Proposition 4.22. The Jucys—Murphy elements y, € Hpryq satisfy the following identity [208,
209/
M

Ym+1 (t—q*) (t = ye)”
L4 AT ( ) _ 4.3.75
by \ 4 Ynit1 t — 1 kl;[l t— q? yk t —q yk) ( )

1

where A\ =q — q~ and t is a parameter.

Proof. Taking into account the definition (4.3.8) of the generators y,;, we have the equations

1 -1 -1 1 AYm 1
—— 0, = O + ) 4.3.76
(t —yaer) M M@t —yy)  (t—ym) (= yars) ( )
1 L1 At 1
(t — ynms1) M Mt —yn)  E—ym)t—yum) ( )

We multiply the both sides of Eq. (4.3.76) from the right by oj;. Then, in the r.h.s. of the
result, we substitute Eq. (4.3.77) and apply the map Trps41) (4.3.69). Finally, we obtain a
recurrence relation

(t — yumr)?

where the parameter Z(?) is introduced in (4.3.69), (4.3.73). Equation (4.3.78) is simplified by
the substitution Zy, = Zy — (1 — A Z@)/(At) and we have

(t = Pyar)(t — ¢ *ymr)
(t —ym)?

1
ZMJrl = ZM + y ZM = TrD(M) (W), (4378)
- YM

(t — ¢*ym)(t — q %ym) - > _ 1 AZ©
Tnter = Zors Ty = —(1 )
(t —gmr)? M+1 = 4M Y +(t—1)
This equation can be easily solved and finally we obtain the formula
M

1 AZ© ) (t —y)? 1
Zn=— 1+ ——[1-X207,
AP ( (t—1) ,gl (= @yt —a%ye) At : )

which is equivalent to (4.3.75). "

We note that the r.h.s. of (4.3.75) is the symmetric function in y, (k= 1,...,M). It means
that the element (4.3.75) belongs to the center of the Hecke algebra Hy, C Hyyo .
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Proposition 4.23. Ocneanu’s traces of idempotents e(Tp) and e(TY)), corresponding to differ-
ent Young tableaux Ty and T, of the same shape Nt M, coincide. Thus, characteristics

qdim(A) := TrMe(Ty) = TrDe(Ty), (4.3.79)

depending only on the Young diagram N, are called q-dimension of Nt M and we have [205]

qdim(A) = ¢~ M4 H %, [h]q = % (4.3.80)

n,meN
Here hy,, are hook lengths of nodes (n,m) of the diagrams N, the product runs over all nodes
of N and the constant d is defined in (4.3.753).

Proof. We follow the proof presented in [208, 209]. Idempotents e(7)) and e(T}), corresponding
to two different tableaux T) and 7, having the same shape A, are related by several similarity
transformations with operators U; (see the L.h.s of (4.3.48)). This implies (4.3.79).

To calculate the characteristic “qdim” (4.3.79) for the diagram (4.3.34) with M nodes and
n rows, we find the right action to the both sides of (4.3.75) by the idempotent e(Tj), where
T is any Young tableau of the shape of Young diagram (4.3.34). We take the “row-standard”
tableau T)p corresponding to the eigenvalues of y, arranged along the rows from left to right
and from top to bottom:

=1 1m=d¢ ys=¢" ..., Yn -1 = q2(A1—2)7 Y, = q2(A1—1)7
Yn+1 = q 2, Ynit1 =L, ooy Ungtr, = q2(>\2—2)’ (3581)
Yninpr = q*Z(nfl)’ Yy = q2()\nfn)’

where n is the number of rows in A. After substitution of the eigenvalues (4.3.81) into the
r.h.s. of (4.3.75), which is the product over all M nods of the Young diagram (4.3.34), and
cancelation of many factors, we obtain the result (ny =n, ng:=0):

k

(g—q ") u, t— g2 t— g2 —nr)
TrD(M+1) ( - PJ— = €<TA) PR 71;[ P QQ(A(T)*nm—l) —1]. (4.3.82)

We inserted into the Lh.s. of (4.3.75) the spectral decomposition of the idempotent e(7y) (see
(4.3.35)):

e(TA) - e(TA) Z Hj = Z Pj7 Pj Y1 = PJ s My = QQ()\(j)_nj_l)'
J J

The idempotent P; = e(Tpy)) € Hy41 projects yar41 on its eigenvalue p; which also appeared
in the denominator in the r.h.s. of (4.3.82) for r = j.

Let us discuss in more detail how one can deduce the expression in the r.h.s. of (4.3.82).
It is obtained if we evaluate the action of the idempotent e(7)) on the element in the r.h.s.
of (4.3.75) for each rectangular block in the diagram A (4.3.34) with all rows having the same

length A,y and the number of rows equal to (1, — 7 —1). The result of such evaluation, given
in the r.h.s. of (4.3.82), is the product of the factor z:g—j: and all factors which are visualized

as figure in (4.3.83) and correspond to all rectangular blocks in the diagram (4.3.34)):
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Nm—1 (m) 4
+1 -1 ( = " = H (t - /J’z) =
M — + ’ + =1
s » (4.3.83)
i + _ (=g ) p—g" P )
—1 (nmv )‘(,m)) (tfq—Qnm)(t7q2<)‘(m)*"m—1))

Each rectangular block contributes to the r.h.s. of (4.3.82) four factors which correspond to
four cells indicated in (4.3.83) by indices a; = £1 and having contents i (i = 1,...,4). Indices
a; = %1 are powers of the factors (¢ — ), in the r.h.s. of (4.3.83). Two factors which
correspond to sells with contents (—n,,_1) and (—n,,) are canceled in the r.h.s. of (4.3.82) by
neighboring blocks from top and bottom if any. The other cells of the block (4.3.83) have the
powers equal to zero, the corresponding factors are canceled and do not contribute to the r.h.s.
of (4.3.82).
Now we compare the residues at ¢t = p; in both sides of Eq. (4.3.82) and deduce

(t — ¢*PAw=m))

:]w

- ( . —2d>
(¢g—q) (t— )

1

TrD(MH) (e(T,\m)) —
(t > P nr-1))

>3
ll*':] i

t=pj=q" ) =)

Hn meN [hn m]q
= ¢(Tp) - ¢~ [gPo ] == o (4.3.84)
! Hn,meA(j) [h;l,m]q
where Ay, and hf, . are hook lengths® of nodes (n,m) of the diagrams A = M and AV F

(M +1). The diagram AY) is obtained by adding to A (shown in (4.3.34)) a new node with
coordinates (n;—1 + 1, Aj) + 1), as it is shown in the picture:

ae)

ny
n1’>‘(1)
NG =
M+ nj*l’)\(jfl)
njTNj—1 (TZ .
i—1t 1A )
(4.3.85)
n.,A\ .
777(5)
Np—Nk—1
nk,)\(k)

To deduce the last formula in (4.3.84), we need to check the identity

s 1 agy (OO0 — @2Oo )y E (20m -0 — 2o e

J— J _=

’ R e T R NP e S A A
r#j (r,m)en)

(4.3.86)
where ng = 0, n, = n, while A, ,, and h;m are hook lengths for cells with coordinates (r,m) in

the diagrams A and AU), respectively. The products in the r.h.s. of (4.3.86) run over all cells

25The hook length of the node (n, m) of the diagram A = [A1, g, .. .] is defined as hy, , = (A + A, —n—m+1),
where AY = [A\Y, Ay, ...] is the transpose partition of the partition A.
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of A and AY. To prove (4.3.86), we note that the lengths of hooks h,.,, and h;. , for diagrams
A and AY) differ only for cells, for which r = nj_1+ 1, or m = Ay + 1, i.e., for cells located in
the same row, or in the same column with additional cell (n;_1 + 1, A(jy + 1). Thus, we have

1 (brnds o
T Mol 11

r=1 [ ;‘,)\<]~)+1]q m=1 [h%j71+1,m]q.

A
I:hr7)\(j)+1]q Y [hnj—1+17m]q

(4.3.87)

rMEAR+1

Further, if rows with numbers r and r + 1 in the diagram A have the same length, then we
obviously have h,. A+l = h.. ISEVNEE And analogously, if the columns with numbers m and
m + 1 in the diagram A have the same height, then we have h,, 11, = hn 1 +1m41- Lhat is
why a lot of factors in the r.h.s. of (4.3.87) are canceled, accordmg to the block form of diagram
(4.3.34), and we obtain contributions only from the first and the last row in the blocks (located
above the additional cell in AU)) of the diagram A:

nlj—[l [ r)\(J>+1 ﬁ n,, )\(J>+1 o Jj—1 (q2(/\(p)—np) _ q2(>\(j)—nj—1)) (4 5 88)
- (R, A >+1 p=1 np . /\(J)H] b (2Pw 1) — 2O =ni-1)y’

and contributions only from the first and the last column in the blocks (located to the left of
the additional cell) of the diagram A,,:

A(” ko Ih 2Ny —15-1) 2\ —1p)
”] 1+1, m [ nj_1+1, )\(p) _ _)\( ) (@)~ M=1) — q (p) ~Mp ) 4
H L=1w p=a H ey (1359)

1 TL] 1+1,mlq p=j h’I’LJ 1+1, A(p+1)+1

The substitution of (4.3.88) and (4.3.89) into (4.3.87) gives (4.3.86). Finally, we apply Oc-
neanu’s trace 77 to both sides of Eq. (4.3.84) and find the recurrence relation

[T [hnmlg

. i . n,men
qdim(AY) = qdim(A) ¢~¢ [A\j) — nj_1 + d]y —m——
A | G
n,meNd)
which is uniquely solved (up to a constant multiplier®®) as in (4.3.80). n

The R-matrix representations (see [42, 113]) of the Hecke algebra Hy;41(q) were discussed
in Subsection 3.4 in the context of the quantum group GL,(N) and in Subsection 3.7 in
the context of the quantum supergroup GL,(N|K). For the R-matrices (3.7.1) related to the
quantum supergroup GL,(N|K), the parameter d is equal to (N — K). This fact follows from
Egs. (4.3.69) and (4.3.73) in the limit ¢ — 1. It also justifies our choice of the parametrization
of Zy in (4.3.73).

The statement (4.3.79) in Proposition 4.23 can be generalized. Let T' be a quantum matrix
satisfying

Riy TV Ty = Ty Ty Ry, (4.3.90)

where Ry» = p(o1) is the R-matrix representation of the Hecke algebra.

26We fix this multiplier by the condition qdim(0) = ¢~?[d], = Z(?; see (4.3.73).
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Proposition 4.24. The quantum traces (for the definition of the quantum traces see Subsec-
tion 3.1.2) of the matrices [Ty ---T,, p(e(Tp))] and [Ty ---T,, p(e(T}))], where different tableaux
Th and T, are of the same shape Nt M, coincide:

Thus, the element xA(T') depends only on the shape of the diagram A.

According to Proposition 3.8 (see Subsection 3.2.4), the elements yA(7) for all Young diagrams
ANEM (M =1,2,3,...) generate the commutative subalgebra in the RT'T algebra (4.3.90).

Consider the GL,(N) quantum group (4.3.90) with the standard GL,(/N) Drinfeld-Jimbo
Rys-matrix (3.4.9). As we mentioned above (see Subsection 3.4 and [42, 113]), this standard
GLy(N) matrix Ry, (R-matrix in the defining representation) gives the representation of the
Hecke algebra. We note that the GL,(N) quantum matrix 7' can be realized by arbitrary
numerical diagonal (N x N) matrix Y = diag(zy,...,zx). Then xa(Y) is a numerical function
of the deformation parameter ¢ and the entries {z;} of Y. In the classical limit ¢ — 1,
the operator p(e(Tp)) tends to the Young projector, and the function xa(Y') coincides with a
character of the element Y € GL(N) in the representation corresponding to the diagram A;
i.e., Xa(Y)|4—1 coincides with the Schur polynomial Sx(zy, ..., zyN).

Remark 1. The hook formula (4.3.80) for the g-dimension of A = M is written in the remark-
able form (which is more convenient for calculations):

k
. _ [d+i—1], .
qdim(A) = ¢ MdH[d—)\\/+@ .1 )\V—l—k: i 'H)\v A+ =)y (4.3.92)
i=1 i
where AY = (A, Ay, ..., A)) is the transpose partition of A and [h], := —at

a—q
Remark 2. At the end of this subsection, we derive a universal analogue (in terms of Hecke
algebra generators) of the formula (3.1.57) for knot/link invariants. Let B, be monomial
written as a product of generators o; € Hy,. It is clear that By_,,, is visualized as a braid with
M strands. Then, by means of the Ocneanu’s trace (4.3.74), we construct the Hecke algebraic
analog of (3.1.57) in the form

Q(Bisw) = Tr™ (BiLu). (4.3.93)
Insert in the right-hand side of (4.3.93) the resolution of the unit operator (see the second

equation in (4.3.2))
1= "e(Ty) =D P(Xq), (4.3.94)

N=M 5

where e(T ) = P(X3z) are mutually orthogonal idempotents related to the standard Young
tableau T, (with a content @ = (ay, ..., ay)) having the shape of the Young diagram A + M
(or related to the path Xz in the coloured Young graph for Hj;). The sum in the r.h.s. of
(4.3.94) is going over all standard tableaux with M nodes, or equivalently over all their contents
a € Spec(yi, ..., ynm). As a result, we obtain for knot/link invariants (4.3.93) the expressions

Q(Biou) = zWM (Biswm P(X7)) = ZTr '(P(Xg) Bisu P(Xa) =
=an<BHM>Tr )(P(Xz))) = > qdim(A ) > Cany(Bion),

A-M a(n)

(4.3.95)
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where we used relation P(Xz)? = P(Xz), cyclic property of Tr®M) the identity (4.3.53) for
the diagonal matrix units of Hy, and substitute 7r*) (P(X;,))) = qdim(A) for the Young
diagrams A - M. In the last equality of (4.3.95), we split the sum over all contents @ of the
standard Young tableaux with M nodes into the sum over Young diagrams A = M and the
sum over all contents @(A) of the Young tableaux T, having the fixed shape A = M. We note
that in (4.3.95) the g-dimensions qdim(A) (given by formula (4.3.80)) are independent of the
braid Bi_, ) and all dependence on B,y is contained in the coefficients Cga)(Bioa). As
was indicated in Subsection 4.3.4, the coefficients C’a(A)(BlﬁM) can be explicitly calculated
with the help of Egs. (4.3.55), (4.3.56), and (4.3.58). The R-matrix version [221] of the formula
(4.3.95) is extensively used in [222-227] (see also references therein) for calculations of HOMFLY
(GLy,(N), N = d) knot/link polynomials.

4.4. Birman—Murakami-Wenzl algebras BMWy11(q,v)

4.4.1. Definition
The Birman-Murakami-Wenzl algebra BMW,

/11 (q, V) is generated by the elements x;|i—1...
and invertible elements o;|;=1, s which satisfy (4.1.1) and the following relations [228, 229, 244]:

-----

Ki O3 = 0 Ki = UV Kj, (4.4.1)
ki ol kg = v Ky, (4.4.2)
o — o0 =M1 - k), (4.4.3)

where v € C\{0, £¢*'} is an additional parameter of the algebra; A = ¢ — ¢~!. The following
relations can be derived from (4.1.1), (4.4.1)—(4.4.3):

Ki Ki = | Kq, (4.4.4)
(p=A+v =) A=-w+qgHlv—q Ww)1), (4.4.5)
KiOit1 03 = Oit1 0 Kit1, (4.4.6)
Ki Oit1 05 = Ki Kit1, (4.4.7)
Ki Oy 07 = Ki Kig1, (4.4.8)
Oit1 Ki Oig1 = 0 " Kit Ui_l, (4.4.9)
Ki Kit1 ki = K, (4.4.10)
Kit1 Ki (0521 — A) = K1 (03 — A), (4.4.11)
(0; = N) Kiz1 (05 — A) = (0421 — A) K (021 — N). (4.4.12)

Equation (4.4.4) is deduced by the action of the element x; on (4.4.3) and using (4.4.1). Re-
lations (4.4.6) follow from (4.1.1) and (4.4.3). Relations (4.4.7) and (4.4.8) with lower signs
are obtained by multiplying (4.4.2) with o7 07" from the right and using (4.4.1) and (4.4.6).
Equation (4.4.9) follows from (4.4.7), (4.4.8). Combining the pair of relations (4.4.2) in the
form: k; (0,41 —0735) ki = (v' — v) k; and using (4.4.3) and (4.4.4), we derive (4.4.10). Equa-
tion (4.4.11) is proved as follows:

Rit+1 Ri (Ui:tl - )\) = KRi+1 Ry (Ui_ill - Afiz’il) = Ki+1 (Ui - /\)7

where we have used (4.4.3), (4.4.7), and (4.4.10). Equation (4.4.12) is deduced by means of
Eq. (4.4.11), its mirror counterpart, and Eq. (4.4.10). The pairs of equations in (4.4.6)—(4.4.10)
(with upper and lower signs) are related to each other by the similarity transformations

-1 -1
Oit+1 = ViUz‘—lvi , O0p = ‘/io-iV; )
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where V; = 0;_10;0,110,0;_10; (the only braid relations (4.1.1) should be used). We also present
the relations

Kix1 Ki (0705 + A) = Kiwa (071 + ), (4.4.13)
(07 N R (0,1 + ) = (05 + N ki (04 + ), (4.4.14)

which are related to (4.4.11), (4.4.12) via the obvious isomorphism (o3, q,v) <+ (o; ', ¢, v™1)
of the algebras BMW,,,, (¢q,v) ~ BMW,,, (¢"',v"). This isomorphism can be checked by the
substitution o; — o; ! in (4.1.1), (4.4.1)—(4.4.3).

In fact, the pair of relations (4.4.2) (in the definition of the Birman—Murakami—Wenzl alge-
bra) is not independent for the case v # A [136]. Indeed, using k; 0;_1 k; = v~ k; and (4.1.1),
one can deduce 0,_10;K;_1k; = VK;0;_1Kk; = K;, Which is written in the form o, 11/@ = 0,Ki_1K;.
Acting to this relation by Ax; from the left, we deduce

1 -1 ~1 1
ARiO; 4 Ki = AEKiKi_1K; = VKi(0;, — 0i—1 + AR = VKo, 1K + V(A — V)R,

which is equivalent to (A — v)(k;0; Y k; — vk;) = 0 and, thus, to the above statement.

The BMW,,(q,v) algebras are g-deformations of the Brauer algebras Br;, (w) (for the defini-
tion of the Brauer algebras see, e.g., [102, 139] and references therein) and dim BMW,, (q,v) =
(2M — 1)!! (for general parameters ¢, ).

4.4.2. Symmetrizers, antisymmetrizers and Baxterized elements in BM W41

Below, for brevity, we often omit in the notation BMW;, (q,v) the dependence on the

parameters ¢,v. One can construct the analogs of the symmetrizers and antisymmetrizers for
the algebra BMW,, . using the inductive relations similar to that we have considered in the

Hecke case (4.3.43):

Stsn = fl(;)n S1on-1 = S1n-1 ﬂ;)n, (4.4.15)
Al—)n = fl(:)n A1—>n—1 = Al—)n—l 75—:)717 (4416)

where 1-shuffles are

+ 1 @ + e + e
B = @ S e D),
N

—(+) 1 1 e + e +
P = oD (D) o () o (),
0

and O'i(:t)(l') are Baxterized elements (cf. (3.12.14), (3.12.15), (3.12.16)) for the algebra

BMW,,,(q,v) (see [200, 237-239], [46]):
ES PR . (v+q) B
o) = 107 oo+ L (1417)
rl—x A VA
= i 1 i = 44.1
A (U i (z72—1) " (v—az2) " ) R (1.4.18)

= (150700 (14 S e )
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These elements are normalized by the conditions ¢*)(+1) = +1, satisfy the Yang-Baxter
equations

o) () o), (zy) 0P (y) = o, (v) 0P (2) o, () (4.4.19)

and obey

o (@) o @ = (1= -2 1. (4.4.20)
Let parameter a be (—q), or ¢~! (see (4.4.18)), and we respectively denote al(a)(x) = ai(i) ().
Then the Baxterized elements (4.4.18) are written after an additional normalization in the form
(cf. (4.3.42))
(o) Az @) = (7= 02")

o, (x) = o (o —an?)

CRrErr=yi (4.4.21)

New normalized elements (4.4.21) obviously satisfy “unitarity conditions™ o\ (z) o (2~1) =
1 and 0@’ (£1) = 1. Identities (4.4.17)-(4.4.21) are checked with the help of relations (4.4.1)-
(4.4.12).

Note that the elements az( )( ) and a( )( ) (4.4.17) are related to each other by the trans-
formation ¢ « —q~!, which corresponds to the isomorphism of algebras BMW,  (q,v) ~

BMW,, (=g, v) and we also have

M+1

oD (2) = 0 () = et )@ =)

(xv + gz V) (zv — ¢tz 1) i

We also stress that the both inequivalent sets (4) of the Baxterized elements (4.4.17) are
important for explicit constructions of (anti)symmetrizers (4.4.15), (4.4.16). To our knowledge,
these both sets (4.4.17) were firstly presented in paper [237] (see also the very first version [46]
of these lectures). The only one of these sets was presented in [200, 238 and in [239].

It follows from Eqs. (4.4.1)-(4.4.3) that the algebra BMW,,, (q,v) (v # A) is a quotient of
the braid group algebra (4.1.1) if the additional relations on o; are imposed:

(0i = @)(os + ¢ ")(os —v) =0, (4.4.22)
(o7 + A —03) (o5} (o7 + A —0;) = W) = 0.

This quotient is finite-dimensional and the dimension of BMW,,, (q,v) is (2M + 1)l =1 -
3---(2M + 1) (this dimension evidently follows from the graphical representation (3.10.36) of
the BMW, v) elements). The whole set of basis elements for the algebra BMW,, (q,v)

M+1 (
appears in the expansion of the symmetrizer Sy, (4.4.15) (or antisymmetrizer Ay (4.4 16)).

Note that the quotient of the Birman-Murakami-Wenzl algebra BMW, v) (4.4.1)-(4.4.3)

(457

by an ideal generated by k; is isomorphic to the A-type Hecke algebra H M+1( ).

The first symmetrizer and antisymmetrizer for the algebra BMW, (q,v) are
(cf. Egs. (3.10.5), (3.12.17)):

_ 0.2_ —2 0'2—V2
Sz = o010 (67) = G = i
4.4.23

= ﬁ(q o1+ qy—1“1> qz_lq—z (0f —a )1 = p~ k),
0.2_ 0.2_,/2

A = o) = By =

(4.4.24)

- ﬁ(q — o 1+q3\1V*1"€1) - q*21—q2 (07 =) (1 = " k1),

149



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

They are obviously orthogonal to each other and to the element x; in view of the characteristic
equation (4.4.22). The following equations also hold:

057)@) Sime =0= kK1 5159, 0§+)(q’1) Ao =0=rK1 A1,

which can be deduced from the “unitarity conditions” (4.4.20) and first equalities in (4.4.23),
(4.4.24). In fact, these equations are special cases of the more general relations (for i =
L...,n—1):

0\ (@) S1n = S1m ol (@) = 0,

O-(Jr) (q_l) Alﬁ\n - A1~>n O-i(+) (q_l) = 07

1

which equivalent to the equations (i =1,...n — 1):

(Ui - q) Sion =0=51, (Ui - q), KiS1on = 0= 51, Ri,
(4.4.25)
(oi+q¢ Ao =0=A1n (i +q ), KA, =0=A1 kK,

and demonstrate that Sy 41, A1 41 are central idempotents. Equations (4.4.25) can be
readily proved by means of the analogs of the factorization relations (4.2.6), (4.2.11) or by the
induction using (4.4.15), (4.4.16) and the Yang—Baxter equations (4.4.19).

We note that the idempotents (4.4.15), (4.4.16) can be easily written in the form (cf.
(4.3.36), (4.3.37))

() (g—(n=1)
Sl%n = Slﬁnfl %q) Slﬁnfl, (4426)
0.(+) n—1
Alan = Alﬁnfl %«;{) Alﬁnfl. (4427)

This inductive definition of the idempotents (4.4.15), (4.4.16) was also used in [131] and in [241]

(see Lemma 7.6). Note that, in view of the definitions (4.4.17) of Baxterized elements a,(f) (x),
expressions (4.4.26) and (4.4.27) have singularities for ¢** = 1, v = ¢** 2 and ¢** = 1, v =
—q 243 (k = 2,...,n), respectively. It means that the representation theory of the BMW
algebras has to be modified for ¢?* = 1 and v = +¢*2+73.

Using the representations (4.4.26), (4.4.27), we prove the analog of Proposition 4.18 about

symmetrizers and antisymmetrizers for the case of the Birman—Murakami—Wenzl algebra.

Proposition 4.25. The idempotents S1_p, and Ay, (n=2,... M + 1) (4.4.26), (4.4.27) for
the Birman—Murakami—Wenzl algebra are expressed in terms of the Jucys—Murphy elements
(k=2,...,M):

Y = 17 Yk+1 = OLYrOk, [ylm ym] = 07 (4428)
as follows:
T Wwi—a?) (v
St = ' - <. 4.4.29
1 g <<q2(z—1) —472) (D — p2g—2-2) ( )
T (yi — %) (yi — 2072
Aton = H ((q—2(i—1) @) (26D — 222y ) (4.4.30)

Il
)

(2
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Proof. To prove the identity (4.4.30), we show that it is equivalent to (4.4.27). The identity
(4.4.29) for the symmetrizers (4.4.26) can be justified analogously. The equations (4.4.24)
demonstrate that (4.4.30) coincide with (4.4.27) for n = 2. Then we use the induction. Let
(4.4.30) coincide with the formula (4.4.27) for A;_,, for some fixed n > 2 and, thus, it is the
element which satisfies (4.4.25). We prove that the formulas (4.4.27) and (4.4.30) are equivalent
for Ay_,n41. In view of the induction conjecture and obvious properties [A1_,, Yni1] = 0 (since
Ay, is a function of y;) we obtain from (4.4.30):

(Ynt1 — ¢*) Ynt1 — V2q2(n71))
Avnis = A S o () Ao (4.4.31)

We need the identities

1 1 2 1 1

2 2 _— -1,_-2 - -
Op...090102...0pKy =V 0,°1...09 0 Og ...0,° 1Ky =

Yn OnYn bin =VEn = Yns1YnKn = V2 Kn, (4.4.32)

which follow from equation oykg1 = ak_ilmkmkﬂ. We also deduce the analogs of the identities
(4.3.8) for the Birman-Murakami-Wenzl algebra case:

n—1
_ 2 _
Ynil = Op ...090709...0p =1+ A (Z ai...an_lanan_l...amtan) —
i=1

(4.4.33)

n—1
—A\v <Z:1 ot o ket o Fén) ,
Using Eqs. (4.4.32), (4.4.33) and A1y, = ¢*""™A,_,, (see Eqs. (4.4.25) for A;_,,,), we obtain
v
Arsn Ynpr Aron = Aion (1 +q(1—q ") on+ 7 (1- qQ")/-:n) A, (4.4.34)

—2n v n
Al%n Z/TZLH Al%n = Al%nyn+1 (1 +4q (1 —q 2 )Un + E (1 - q2 )ffn) Al%n =

= A1on[(14+Ag(1—q72) + q(1 — ¢ ") (¢* + ¢ *")on+

(4.4.35)
FL(1 =) = 2" + ¢+ v(A+ vg? " D)Rn) AL
Then we substitute (4.4.34) and (4.4.35) into (4.4.31) and finally deduce
—1 —2n —2n
g (™" = Von v = D
A1—>n+1 = m A1_>n (1 + \ + (q72n+1 T V) Al—)na (4436)
which coincides with (4.4.27). =

One can prove directly the identities (4.4.25) for elements (4.4.29), (4.4.30). We again use
the induction. Let (4.4.25) be valid for (4.4.30) for some fixed n > 2 (it is obviously correct for
n = 2). Then we have to prove the identities (4.4.25) only for n — n + 1 and ¢ = n. One can
deduce

Ain (yn—i-l - V2q2(n_1))’§n = A1sn (Ynt1 — v? ygl)“n =0, (4'4'37)

151



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

where we have applied identities (4.4.32) and A;_,y, = A1_n,q 2"V, Using Eq. (4.4.37) and
the relation [A;,,, ynt1] = 0, we prove that Ay, 1k, = 0 for (4.4.31). Now consider the
following chain of relations:

At n (Y1 — @) on +07) = A1 (00Ynon — @) (on +q71) =

= Al%n (q OnYnOn + OnYn — Ayanyn"in - q20n - Q) =
n—1

= A, (=) R, (Z (1) g et o g+ (4.4.38)

i=1

n—2
+ 3 ()" g Ry g0,y 0 QR Vq2(1—n)) 7
=1

where we have used Eqgs. (4.4.25), (4.4.32), and (4.4.33). Multiplying Eq. (4.4.38) by the factor
(Yni1—12¢* ™) from the left and taking into account (4.4.37), we obtain A;_,,41(0,+¢~ ') = 0.

Remark 1. The idempotents S;_,,, and A;_,, for the Birman—Murakami—Wenzl algebra have
been also constructed in another form in [240]. The authors of [240| (as well as the authors
of [241]) have not used the Baxterized or Jucys—Murphy elements and, thus, their expressions
for Si_,, and A;_,, look rather cumbersome. The construction of the primitive idempotents
S1n and A;_,, in terms of the Baxterized elements (4.4.17) has been proposed by P. Pyatov
in fall of 2001 and used, e.g., in [131]. After the substitution of (4.4.17) to (4.4.15), (4.4.16)
and direct calculations one can derive the formulas for S, and A;_,, presented in [240].

Remark 2. Assume that the projectors A;_,,.1 (or S1_,41) are equal to zero for some n, while
A1 # 0 # S1.,,. It leads to certain constraints on the parameter v. Indeed, from conditions
Fns1A15ne16ne1 = 0 and K, 4151 5n416n+1 = 0 we obtain constraints K/n+10'7(1+)<qn)/§/n+1 =0 and
/fn+10'(7)(q_n)/€n+1 = 0, respectively. These constraints are equivalent to equations (n > 0):

v+ q ) —g ) (v +q ) =0,
(v =g (v = ¢ D) (v + ¢ V) = 0.

It means that for k& > n all antisymmetrizers A;_,; could be equal to zero only if v takes
one of the values v = —¢g~ "1 +£¢'~", and, respectively, for k > n all symmetrizers Si_
could be equal to zero only if v = ¢®"*Y 4¢""1. Recall (see Subsection 3.9) that v = ¢*™
and v = —q¢~'7?" specify Birman-Murakami-Wenzl R-matrices for SO,(n) and Sp,(2(n + 1))
groups, respectively. The parameter v = ¢"~! could be related to the Osp,(2(m + 1) — n|2m)
R-matrix (3.11.52) with the choice (3.11.49), (3.11.50).

4.4.3. Affine algebras a BMW ;1 and their central elements. Baxterized solution of reflection
equation

In Subsections 4.4.3 and 4.4.4, we follow the presentation of the paper [242].

Affine Birman—Murakami-Wenzl algebras aBMW),.1(q,v) are extensions of the algebras
BMWy41(q,v). The algebras a BMW )., are generated by the elements {o;, x;} (i = 1,..., M)
with relations (4.1.1), (4.4.1)—(4.4.3) and the affine element y; which satisfies

OLY1 011 = Y1011 01, |0k, t1] =0 for k> 1,
K1 Y101Y101 = CKi = 01 Y1 01 Y1 K1, (4.4.39)
/ﬁy?m:é(”)/ﬁ, n=1223,...,

where ¢, 20" are central elements. Initially, for the Brauer algebras, the affine version was
introduced by M. Nazarov [245|. Below we use the set of affine elements

Y1,  Ypa1 = OpYr0x € aBMWy, k=1,2,... M. (4.4.40)

These elements generate a commutative subalgebra Y41 in a BMW ;4.
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We need some information about the center of a BMW.
Proposition 4.26. The elements
M
Z=uy"Y2 Yu, Z n—c"y;"), neN (4.4.41)
k=1
are central in the a BMW), algebra.

Proof. One can directly check the centrality of (4.4.41) by making use of the relations (4.4.39)
and (4.4.40). "

Remark 1. The set of central “power sums” Z(n = > . (yp — "y, ") is produced by the

generating function
ZZ n)tn 1 _ lOg Yy —ct .
ko T Ukt

Consider an ascending chain of subalgebras

aBMWy, C aBMW; C aBMWy C --- CaBMWy CaBMWyyq,
where aBMWy,aBMW,, and aBMW; (j > 1) are, respectively, generated by {c, 2™},
{e,2M 4}, and {c, 2 y),01,09,...,0;_1}. For the corresponding commutative subalgebras

we have V) C Yo C -+ C Yy C Y.

Proposition 4.27. Let ZAlgn) be central elements in the algebra aBMW;, aBMW, C
aBMW, s, defined by the relations

Kk 1Y K1 = Z,gn) Kpr1 € aBMWy,o (Zé") =z, Z,io) =30 = 1). (4.4.42)

Then the generating function for the elements ZA,in) 08

> v 1
Z i = _ + 02 <ZtnAn _—1_ _62>X
(@—q) t (g—q ") (Q—ct?) (4.4.43)

. (= g2 — ey ) (g2 — ey tt)
" Hl (I —cy ") —yt) (a2 —yet)

Proof. We define the following function of central elements in a BMWj:

0= 40 e
F q—Q) (1—ct?)

n=0

Then one can deduce (see the method in [246]) the recursive formula

_ =yt (@ — ey (g — ey 't)
WO e - @ w0 A

where Qy_1(t) € aBMWy_y C aBMWj. From (4.4.44) we immediately obtain (4.4.43). "
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Remark 2. The evaluation map aBMW,; — BMW,, is defined by

vl—vp

q—qt

=1l = e—? 214 =/ (4.4.45)
Under this map the function (4.4.43) transforms into the generating function presented in [246],
where it is used for a proof of the Wenzl formula for the quantum dimensions of the BM W),
primitive idempotents.

Remark 3. The homomorphisms of the periodic BMW,, algebra to the algebra BMW,,
and to the affine algebra a BMW,, ,, are defined by the same Eqs. (4.3.62) and (4.3.72) as in
the case of the group algebra of the braid group. Indeed, for the periodic BMW,, . algebra the

M4+1
characteristic identity for o, is the same as for o1, while the relations

+1 1 +1 1
K10y K1 =V K1, Kpm-10y KM—1 =V Ky

can be checked directly.
Remark 4. We redefine the Baxterized elements in (4.4.17), (4.4.21) as follows:

Ay —a)
(v—ax1)

o, —ax

U(a)(ZE) = (0, —z0; ")+ ki = (a™' —ax™") (4.4.46)

o, —ax~t’
where we change the spectral parameter 22 — z and denote by a the solution of the equation
a'—a=\=q—q ' It was discovered in [211] that the element of the affine BMW algebra

() = flu) P (1.4.47)

(here €2 := ac/v and f(u) is any numerical function) solves the reflection equation (cf. (4.3.66),
(5.2.3)):

yj(w) oj(uv) yj(v) oj(vu™) = o;(vu™) y;(v) o5 (uv) y;(u). (4.4.48)
This fact is important in the study of the evaluation homomorphisms for the quantum universal

enveloping algebras; see [102] for the classical counterpart. The main ingredients of the fusion
procedure [243] — the elements

yj(ul, ey Uj—1, U) = aj,l(u Ujfl) yj,l(ul, ceey Uj—2, 'LL) O'];l('u, U;_ll), yl(U) = yl(u)
(j=1,...,n—1), also satisfy the reflection equation
Vi(ur, ... uj1,uw) o5 (uv) Yi(u, ... uj_q,v) o5 (vut) =
(4.4.49)
= O'j (U u‘l) yj(ul, ce ,Ujfl,?)) O'j ('LL’U) yj(ul, Ce ,uj,l, u)

This is shown by induction in j.
4.4.4. Intertwining operators in a BMW ;.1 algebra
Introduce the intertwining elements U4y € aBMWyyq (k=1,..., M) (cf. (4.3.17)):

Uks1 = [0k, Yk — C Yty (4.4.50)
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Proposition 4.28. The elements Uy satisfy (cf. (4.3.19)-(4.5.21)):

Uik = Yrr1 Urv1,  Urpr¥eer = Ue Urs1,  Urpryi = i Uy for i £k k+1,

_ _ &
U1 [0k, vkl = (qyn — ¢ Y1) (@Y1 — ¢ 0) (1 — ) (4.4.51)
Yk Yk+1

Ukt1Up U1 = U Upg1 Uy,

Kk Uky1 = Upy1 5 = 0.

The elements Uy, provide an important information about the spectrum of the affine elements
{y;} defined in (4.4.40).
Lemma 3 (cf. Proposition 4.19). The spectrum of the elements y; € a BMWy11 satisfies

Spec(y;) C {¢** - Spec(y1), ¢ - Spec(yi ')}, (4.4.52)

where Z is the set of integer numbers.
Proof. We prove it by induction in j. Equation (4.4.52) obviously holds for y;. Assume that

Spec(y;—1) C {¢°” - Spec(y1), cq®® - Spec(y; ")}, j > 1.
Let f be the characteristic polynomial of y;_1, f(y;j—1) = 0. Then
0=U;f(yj-1)[oj-1,yj-1] = f(y;)Ujloj-1,y;-1] =
= fu)(@Pyi—r — ;) (w5 — a2yj-1) (y; — cyity) vy

Here we used (4.4.51). Thus, Spec(y;) C Spec(y;—1) U ¢*2 - Spec(y;—1) U ¢ - Spec(y; ). =

We denote the image of w € aBM W) under the evaluation map (4.4.45) by @, e.g., y; — ;.
The Jucys-Murphy (JM) elements g; (j = 2,..., M) defined in (4.4.28) are the images of y;:

2
Yj =0j_1...000,02...0j_1 € BMW)y,.

Lemma 3 provides the information about the spectrum of JM elements 3’s.
Corollary. Since g; = 1 and ¢ = v, it follows from (4.4.52) that

Spec(y;) C {¢*, v*¢**}. (4.4.53)
4.5. Representation theory of BMW .1 algebras

The representation theory for the Birman—Murakami—Wenzl algebra was constructed in [244]
(see also 247, 248]). The approach considered in this subsection (the colored Young graph,
the analog of Proposition 4.20, the explicit formulas for all primitive idempotents in terms of
the Jucys—-Murphy elements, intertwiner operators Uy (4.3.19)—(4.3.21), etc.) similar to that
presented for the Hecke algebra case in Subsection 4.3 was developed in [242].
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4.5.1. Representations of affine algebra aBMW,

A. aBMW,; algebra and its modules Vp
The elements {y;, yit1,0:, ki } € aBMW), (for fixed i < M) satisfy

(=g D=0 —oi+(@—q"), (4.5.1)
Yirl = Oili0i,  YilYir1 = Yir1Yi, KilYi ki = Al-(f)llii, (4.5.2)
YilYYir1Ki = CKi = KilYfiy1Yi- (4.5.3)

The elements ¢ and Zl(f)l commute with {y;, yis1,0:,k:}. The elements {y;,yir1,04, ki} €
aBMW),, generate a subalgebra isomorphic to aBMWs;.

Below we investigate representations p of a BM W, for which the generators p(y;) and p(y;41)
are diagonalizable and p(c) = v?-1d. Let ¢ be a common eigenvector of p(y;) and p(y;11) with
some eigenvalues a and b:

pyi) Y =av, p(yir1)p =by.
The element 2z = y;y;11 is central in aBMW,. There are two possibilities:

Eq. (4.5.3)
L op(ri) #0 = p(Yiyi1) =v?-1d = ab=v% (4.5.4)

2. p(k;) =0, the product ab is not fixed.

Further for brevity we often omit the symbol p and denote the operator p(z) for x € a BMW
by the same letter z; this should not lead to a confusion.

Applying the operators from aBMW, to the vector v, we produce, in general, infinite-
dimensional aBM Ws-module V, spanned by

€o = %
er = K, es = 01,
€4 = Yiki, es = 0Yiki,
€6 = y?/‘@ﬂﬁ, €r = Uiygf‘v‘z‘l/),
......... , B,
eoria = Yrrih,  earyz = oy (K=1),.......

Using relations (4.5.1)-(4.5.3) for aBMW,, one can write down the left action of elements
{Yi, Yit1, 04, ki} on V. Our aim is to understand when the sequence e; can terminate giving
therefore rise to a finite-dimensional module Vp, (of dimension D) of a BM W5, and to investigate
the (ir)reducibility of Vp.

We distinguish three cases for the module Vp:

(i) kiVp =0 (i.e.,, kie =0 Ve € Vp) and, in particular, x; ¢ = 0. Therefore, e; = 0 for all
J # 2,3 and V,, reduces to a 2-dimensional module with the basis {es, e3}. In view of
(4.5.4), the product ab is not fixed and the irreps coincide with the irreps of the affine
Hecke algebra aHs considered in Subsection 4.3.3 and in [208, 209].

(i) riVp #0 (i.e.,, 3e € Vp: ke #0). The module Vp is extracted from V., by constraints

2k+3
Cokys = Z U em (k> —1), ab= 17" (4.5.5)

m=1
with some parameters «a,,. The independent basis vectors are (e, ea, ..., e913). The

module Vp has odd dimension.
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(iii) ~;Vp # 0 and additional constraints are

2%k+2
Coki3 = Z Omem (k=0), ab= 1> (4.5.6)

m=1
The independent basis vectors are (eq, e, . . ., €ar12). The module Vp has even dimension.

Below we consider a version o BM W, of the affine BMW algebra. The additional requirement
for this algebra concerns the spectrum of y;, y;11 € o/ BMW:

Spec(y;) C {q2Z, quQZ}.

The evaluation map (4.4.45) descends to the algebra o/ BMW (cf. Corollary after Lemma 3).
In particular, for the cases (ii) and (iii) we have

for some 2z € Z.

B. The case x;Vp = 0: Hecke algebra case [208, 209] (see also Subsection 4.3.3).
Representations of a BM W, with k;Vp = 0 reduce to representations of the affine Hecke
algebra aHs. In the basis of two vectors (es, e3) = (¥, 0;1), the matrices of the generators are

(cf. (4.3.32)):

” = ( (1) q_lq1 > gy = ( ‘ —(q —bq‘l)b ) s = ( 8 (4 —;1_% ) (4.5.7)

where a # b (otherwise y;, y;4+1 are not diagonalizable). By Lemma 3, we have for y;,y;41 €
o BMW, the eigenvalues a,b € {¢*2, v*¢?2}. The 2-dimensional representation (4.5.7) contains
a 1-dimensional subrepresentation iff a = ¢=2b. Graphically these 1- and 2-dimensional irreps of
o/ BM W, are visualized by the same pictures as in Figures 4.2 and 4.3 in Subsection 4.3.3. Dif-
ferent paths going from the upper vertex to the lower vertex correspond to different eigenvectors
of y;, ¥;+1. The indices on the edges are eigenvalues of v;, y;11.

C. k;Vp # 0: odd-dimensional representations for o/ BM W,
Using condition (4.5.5) for the reduction V,, to Va,,.1, one can describe odd-dimensional
representations of o BM W5, determine matrices for the action of y;, y; 1 on V5,1 and calculate

2m+1 2m+1
det(y) = [ vi” =v* det(yin) = [] v = v+ (4.5.8)
r=1 r=1
Here for eigenvalues yzm, y§i)1 (r=1,2,...,2m + 1) of y; and y; ;1 we have constraints

WU = r=1om

and (see Eq. (4.4.53))
yi(r) c {2, V¢"Yy, r=1,....2m + 1.

These odd-dimensional irreps are visualized as graphs:
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yi =1

Yit1 =V

Figure 4.4

where 2, € Z and Z2m+1 2. = 0, as it follows from (4.5.8). Different paths going from the top
vertex to the bottom vertex correspond to different common eigenvectors of y;, y;+1. Indices on
upper and lower edges of these paths are the eigenvalues of y; and y;,1, respectively.
Remark. In view of the braid relations 0;0,+10; = 0,410;0;41 and possible eigenvalues of ¢’s
for 1-dimensional representations (described in Subsections 3.2 and 3.3), we conclude that the
following chains of 1-dimensional representations are forbidden:

* * *
+2

a 1 q

. T *
2
aqﬂ v 1
E X A
2 42

a veq 2

* * *

where a = ¢** or a = 1*¢** (2 € 7).

D. k;Vp # 0: even-dimensional representations of o/ BM W,
With the help of conditions (4.5.6) we reduce Vi, to Va,, then explicitly construct (2m) x
(2m) matrices for the operators y;, y;+1 and calculate their determinants

det(y;) = [[ v = eq*v*™ ", det(yis1) Hyz+1 — —eqf P (4.5.9)

where yzm, y,f:)l are eigenvalues of y;, y;+1 (we have two possibilities: ¢ = £1). We see from

(4.5.9) that all (2m) eigenvalues of y;, yl+1 cannot belong to the spectrum (4.4.53). More
precisely, there is at least one eigenvalue yZ ) of y; (and the eigenvalue yl +1 of y;41) such that

y oy ¢ {47, v

Thus, even-dimensional irreps of a BM W, subject to the conditions (4.5.6) are not admissible
for o/ BMW,.
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4.5.2. Spec(yi, ...,yn) and rules for strings of eigenvalues

Now we reconstruct the representation theory of BMW algebras using an approach which
generalizes the approach of Okounkov—Vershik [231] for symmetric groups.

The JM elements {@1,. .., J,} generate a commutative subalgebra in BMW,,. The basis in
the space of an irrep of BMW,, can be chosen to be the common eigenbasis of all ;. Fach
common eigenvector v of y;,

LU =a;v, 1=1,...,n,

defines a string (aq, . ..,a,) € C". Denote by Spec(7i, ..., ¥,) the set of such strings.
We summarize our results about representations of o/ BM W, and the spectrum of the JM
elements g; in the following Proposition.

Proposition 4.29. Consider the string

a = (Cll, ey @y Gy, ,CLTL) € SpQC(gl, - 72&2’7@1’—&—17 . 7yn)
Let v, be the corresponding eigenvector of 4;: U; Vo = a; V. Then

(1) a; € {¢**, v*¢*"};
(2) ai#ai-i-la 22177n_17
a) @G F V7, Qg1 = A; = 0 " Vg = Vay HKi Vo =U;
3 n 2 n qu j:qil 0
(3b) a; ;41 7é V2, Qiqq 7é qi2 a; =
a''=(ay,. .., Qi11, Q5. an) € SPEC(T1y -+ oy Uiy Uity - -3 Un)s Ki* Vo =0, Ki-Uqr =05
(4) aa;41=v> = 3 odd number of strings o (k=1,2,...,2m +1):

a®) = (ay,...,a;_1, az(»kz agi)l, Aiy2y -, 0p) € Spec(Py, ..., Un) VE,

2m+1 2m+1
k) (k k k
aefa®} e =2 T] o =0 ] af) = v
k=1 k=1

The necessary and sufficient conditions for a string to belong to the common spectrum of
y; are formulated in the following way.

Proposition 4.30. The string a = (ay,as, ..., a,), where a; € (¢*2,2¢*%), belongs to the set
Spec(J1, Yo, - - -, Un) iff v satisfies the following conditions (z € Z):

(1) a; = 1 ) (2) a; = V2q_22 = qzz S {al, . ,CLifl} 3

(8) ai =q¢” = {a:®, aiqg >} N{ay,...,ai1} # O, 2 #0;

: 2(z+1)  2(2-1)
(4a) a.—a,_q2z (,L<j):>{elther {q » 4 }C{ai+l,...,aj71},
7 — W5 —

or v’ ¥ e{a,,,....a,_,};
. 2(z+1) 2(z—1)
(4b) a;=a;=1*¢** (i < j) = cither {1%g 1% @),
Y orq*QZE{aiH,...,aj_l};
(5a) a; =12q7%, aj=¢* (i<j)=¢* orv’q¢ ¥ €{a,,,...,a, };
(5b) a; = ¢*, a; =1v*¢ % (i<j)=1*¢*or¢* €{a,,,...,a, }.

where in (5a) and (5b) we set 2/ = z £+ 1.
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4.5.3. Colored Young graph for BMW algebras

We illustrate the above considerations on the example of the colored (in the sense of [208,
209]) Young graph for the algebra BMW;. This graph contains the whole information about
the irreps of BM W5 and the branching rules BMW; | BMW,.

Figure 4.5

A vertex {\;5} on the lowest level of this graph is labeled by some Young diagram A; this
vertex corresponds to the irrep Wiy of BMW; (the notation {A;5} is designed to encode
the diagram A and the level on which this diagram is located; the levels are counted starting
from 0). Paths going down from the top vertex () to the lowest level (that is, paths of length 5)
correspond to common eigenvectors of the JM elements 7, ..., 5. Paths ending at {\;5} label
the basis in Wyy;5y. In particular, the number of different paths going down from the top  to
{\;5} is equal to the dimension of the irrep Wyy.5;.

Note that the colored Young graph in Figure 4.5 contains subgraphs presented in Figures 4.2,
4.3 and 4.4. For example, in Figure 4.5 one recognizes rhombic subgraphs (the vertices on the
subgraphs are obtained from one another by a rotation)
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: N

I/2q2 q2 V2q_2 V2q2
. . s : .
q—2 q2 V2q2 V2q2 V2q_2

of the type presented in Figure 4.3.
Let (s,t) be coordinates of a node in the Young diagram A. To the node (s, t) of the diagram
)\ we associate a number ¢?*~*) which is called “content”

S

t v

Then, according to the colored Young graph in Figure 4.5, at each step down along the path
one can add or remove one node (therefore, this graph is called the “oscillating” Young graph)
and the eigenvalue of the corresponding JM element is determined by the content of the node:

| ¢ | ¢t | ¢

2 |1 |¢
q—4
8
y9: /Qq_Q q
1 % | ¢* | ¢8 L I G I S
2 |1 a2 |1 |¢
q—4 q—4

The eigenvalue corresponding to the addition or removal of the (s, #) node is ¢>¢~ or v2¢q=2(5=9,

respectively.
Let X (n) be the set of paths of length n starting from the top vertex () and going down in
the Young graph of oscillating Young diagrams. Now we formulate the following Proposition.

Proposition 4.31. There is a bijection between the set Spec(i,...,U,) and the set X(n).

4.5.4. Primitive idempotents

The colored Young graph (as in Figure 4.5) gives also the rule of construction of a complete
set of orthogonal primitive idempotents for the BMW algebra. The completeness of the set of
orthogonal primitive idempotents is equivalent to the maximality of the commutative set of JM
elements. Let {A;n} be a vertex in the Young graph with
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7y
A — "Aw (ng, Ag) are coordinates of the nodes
M5\ (9 which are in the corners of the diagram
g, A _\n na—n N —TNk— 4.5.10
e A= NG AT AT (4.5.10)
T ANk

Consider any path Tty going down from the top @ to this vertex. Let Er.., € BMW, be the
primitive idempotent corresponding to Ta,,). Using the branching rule implied by the Young
graph for BMW, ., we know all possible eigenvalues of the element ¢,,, and, therefore, obtain
the identity

k+1 k
r=1 r=1

where A\(z11) = ng = 0. So, for a new diagram A’ obtained by adding to A a new node with
coordinates (n;_1 4+ 1, A¢;) + 1) the corresponding primitive idempotent (after an appropriate
normalization) reads

k+1 . k N _
E Sy | (7 = g0 ) H Gus = V2g*N0))
T{/\/;n+1} - T{/\;n} (q2()\(]-) njfl) _ )‘(r) MNp— 1) )\(]) nj— 1 V2q2(nrf)\(r))) :
r=1 7‘=1
r#j
For a new diagram A” which is obtained from A by removing a node with coordinates (n;, ()
we construct the primitive idempotent

k+1 ~ 2(A(py—Nr—1) k ~ 2 2(nyr—X(,
E - FE H (n+1_q(” H n+1_Vq( ()))
T{/\”;n+l} T{/\;n} (V2q2(nj_)\(])) )\(T) Ny — 1 nJ A(]) V2q2(nr—)\(r))) ’
r=1

33
[

i

Using these formulas and the “initial data” Ery,e = 1, one can deduce step by step explicit
expressions for the primitive orthogonal idempotents related to the paths in the BMW Young
graph.

Remark. In this subsection, we reconstructed the representation theory of the tower of the
BMW algebras using the properties of the commutative subalgebras generated by the Jucys—
Murphy elements in the BMW algebras. This representation theory is of use in the representa-
tion theory of the quantum groups U,(osp(N|K)) due to the Brauer—Schur-Weyl duality, but
also finds applications in physical models. Recently [211], we have formulated integrable chain
models with nontrivial boundary conditions in terms of the affine Hecke algebras H, and the
affine BMW algebras a BMW,. The Hamiltonians for these models are special elements of
the algebras H, and aBMW,. For example, for the a BMW, algebra we deduced [211] the

Hamiltonians )
n— _ -1 _ -1
H = <0m+wﬁm> +M7 (4.5.11)
— v+a yp— &
where €2 = —ac/v and the parameter a can take one of two values a = +¢*!. Now differ-

ent representations p of the algebra a BMW,, give different integrable spin chain models with
Hamiltonians p(#H) which, in particular, possess U,(osp(N|K')) symmetries for some N and K.
So, the representations p of the algebra a BM W, are related to the spin chain models of osp
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type with n sites and nontrivial boundary conditions. The BMW chains (chains based on the
BMW algebras in the R-matrix representations) describe in a unified way spin chains with
U,(osp(N|K)) symmetries.

The Hamiltonians for the Hecke chain models are obtained from the Hamiltonians for the
BMW chain models by taking the quotient x; = 0. These models were considered in [212, 213].
The Hecke chains (chain models based on the Hecke algebras) describe in a unified way spin
chains with U,(sl(N|K)) symmetries. In [212-214|, we investigated the integrable open chain
models formulated in terms of the generators of the Hecke algebra (non-affine case, y; = 1).
For the open Hecke chains of a finite size, the spectrum of the Hamiltonians with free boundary
conditions is determined [213] for special (corner type) irreducible representations of the Hecke
algebra. In [212], we investigated the functional equations for the transfer matrix type elements
of the Hecke algebra appearing in the theory of Hecke chains.

4.5.5. q-Dimensions of idempotents in the BMW algebra
Consider the following inclusions of the subalgebras aBMW, C aBMW, C --- C aBMW,,11:

{yl; 01y .. ,O'kfl} c CMBMWk C OéBMWk+1 > {yl; O1y-+-30k—1, O'k}.
For the subalgebras aBM W) 1 we introduce linear mapping (quantum trace)
Trer) 1 aBMWi — oaBMW,, (k=1,2,...,n),

which is defined by the formula (cf. (3.10.39))

1
Rk41 Xk+1 Rig4+1 = ; Tr(k+1) (Xk+1) RE+1, VXk—i-l S O(BMWk+1. (4512)

Proposition 4.32 (see [187]). For the map Tryy1): aBMWii1 — aBMW, we have the
following properties (VXy, X;, € aBMWy, VYii1 € aBMWyy4):

Trieny(ox) =1, Tran(og') = v, Trogy(Xe) = vp Xy,

: B (4.5.13)
Tegepn (k1) = v, Try(yr) = v2®, Trgy(1) =vp= 1+ =)
Tr(k+1)(ak X O'k_l) = Tr(k) (Xk) = Tr(k+1)(0,;1 X O'k)7 (4514)
Tl"(k+1)(0'k Xk lﬁk) - TI‘(;H_I)(Kk Xk O'k), (4515)
T X Yiiy - X)) = X, - T Yiet) - X!
1"(lc+1)( k- Ykl k) k r(k+1)( k1) k (4.5.16)

Tr o) Tre1) (0% - Yir1) = Tron Tresny (Yagr - o).

By using the mapping (4.5.12), definitions (4.4.42), (4.4.39) and evaluation (4.4.45), we
write relation (4.4.43) in the form (cf. (4.3.75))

Ynm+1 AV o
O el A

=)t —g )+ qv) ﬁ (t—y)* (¢t — vy, (g%t — vy, )

t=Dt—-v)t+v) 5 =12y ")t —y) (%t —y,)

(4.5.17)

Y

where we change variable t — ¢t~1, index k¥ — M and for simplicity denote v, = 7,. Then we
act to both sides of (4.5.17) by the idempotent Er(p 1y » Where Tip apy is the path of length M
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in the colored Young graph (of the type presented in Figure 4.5) with the final vertex labeled
by the Young diagram A (4.5.10). According to the branching rule, which is implied by the
colored Young graph for BMW}; 1, we use the expansion

k+1

ET{A,M} Z T{A’ ,M+1} + Z T{/\” M+1}?

where the Young diagram A’ is obtamed by adding a node to the outer corners (n;_; 41, A¢j) +
1)[j=1,...k11 of the diagram A and the diagram A} is obtained by removing a node from inner
corners (1, A¢j))|j=1,..x of A. As a result, we obtain

Ym+1
Tr(l\/1+1)( 2 : T{/\/ M1} + 2 : T{/\” M1}

t— yMH

(U By (= (= e — ) 0)E
t=Dt-v)t+v) 15 (=)t dy)(t —v2y)? finany

(4.5.18)

where ¢(t) :==1— (t%;) Now we note that, if a cell with content ¢?* was added on the step 4

in the path T asy and further this cell was removed on the step j > 4 (it means that y; = q*°
and y; = v2q ), then the factors with r = ¢ and r = j are canceled in the product in the
r.h.s. of (4.5.18). Thus, the only factors contribute in this product that correspond to adding
cells to form the diagram A . In this case, we can substitute the eigenvalues (4.3.81) of y, and
consider M as a number of cells in the diagram A+ M. After a cancelation of many factors in
the r.h.s. of (4.5.18) (see the derivation of (4.3.82)) we write (4.5.18) in the form

k+ A\
A2 -1 A2 g2 =A6)
Z<t _ 2()\(]')*”]‘71)>Tr M+1)ET{/\’ M+1} + Z( q (njf)\(j)))Tr(M+1)ET{/\9/,]W+1} -

2 on -1 2)\7« N (4 — 12 21—
(( Vg )( —q Vt+qv H (“ Nt =12 _“))_C(t)>ET :
(t—qg2)(t—v)(t+v) 2()‘(7‘) T 1))(t — 12 q2(nr A(r))) (A M}
(4.5.19)
where k& is a number of blocks in the diagram A (4.5.10) and ny = 0. In the Lh.s. of (4.5.19)
we take into account that yy1 = ¢?*@ -1 if we add a new cell in the outer corner
(nj—1 + L, A\g) + D]j=1,. k1 of A, and ypy1 = 3¢ (i =2») | if we remove the cell in the in-
ner corner (n;, A¢))|j=1,..x of A. Now we compare the re51dues at t = ¢?0 -0 = 4 and
t = 12> =2@) = 12[i; in both sides of Eq. (4.5.19) and deduce

r:l

1= (pipg)~" 1 i — i, i — vt
TrD(M+1) (ET{/\;_’]M-Q—I}) = ET{/\,M} A\ ,u]» q,Vv H — H ~ 20, , (4.5.20)
'r;é] r r=1
T B _ L— (i)™, o V2R — i ug i (4521
I‘D(M-H)( T{/\;',M+1}) = BT ff(y Hi,q,V )H I/Q,LLJ , . )
r=1 Hr rt Hor

where f(t,q,v) := (t (Zz’f]ngﬁg(tqj)”&S:jq” We apply the Ocneanu’s (Markov) trace Tr -+ Tr

to both sides of Eq. (4.5.20) and find the recurrence relation:

k
(1 — (uyiy) ") f1j = fiy py — V"
qdim(A’) = qdim(A flui,q,v L e 4.5.22
() = adim(A) =22 f (s, HM urguj_,ﬂm (45.22)
r=1
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where the diagram A’ is obtained by adding one cell in the outer corner (n;_; + 1, A + 1) of
the diagram A. Note that applying the Ocneanu’s (Markov) trace to both sides of the second
equation (4.5.21), we deduce the recurrence relation that is equivalent to the relation (4.5.22).
It was shown in [246] that the solution of the recurrence relation (4.5.22) is given (up to some
factor) by the Wenzl formula [229, 246]:

1 .. _ - 1g
adim(A) = ] e I - g A (4.5.23)
(i.f)EN g2 — g2t (i.f)EN g2t g3 -

where h;; = (A + A} —i — j + 1) is a hook length (here AY = [A{,\J,.. ] is the transpose
partition of the partition A) and
o fiy it i<y b f”ifz'<j
d/\(Zvj) _{ zj if 4 >] ’ dA(Zaj) - zj if 4 >‘7 ’

where fij =X+ Aj—i—j+1land f; = =\ =N +i+j— 1

Remark 1. In the R-matrix representation of the the BMW,,(v) algebras, the generators
o; are given by the SO,(N), Sp,(2n) R-matrices (3.10.2) (by the R-matrices (3.11.52) in the
Ospy(N,2m) case). For these representations the parameter v is fixed (see (3.10.4) and Re-
mark 2 in Subsection 4.4.2) and we have v = ¢V, where ¢ = +1 and ¢ = —1 correspond to

SO, and Sp, cases, respectively. In particular, the formula (4.5.23) is written, for the SO, (N)
R-matrix representation of BM W)y, in more explicit form (cf. (4.3.92)):

qdim(A) = H T [T =AY 45—l [N =\ =AY +i+5 -2,
1<)
(4.5.24)

where AY = [AY, Ay, ..., A\/] F M is the transpose partition of A and [h], := q;__qulh‘
Remark 2. The analogs of the statements (4.3.79) and (4.3.95) for the Hecke algebras are

fairly easy to reformulate and prove for the case of the BM W), algebras.

5. Applications and conclusions

In the previous sections of the paper, we have presented the fundamentals of the theory of
quantum groups. We have also considered how to obtain trigonometric and rational (Yangian)
solutions of the Yang-Baxter equation on the basis of the theory of quantum Lie groups. Un-
fortunately, in the previous sections it was not possible for us to discuss in detail the numerous
applications of the theory of quantum groups and the Yang—Baxter equation in both theoret-
ical and mathematical physics. In this final section, we shall merely give a brief list of such
applications that, in the author’s opinion, have some interest.

Before we do this, we recall that in the physics of condensed matter, exactly solvable two-
dimensional models are used to describe various layered structures, contact surfaces in elec-
tronics, surfaces of superconducting liquids like He II, etc. Two-dimensional integrable field
theories are used to describe dynamical effects in one-dimensional spatial systems (such as
light tubes, nerve fibers, etc.). In addition, such field theories (and also integrable systems
on one-dimensional chains) can also arise on reductions of multidimensional field theories (see,
for example, [249]). Quite recently it has been argued that the one-loop dilatation operator
(anomalous dimension operator) of the N = 4 Super Yang-Mills theory may be identified,
in some restricted cases, with the Hamiltonians of various integrable quantum (super) spin
chains 250, 251]. Similar spin chain models (related to the noncompact Lie groups) have
previously appeared in the QCD context [252-255].
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5.1. Quantum periodic spin chains

We have already mentioned that the quantum inverse scattering method [7-9| (an intro-
duction to this method, including the algebraic Bethe ansatz method, that can be readily
understood by a wide range of readers, can be found in [256-258]) is designed as a constructive
procedure for solving quantum two-dimensional integrable systems. In addition, the quantum
inverse scattering method makes it possible to construct quantum integrable systems on one-
dimensional chains (see, for example, [103, 162| and [259]). Here we discuss the case of periodic
chains. The generalization to the case of open chains will be mentioned in the next Subsec-
tion 5.2. The initial point is the relation (3.9.13) for the L-operators, which can be written in
the form?”

ng(é’ — 6),) LKQ(G) LKl(QI) = LK1<9/) LKQ(H) ng(Q — 0/) (511)

Here Lk;(0) are the N x N matrices in the auxiliary vector space V;, with the matrix coefficients
that are the operators in the space of states of the Kth site of a chain consisting of M sites:

Lii(0) = I*EDQL (ORI M) 5 (L L] =0 (K # K'). (5.1.2)

In (5.1.2), the symbol ® denotes a direct product of operator spaces.
To construct an integrable system, we introduce the monodromy matrix

T;(8) = D™V L1;(0) D Ly; ... DI Lyi(6). (5.1.3)
If the matrices DY) (1 < K < M) satisfy the relations
Ri;(0) D) D) = D) DI R0, (5.1.4)

(D, D1 = D", L] =0,
then it follows from (5.1.1) that

Ry (0 = 0) T5(0) T(0') = Ti(0') T5(0) Ry (6 — ). (5.1.5)

The trace of the monodromy matrix (5.1.3) over the auxiliary space i forms the transfer
matrix

1(0) = Trgy (T:(9)) (5.1.6)

which gives a commuting family of operators: [t(0), t(0')] = 0. The commutativity of the
transfer matrices follows directly from Eq. (5.1.5) if we multiply it by the matrix (R;;(6 —6'))~!
from the right and take the trace Trg ;) (...). Using the family of commuting operators ¢(f)
a certain local operator H can be constructed, which is interpreted as the Hamiltonian of the
system. The locality of the Hamiltonian is a natural physical requirement and means that H
describes the interaction of only nearest-neighbor sites of the chain. The remaining operators
in the commuting set ¢(f) give an infinite set of integrals of motion indicating the integrability
of the constructed system. In many well-known cases, the commuting set is associated with

27Usually, this equation is written in the form in which the matrix Ry2(#) is substituted by Rg;(6). This is not
important, since Ro1(f) = Ry, (—0) satisfies, up to the change of spectral parameters, the same Yang Baxter

equation (3.9.12) as Ry2(#) and all formulas below can be easily adapted to the standard case.
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the coefficients in the expansions of #(f) over the spectral parameter 6. For example, one can
consider logarithmic derivatives of the transfer matrix:

d" -1
L= In (t(0) t(0)™") Jo=o (5.1.7)

and identify the local Hamiltonian with the first logarithmic derivative of the transfer matrix:

d -1
H=1 = pr In (£(0) t(0)™") |o=o, (5.1.8)

where the matrix ¢(0)~! is introduced in order to obtain the local charges Z,, [260].

Now we consider explicit examples of integrable periodic spin chains. It is clear that from the
Yang—Baxter equation (3.9.12) there always follow representations for the L-operators (5.1.1)
in the form of R-matrices:

pvi (Lki(0)) = Rii(0), Dy, (Lxi(0)) = (Ra(6)) ™" (5.1.9)

In this case, the representations of Lg;(f) act nontrivially in the space Vi, ® V;. We choose for
L-operators the first representation in (5.1.9) and obtain for 7;(0) (5.1.3):

T:(0) = DV Ry;(0) D Ryi(0) ... D™ Rypi(6) =

= R;1(9) R/m(@) Rl23(9) e R§\4—1M(9)PM—1M .. PysPo Py,

where P; are the permutation matrices and f%(@) = ng) R;;(A). Taking the trace Tr(;), we
deduce

H0) = Ty (R1(0) R12(0) Ros(0) ... Roy_13s(0) Port) Priar - PasPra (5.1.10)

We consider a rather general case of R-matrices which can be normalized so that (see, e.g.,
(3.9.14), (3.9.16), (3.12.21), (3.12.23))

Rij(0) =T+ 0hy;+6%. ... (5.1.11)

These R-matrices are called regular [154]. For the regular R-matrices, using (5.1.10), we obtain
M -1
£HO)(0)" =1 + 6 (Z h;k+1> FO2 L By = DY By (D,g’““)) ,
k=1
where Dg\yﬂ) = Dg\}), hasas1 = hyr1 and the local Hamiltonian (5.1.8) is

M
H=> hip- (5.1.12)
k=1

If we choose the R-matrix in (5.1.10) in the form of the trigonometric solution (3.12.21), then
we obtain

1. .
hjj =5 (Rjj+1 + Ry — AP ij+1> , (5.1.13)

167



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

where 5y = 31;, ap = +qt! and the parameter v is fixed for different quantum (su-

per)groups in (3.12.12). We note that the Hamiltonians (5.1.12) with the densities (5.1.13)
(and D® = 1) are the R-matrix images of the operators:

" 1 al . v F ¢t
i_éz O'j—'—O'j +)\Fqillﬁj 5

Jj=1

y—l

where oy, k; (1 = 1,..., M) obey (4.1.1), (4.4.1)—(4.4.3) with periodic identifications: o 4; = 0y,
Kymai = Ri. It is natural to call the algebra with such generators as the periodic Birman-—
Murakami-Wenzl algebra. The case x; = 0 corresponds to the periodic system with the Hamil-
tonian:

M
AM
H:Z e (5.1.14)

where o; are the generators of the periodic A-type Hecke algebra AH 1 (see Subsection 4.2).
In the R-matrix representation: o; — Ry, opy — Ry, where R is the GL,(2) matrix (3.4.8),
this Hamiltonian describes the periodic X X Z Heisenberg model.

For the Yangian R-matrices (3.12.23) we obtain SO(N) (e = +1) and Sp(N) (N = 2n, € =
—1) invariant spin chain models with local Hamiltonian densities (see, e.g., [103]):

2 0
hiiv1 = (Pll+1 + m&%&) :

where, as usual, ;1 are the transposition matrices, the matrices K. l(?J)rl were defined in (3.10.9),
and for closed chains we imply Ops 41 = Oprq. The Osp(N|2m) invariant spin chain model

m IC;?L) which are deduced from (3.12.24).

These Yangian models are generalizations of the X X X Heisenberg models of magnets. We recall
that the XX X model can be obtained if we take the special limit ¢ — 1 in the X X Z model
or choose the ¢g/(2) Yangian R-matrix (3.9.16) as a representation of L-operators in (5.1.9).

By using (in formulas (5.1.9) and (5.1.10)) the elliptic solution (3.15.3), (3.15.8) of the
Yang-Baxter equation, we recover for N = 2 the XY Z spin chain model |3, 191|, while for
N > 2 we obtain its integrable generalizations.

At the end of this subsection, we stress that using the transfer matrix (5.1.6), one can
construct an integrable 2-dimensional statistical model on the (M x L) lattice with periodic
boundary conditions. Namely, one should consider the partition function

corresponds to the densities by ;11 = (731 141+

Z = Tra.an( H00) -~ t(60) ) = Tra.an (Hm (DY Lyi(6) ... DM >LM1-(90))),

L =1

where the combination DEK)LKZ-(QO) (for a special value of the spectral parameter = 6)
defines the weight of the statistical system in the site (K, ¢) and Tr(. ) are the traces over the
operator spaces.

5.2. Fuactorizable scattering: S-matriz and boundary K-matrix

The Yang—Baxter equation (3.9.11):

So3(6 — 0") S13(6) S12(8') = S12(0") S13(6) Sa3(6 — ") (5.2.1)
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together with the subsidiary relations of unitarity and crossing symmetry
312(0) 521(—6) = [12, 512(9) = (Sgl(iﬂ' — 9))t1 (522)

uniquely determine factorizable S-matrices (with a minimal set of poles) describing the scatter-
ing of particle-like excitations in (1+ 1)-dimensional integrable relativistic models [4, 5]. Equa-
tions (5.2.2) guarantee that the S-matrix S12(6) is invertible and skew-invertible (see (3.1.17)).
The matrix Sﬁ;z(ﬁ) is interpreted as the S-matrix for the scattering of two neutral particles
with isotopic spins i; and 75 to two particles with spins j; and js, and the spectral parameter
0 is none other than the difference of the rapidities of these particles. For charged particles,
the crossing symmetry relation (5.2.2) should be written in the form S5(6) = (Sy(im —6))",
where the S-matrix S,; = S]Z%l describes particle-antiparticle scattering. The many-particle
S-matrices decompose into products of two-particle matrices (factorization). In this sense, the
Yang-Baxter equation (5.2.1) is the condition for the uniqueness of the determination of the
many-particle S-matrices.
The reflection equation [261-266], which depends on the spectral parameters,

S12(0 —0') K1(6) S21(6 + 6') K5(0') = Ko(6') S12(0 + 60") K1(0) So1(0 — ') (5.2.3)
determines, together with the unitarity condition
K}(0) K,(—0) = 0}, (5.2.4)

and relations (5.2.1) and (5.2.2), the factorizable scattering of particles (solitons) on a half-line
(see, e.g., [261, 262, 267, 268|). In this case, the operator matrix K;(Q) describes reflection of a
particle with rapidity 6 at a boundary point of the half-line. Graphically, relation (5.2.3) can
be represented in the form

We recall [262] that factorizable scattering on a half-line can be described by a Zamolod-
chikov algebra with generators {A%(6)} (i = 1,..., N) and boundary operator B that satisfy
the defining relations

Ai(0) AT (0') = S0 — 0') AY0') AR(6),  A'(0) B = Ki(0) A(—0) B =
(5.2.5)
A1y(0) Ay () = S12(0 — 0") Az (0') A1y(0), Ay (0) B = K1(0) Ary(—0) B.

The consistence conditions for this algebra give rise to the Yang—Baxter equation (5.2.1),
the unitarity conditions (5.2.2), (5.2.4) and the reflection equation (5.2.3) for the matrices S
and K.

The reflection equation (5.2.3) can be used [263-266, 269-271| for construction of quantum
group invariant integrable spin systems (see, e.g., [12]) on the chains with nonperiodic boundary
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conditions. Indeed, let T'(f) be a solution of (5.1.5) (for R;;(8) = S;i(0)) and K(0) satisfies
(5.2.3). Then the matrix
TO)=T(O)K(O)[T(—0)]* (5.2.6)

is also a solution of (5.2.3). It can be checked directly, but it also follows from the symmetry
transformation

A0) — [T(O)]'AW0), B — B,
for the algebra (5.2.5) (relations (5.2.5) are obviously invariant under this transformation if we
simultaneously substitute K (0) — T'(0)K(0)[T(—0)]71).

The matrix 7(0) (5.2.6) is called the Sklyanin monodromy matriz. By means of this matrix
one can construct a partition function for the integrable lattice model with nontrivial boundary
conditions defined by the reflection matrix K (). The set of commuting integrals (including
the Hamiltonian of the model) is given by the transfer matrix ¢(¢) which is constructed as a
special trace of T (6):

t(0) = Tr (T(0) K(0)) = Tx (T(9) K(0) [T(—0)] " K(9)), (5.2.7)

where the matrix K (6) is any solution of the conjugated reflection equation [263-266, 269-271]:
N7 N Tt Tt N7 /

Sia(0 = 0) Ky (0") Wiy (0 + 0') K (0) = I,(0) Uy (0 + 0') K p(6) S5,(0 — 0). (5.2.8)

Here we require that K (#) has commutative entries: [F;(@), K@) =0,

—1

[K(0), K™(0)] = 0 = [K,(0), T"(8')] = [K,(68), T,"(¢)] = 0.

n

In (5.2.8), we have used the notation St, := 5742, and the matrix ¥, is the skew-inverse matrix
for 512 (Cf (3117))

Wh(0) S1h(0) = Lz = S3(0) P1a(0),  Wia(0) = (S1a(0) )" (5.2.9)

We also assume (see, e.g., [262]) that the matrix S2(6) satisfies the cross-unitarity condition
(ct. (3.8.9), (3.12.20))
S15(0) (Dy ' Sar(b— 0)D1)" = n(0,b) o, (5.2.10)

where 7(6,b) is the scalar function, b is the special parameter which depends on the form of
the matrix Si2, and D is the constant matrix such that: [D;Ds, S12(6)] = 0. Comparing
Egs. (5.2.9) and (5.2.10), one can identify

1 -1

and then rewrite the conjugated reflection equation (5.2.8) in the form
Sia(0 —0') K3(0') Sy (b — 6 — 0') K{(6) = K{(6) Siy(b— 6 — ') K(6) Sy (60— ¢),  (5.2.11)

where K (#) = D™'K(0). Note that Eq. (5.2.11) is also one of the consistence conditions but
for the “left-boundary” Zamolodchikov algebra (cf. (5.2.5)):

BAy(0) = BE\(0) Ay(b—0), Ay (6) Ay (0) = S (0 — 6) A (6) Ay (6), (5.2.12)
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with generators A’ (i = 1,...,N) and left boundary operator B (we need to consider the
condition for the unique reordering of the third-order monomial B ﬁ1>(9) gg>(9’ ).

The proof of the identity [t(0), t(¢')] = 0 for the transfer matrix ¢(6) (5.2.7) is straightfor-
ward [263] (0 =0+ 0'):

HOVHO) = Trra (To(0) THO) K (0) KL (0)) =
= Triz (T2(0) T (0) S1y(07) Wia(0) K (0) KL (0)) =

= Tryy ((75(9/) 512(9+)7E(9))t1 (F;(@’) \Iﬂfm<9+)?ﬁ1(0)>t2> _

using Eq. (5.2.3) for K(0) — T(0), we deduce
~ T, (me) 501(67) Ta(0) 55(67) (F(0) W0 K (6)) Su<e>) -

and applying here the conjugated reflection equation (5.2.8) and transpositions, we finally
obtain

= Tr ((70) S0 T0)* (3 (0) Va0 Ra(0)) ) =

= Triy (To(0) THO) S5.0%) W5 (0% 1 (6) K (0)) = 1(6) 1),
Now we take in (5.2.3) the limit 6, ¢ — o0 in such a way that § — ' — oo, and at the
same time we set

K<9)|6‘—>oo = L7 512(0>|9—>oo = R12-
K(0)|p——co = L, S12(0) g —0o = (321)_1'

Then (5.2.3) goes over into (3.2.31), and this is the reason why all algebras with defining
relations of type (3.2.31) are called the reflection equation algebras [264-266].

Note that each solution of the Yang-Baxter equation (5.2.1) with the conditions (5.2.2)
determines an equivalence class of quantum integrable systems with the given factorizable S-
matrix. Thus, each classification of solutions to the Yang—Baxter equation is, to some extent,
a classification of integrable systems with the properties indicated above.

The 3D analog of the Yang-Baxter (triangle) equation (3.9.15), (5.2.1) is called the tetrahe-
dron equation [272, 273| (see also [289]) and defines the consistence condition for 3D factorizable
scattering of strings. The 3-dimensional model of such factorizable scattering was first proposed
by A. Zamolodchikov in [272; 273]. Then this 3D model was generalized in [274-277]. New so-
lutions of the tetrahedron equation were also considered in [278]. A 3-dimensional version of
the 2D reflection equation (5.2.3) (the tetrahedron reflection equation) was proposed in [279].
Combinatorial and algebraic aspects of the 3D reflection equation were considered in [280, 281].
Special solutions of the tetrahedron reflection equation were found in [282].

From a mathematical point of view, higher dimensional generalizations of the Yang—Baxter
equations are related to the Manin—Schechtman higher braid groups [283-285], n-categories [286—
288|, and also appeared in the theory of quasitriangular Hopf algebras (see Remark 4 at the
end of Subsection 2.5).
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5.8. Yang—Baxter equations and calculations of multiloop Feynman diagrams

We mention the application of the Yang—Baxter equation in multiloop calculations in quan-
tum field theory. There is a form of the Yang—Baxter equation (see [1, 290] and [289]) that can
also be represented in the form of the triangle equation (3.9.15), but the indices z,z;,y; are
ascribed not to the “lines” but to the “faces™

Y2 T
1 Yo /9'

r3 | x <o Y3 = @3 o x| Y3 (5.3.1)
o To m .
hn y T2

where 6,6’ are angles (spectral parameters), summation is over the index z, and

Ri(0) = $><Z
u

The analytical form of (5.3.1) is
Y RO —0) Rz (0) Ry (9) =) R (6) Ry (6) RY=(0 — 0). (5.3.2)

We have already considered the solution of this equation in Subsection 3.13. Indeed, one can
show that Eq. (3.15.10) is equivalent to Eq. (5.3.2) if we put (for the notation see Subsec-
tion 3.13):

R*1® (9) _ w%<x712,x1+x3>+<x2,x> WCE+127$17$3 (9)’ (533)

To T3
where the indices x,z; are 2-dimensional vectors, e.g., x = (a1, ) € Z%. Thus, (5.3.3),
(3.15.8), and (3.15.9) solve the face-type Yang—Baxter equation (5.3.2).

There is a transformation from the vertex-type Yang-Baxter equation (3.9.12) to the face-
type (5.3.2) using intertwining vectors ¥;'** (see, e.g., |266] and references therein), where i is

a vertex index, while x;, x5 are face indices. The vectors 17'"* satisfy the intertwining relations

YT — 0) Y (0) Rua(0) = > RELE (0) U (0) i (6 — 6) (5.3.4)

xT

which are represented graphically in the form (here the angles are the same as in (5.3.1)):
T
1 T 1
Ty | T2
9 = T , ¢x1x2<6) [ T —
I3
2 2

K

T3

Then the face-type Yang—Baxter equation (5.3.2) is obtained from the vertex equation (3.9.12)
if we act on it by (3" ¢ " {}™) from the left.

Relations (5.3.1) and (5.3.2), like (3.9.15), give the conditions of integrability of two-

dimensional lattice statistical systems (interaction-round face models) with weights determined

by the R-matrices R?Y(6). In this case, the transfer matrix has the form

t91y2--yMm (0) = RY1%2 (9) RY2Y3 (6) RY3Y4 (9) ... Rymu1 (9),

T1T2... TN T1T2 T2T3 T3T4 TMT1
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and its graphical representation is

Y1 | Y2 Y3 ce Ym

0 6 6 6 ]
< T T T3 Vs >

while the partition function for the periodic system on the (M x K) lattice is given by the
standard formula: Z = Try_/(¢(9))¥.

We now note that the Yang-Baxter equation (5.3.1), (5.3.2) has a solution in the form
R*(0) = GY(0) G%(m — 0), where the matrices GY, G* = GZ satisfy the star-triangle relation
(see, for example, [1] and [290]):

£(6,6)GE (x — 0 + 6') G22(6) G (n Z GE(0) G (m—6)G=(0—6),  (535)

and f(.,.) is an arbitrary function such that f(6,0) = f(0,0 — 8'). The relations (5.3.5) for
f =1 can be represented graphically in the form:

x1
Ty y
- 0+6'
T3 = T3 o T
7r79, %
0

Lo / 9-6’

v )

The Feynman diagrams, which will be considered here, are graphs with vertices connected
by lines labeled by numbers (indices). With each vertex we associate the point in the D-
dimensional space RP, while the lines of the graph (with index «) are associated with the
massless Feynman propagator

e

(which is a function of two points x, 2’ in D-dimensional space-time):

) ()
(=2 (S — o) — )

where I'(a) is the Euler gamma-function, D = 4 — 2¢ is the dimension of space-time, (z),
(u = 1,2,...,D) are its coordinates, « = D/2 — 1+ n, and € and 7 are, respectively, the
parameters of the dimensional and analytic regularizations. The boldface vertices e denote
that the corresponding points x are integrated over R”: — . = [ dPz. These diagrams are called
the Feynman diagrams in the configuration space.

The propagator (5.3.6) satisfies the relation

Gp(r — 2'|a) = (5.3.6)

3 a;=D
J 422 1] Gl — wilar) = Gplar — walah) Gp(ws — w5]al) Gplas — mlab),  (5.3.7)
i=1
which is represented as the star-triangle identity for the Feynman diagrams:

173



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

X2 T2

[6%) ,
a3 Qa;

~

aq as

T
T €3 X x3

where ay + ag + a3 = D and o} := D/2 — ;. Equation (5.3.7) can be readily derived if we put
(z3)" = 0 Vu and make in the right-hand side of (5.3.7) a simultaneous inversion transformation
of the variables of integration, (z), — (),/2* and the coordinates (z12)". Relations (5.3.5)
and (5.3.7) are equivalent if we set

- D 0
G (0) = G (0) = Gp(a — /| (1= ), f(6.0) =1, Z /ﬁm (5.3.8)
Thus, the analytically and dimensionally regularized massless propagator (5.3.6) satisfies the
infinite-dimensional star-triangle relation (5.3.5) and accordingly, on the basis of (5.3.6) and
(5.3.8), we can construct solutions of the Yang-Baxter equation (5.3.1), (5.3.2). This remark
was made in [290], in which calculations were carried out of vacuum diagrams with an infinite
number (in the thermodynamical limit) of vertices corresponding to a planar square lattice (¢*
theory, D = 4), a planar triangular lattice (¢° theory, D = 3), and a honeycomb lattice (¢?
theory, D = 6). The star-triangle relation (5.3.7) (known also as the uniqueness relation) was
used in addition for analytic calculation of the diagrams that contribute to the 5-loop S-function
of the ¢1,_, theory [291] and of massless ladder diagrams [292-294, 297]. By means of identity
(5.3.7) the symmetry groups of dimensionally and analytically regularized massless diagrams
were investigated [295, 297], [302]?®. We emphasize that an extremely interesting problem is that
of massive deformation of the propagator function (5.3.6) and the corresponding deformation
of the star-triangle relation (5.3.7).

There is an elegant operator interpretation [297, 298| of the star-triangle identity (5.3.7).
Indeed, consider the D—dirnensional Heisenberg algebra Hp as the algebra of functions of the
generators g, = ch and p, = pu (w=1,...,D) subject to the defining relations

4, Do) =16, (n,v=1,2,...,D), (5.3.9)
where ¢, and p,, are the operators of the coordinate and momentum, respectively. Consider a
representation of the algebra (5.3.9) in the linear vector space of complex functions ¢ (z) :=
Y(z,) on RP:
Gup(x) = 2 P(x),  Putp(x) = =10, ¢P(2).
It is convenient to realize the action of elements A € Hp as the action of integral operators:
= [dPy (z|Aly) ¥ (y). The integral kernels (x| A|y) can be considered as matrix elements

of A for the states |z) := |{z,}) and (y| = |y)T such that

W) =% =), dule) =a,la), [ dale) (ol =1 (5.3.10)
We extend the algebra Hp by the elements ¢** := (¢#g,)* and pseudo-differential operators
p~ % = (p"p,) P (Va, 8 € C). The corresponding integral kernels are

(2] y) = 222 6P (z — ), <x|]%|y>=a(5) !

T (5.3.11)

28Here the symmetry of diagrams means the symmetry of the corresponding perturbative integrals.
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where a(f) = D/222ﬁr5)’ B'=D/2—pand ' #0,—1,
For the extended Heisenberg algebra one can prove [297, 298| that the operators H, :=
p** ¢** (Va € C) form a commutative family. The commutativity condition [H,, H 5] = 0 is

represented in the form

PR = PPN, (v = a+ B). (5.3.12)
Then it is not hard to see that this identity, written for integral kernels by means of (5.3.11), is
equivalent to the star-triangle relation (5.3.7). One should act on (5.3.12) by vectors (z; — 3]
and |zo — z3) from the left and right, respectively, and insert, in the Lh.s. of (5.3.12), the unit
1 (5.3.10):

(x1 — ws|p® ([ dPx |z) (2]) PP |wy — x3) = (21 — 23] PP w0 — 23) =
J dPx (w1 — wa|p**|x) 2 (@]p*|wa — w3) = (21 — 23)* (21 — 3[p™ |22 — w3) (w2 — 23)**

Applying here the second equation in (5.3.11), we obtain (5.3.7) for « = —a, f = —a} and
N =

Con51der the set of Heisenberg algebras H p with the generators {q Pyt (a,b=1,2,...,N)
such that: [ oy p( | = 10" O4p. Then the star-triangle identity (5.3. 12) is obv1ous1y generahzed
as

(dan)* () > (dan)™ = (Biey)*” (dan) ™ (D)) **, (5.3.13)

where Qé‘ab) = cjé‘a) — cjé). Taking into account (5.3.13), one can directly check that for an
arbitrary parameter £ the operator

Rap(;€) = (Gan)) " (Ba))** (D)) ** (d(ary)** 7 = 1+ ahqan) (€) +0” . .. (5.3.14)
is a regular (see (5.1.11)) solution of the Yang-Baxter equation:
Rap(a; §) Rue(a + 55 €) Rap(8;§) = Rue(5;€) Rap(x + 35 §) Roe(ev; §). (5.3.15)

The solution (5.3.14) for arbitrary D and £ = 1 was found in [298] and for any £ in [299]. The
factorized form of the solution (5.3.14) (for D = 1) reminds the factorization of R-matrices
observed in [300, 301].

Using the standard procedure (see Egs. (5.1.11), (5.1.12)), one can construct an integrable
system with a Hamiltonian that is related to the R-matrix (5.3.14):

N-1
- Z ha,a+1) (€, (5.3.16)
a=1

where the Hamiltonian densities k() (x) are derived from (5.3.14)
haty(€) = 2 In(qan))® + (Grar))* (D) D)) (Gary) = (5.3.17)
= 13(;2)6 1n(‘i(ab)) p( ) +p( ? In(q(as ))213(?5 + ln(ﬁ(i) 25(%))-

For D =1 and { = 1/2 the Hamiltonian (5.3.16) reproduces the Hamiltonian for the Lipatov
integrable model [252, 253)].

A remarkable fact is that for the algebra with the generators {Qé‘a),ﬁ’(b)} one can define a
trace. In particular, we need to define correctly the D-dimensional integral:
201 5261 f202 5282 s2an, ~208n _ dD:L‘ ~201 251 220t 226
/ x (x| pr G pr L ¢ p |x>—c(ai,ﬂj)/% Tr(g*pt. .. ¢ p*"), (5.3.18)
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where v = D/2+ )" (8; — ;) and c(oy, §;) is the coefficient function. Recall that the dimension
regularization scheme requires the identity [303]:

d’z
A 0 Va#0, (5.3.19)

and the integral (5.3.18) looks meaningless. However, we can extend the definition for (5.3.19)
at the point a = 0 and, thus, define the formal expression (5.3.18). The definition is [295]:

d”x

where 0, = % is the arca of the unit hypersphere in R?, a = |a|e"™* and 6(.) is the one-
dimensional delta-function. The cyclic property Tr(AB) = Tr(BA) for the trace (5.3.18) can
be checked directly. The trace operation (5.3.18) permits one to reduce [295| the evaluation of
propagator-type perturbative integrals (and searching for their symmetries) to the evaluation
of vacuum perturbative integrals. Further, breaking any of the propagators in the vacuum
diagram, one can obtain many remarkable nontrivial relations between the propagator-type
D-dimensional integrals. Sometimes these relations are called “glue-and-cut” symmetry (for
details see [295, 296])).

One can deduce another star-triangle relation [304] (z; € RP):

2a,a3\ P/
( O(l 3) W(ZE3-I‘1|O&1) W(flfl —l'2|0zg) W(ZL‘Q —ZE3|O[3) =
2

1D/2

dPx _ _ _
= W(xy — z|as) W(xs — x|ag) W(xe — x|ay), (5.3.21)
where W (z|a) = exp (—2%/(2a)) and the map

Qoo 1 Q103 + Qi3 + o
a; = . . (5.3.22)
(a1 + a2+ a3) o Q;

is the well known star-triangle transformation for resistances in electric networks. The identity
(5.3.21) is related to the local Yang-Baxter equation [305] and is also rewritten in the operator
form [304]

W(qla) W(play ) W(glas) =W(plag ) W(glaz) W(plarh). (5.3.23)
To obtain (5.3.21) from (5.3.23), we have used the representations
(wlea®ly) = en @ P(z —y), (ale 2P ly) = (2ra) P2 7m0,

It is tempting to apply identities (5.3.21)—(5.3.23) for investigation of symmetries and analyt-
ical calculations of massive perturbative multiloop integrals written in the a-representation.
Besides, we hope that the local star-triangle relations (5.3.21), (5.3.23) will help in construct-
ing a massive deformation of the star-triangle relations (5.3.7), (5.3.12). The generalizations
of the star-triangle relations (5.3.7), (5.3.12) for spinorial and tensor particles were considered
in [297, 306-308].
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Remark 1. It is also necessary to note the possible applications of the above methods to
the calculations of planar multiloop Feynman integrals arising in the fishnet conformal field
theories [309] (in particular, see [310-316] and references therein).

Remark 2. Note that we have not considered at all the numerous applications of quantum
Lie groups and algebras with deformation parameters ¢ satisfying the conditions ¢~ = 1, i.e.,
when the parameters ¢ are equal to the roots of unity. These applications (see, for exam-
ple, [317-326] and references therein) appear mostly in the context of the topological and 2D
conformal field theories and are associated with the specific theory of representations of such
quantum groups that, generally speaking, can no longer be regarded as the deformation of the
classical Lie groups and algebras.
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