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Abstract

The problem of identifying and extracting the dynamic variables associated with symmetry trans-
formations from the full set of dynamic variables is considered. It is demonstrated that employing
a boson representation of bifermion operators enables the problem to be solved using the canonical
transformation of dynamic variables proposed by N. N. Bogoliubov. The results obtained justify the
application of the cranking model for the description of the rotational excitations of nuclei.
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1. Introduction

The microscopic Hamiltonian used for description of the rotational excited states of nuclei
is usually written in the intrinsic coordinate system, i.e., in the coordinate system rotating with
the average field of the nucleus. In order to justify this Hamiltonian, it is crucial to develop
a mathematical technique to transform the Hamiltonian given in the laboratory frame to the
Hamiltonian given in the intrinsic frame.

The issue of transition to the intrinsic coordinate system is closely related to the difficul-
ties that arise when allocating a self-consistent nuclear mean field within microscopic models.
The fact is that the methods used in this procedure (Hartree–Fock method, Bogoliubov u−v
transformation) violate the laws of the conservation of space transition momentum, rotational
momentum, and the number of particles. It is because the dynamic variables that are param-
eters of the symmetry group of the Hamiltonian are not separated from the other dynamic
variables. Therefore, after applying approximate methods the Hamiltonian loses invariance
with respect to transformations belonging to the group of its symmetry. If it were possible
to isolate the variables that are parameters of the symmetry group of the Hamiltonian, and
only after that to apply the approximate methods to the Hamiltonian, which depends on the
remaining variables, then there would be no violation of the conservation laws. In fact, the
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selection of variables, which are parameters of the symmetry group, is essentially a transition
to the intrinsic coordinate system.

There were several attempts to develop a unified theoretical description of both vibrational
and rotational states of nuclei in spite of the fact that nuclear rotation is not characterized
by small oscillations of the collective degrees of freedom. In this respect it is necessary to
mention the series of works by E. R. Marshalek et al. [1–3] where the boson representation of
fermion operators proposed by S. T. Belyaev and V. G. Zelevinsky [4] was taken as a basis. The
paper by A. Kerman and A. Klein [5] should also be noted where a method was formulated
for describing rotation by some generalization of the Random Phase Approximation (RPA)
method. A completely different approach was suggested in the paper by S. T. Belyaev and
V. G. Zelevinsky [6] to isolate dynamic variables describing rotational motion.

The present work is aimed at deriving with the help of the Bogoliubov method the cranking
model Hamiltonian from the Hamiltonian presented in the general form. This method clearly
demonstrates the conservation of the angular momentum and the separation of non-physical
modes, as a fee for the explicit isolation of dynamic variables associated with the symmetry
properties of the Hamiltonian.

2. Transition to intrinsic frame

The problem of identifying dynamic variables associated with a symmetry group of the
Hamiltonian was principally solved in the work of N. N. Bogoliubov [7] (see also [8, 9]). The
Bogoliubov method involves a canonical transformation of variables, resulting in the introduc-
tion of parameters from the Hamiltonian’s symmetry group as the new variables. Then the
question of any transformation of the remaining variables is no longer related to the transfor-
mation properties of the Hamiltonian.

Unfortunately, the Bogoliubov method cannot be applied directly to a fermion system whose
Hamiltonian is written in the second quantized form. (The problem of selecting the parameters
of the symmetry group in the case of the Hamiltonian formulated in terms of coordinates and
nucleon momentum was considered in [10–14].)

However, the problem can be solved by using the finite boson representation of bifermion
operators. This representation was proposed and discussed in detail in [15] (see also [17]), where
it was shown that for bifermion operators the following boson representation is true. It satisfies
exactly all commutation relations:

a+smas′m′ →
∑
tn

b+sm,tnbs′m′,tn,

a+sma
+
s′m′ → b+sm,s′m′ −

∑
tn,t′n′

b+sm,tnb
+
s′m′,t′n′btn,t′n′ ,

as′m′asm → bsm,s′m′ ,

(1)

where a+sm(asm) is the fermion creation (annihilation) operator. The boson creation (annihila-
tion) operator b+sm,s′m′(bsm,s′m′) satisfies the following commutation relation:

[bsm,tn, b
+
s′m′,t′n′ ] = δsm,s′m′δtn,t′n′ − δsm,t′n′δs′m′,tn,

bsm,s′m′ = −bs′m′,sm,

where s ≡ nlj is a set of quantum numbers which characterize a single particle state, m is a
projection of the single particle angular momentum on the z axis of the laboratory coordinate
system (see a review paper [16]).

2



R. V. Jolos and E. A. Kolganova Natural Sci. Rev. 2 100302 (2025)

It is convenient to introduce boson operators with well-defined angular momentum and its
projection:

bsm,tn =
√
2
∑
λµ

Cλµ
jsmjtn

bλµ(st). (2)

For boson operators, the following representation in terms of generalized coordinates and
conjugate momenta is known:

b+λµ(st) → fλµ(st),

bλµ(st) →
∂

∂fλµ(st)
.

(3)

Using this representation, we can express the Hamiltonian in terms of generalized coordinates
and momenta and to take advantage of the idea of Bogoliubov transformation. As an example,
we present the expressions for the particle number N̂ and angular momentum operators Îµ in
terms of the new dynamic variables:

N̂ =
∑
λµst

2fλµ(st)
∂

∂fλµ(st)
, (4)

Îµ =
∑
ληη′st

√
λ(λ+ 1)Cλη

λη′1µfλη(st)
∂

∂fλη′(st)
. (5)

Note that the operators N̂ and Îµ depend on all dynamic variables fλµ(st).
For simplicity, we consider below a model Hamiltonian with pairing and quadrupole residual

forces only, although consideration can be done with the Hamiltonian of a more general form:

H = H0 +Hpair +HQQ, (6)

H0 =
∑
s

εsNs,

Hpair = −G

4
A+A,

HQQ = −κ
∑
µ

(−1)µQ2µQ2−µ,

Ns =
∑
m

a+smasm,

A+ =
∑
sm

(−1)js−ma+sma
+
s−m,

A = (A+)+,

Q2µ =
∑

ss′mm′

⟨sm|r2Y2µ|s′m′⟩a+smas′m′ .
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In terms of the operators fλµ(st), ∂
∂fλµ(st)

,

Ns =
∑
λµt

2fλµ(st)
∂

∂fλµ(st)
,

A+ =
∑
s

2
√

js + 1/2f00(ss)− 2
√
2

∑
ss′tλλ′λ′′µµ′µ′′

√
(2λ+ 1)(2λ′ + 1)×

×(−1)js+jt+λ+λ′′
{

λ′′ js′ jt
js λ′ λ

}
Cλ′′µ′′

λµλ′µ′fλµ(ss
′)fλ′µ′(st)

∂

∂fλ′′µ′′(s′t)
,

A =
∑
s

2
√

js + 1/2
∂

∂f00(ss)
,

Q2µ = 2
∑

ss′tλλ′ηη′

(−1)js+jt−λ′√
2λ′ + 1⟨s||r2Y2||s′⟩

{
jt js′ λ′

2 λ js

}
×

×Cλη
λ′η′2µfλη(st)

∂

∂fλ′η′(s′t)
.

(7)

Static pair correlations and quadrupole deformation can occur in the system described by
this Hamiltonian. Commonly used approximate methods that include these effects lead to the
loss of Hamiltonian invariance under rotations in phase space (linked to particle number conser-
vation) and in three-dimensional space (linked to angular momentum conservation). Therefore,
from dynamic variables describing nucleus it is necessary from the very beginning to sepa-
rate the angle ϕ, which is canonically conjugate to the operator of the number of particles
N̂ = −2ı ∂

∂ϕ
, and the Euler angles θl, in terms of which the angular momentum operator is

expressed. Through the separation of these variables, we move into the intrinsic coordinate
system while preserving the conservation laws for particle number and angular momentum.

Let us demonstrate that the problem of separating the dynamical variables associated with
the Hamiltonian’s symmetry can be resolved by applying the following transformation of the
dynamic variable:

fλµ(st) = exp (ıϕ)
∑
k

Dλ
µk(θ⃗)Fλk(st), (8)

where Dλ
µk(θ⃗) is the Wigner function. Since there are four more new variables than the old

ones, it is necessary to impose four additional conditions on Fλk(st):

Ψ(Fλk(st)) = 0,

Φη (Fλk(st)) = 0,
(9)

where η takes three different values. The specific form of the additional conditions will be
discussed below.

Let us find the expression for ∂
∂fλµ(st)

in terms of the new variables:

∂

∂fλµ(st)
=

∂ϕ

∂fλµ(st)

∂

∂ϕ
+

3∑
l=1

∂θl
∂fλµ(st)

∂

∂θl
+
∑

λ′k′s′t′

∂Fλ′k′(s
′t′)

∂fλµ(st)

∂

∂Fλ′k′(s′t′)
. (10)

The quantity ∂Fλ′k′ (s
′t′)

∂fλµ(st)
can be found using the relation inverse to (8):

Fλk(st) = exp (−ıϕ)
∑
µ

(Dλ
µk)

∗fλµ(st) (11)
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and the Wigner function differentiation rule [18] which looks like

∂Dλ
µk

∂θl
= ı
∑
k′η

Dλ
µk′

√
λ(λ+ 1)Cλk

λk′1ηqηl(θ⃗), (12)

where qηl(θ⃗) is the rotational matrix [18]. Then

∂Fλ′k′(s
′t′)

∂fλµ(st)
= exp (−ıϕ)(Dλ

µk′)
∗δλλ′δst,s′t′ − ı

∂ϕ

∂fλµ(st)
Fλ′k′(s

′t′)−

−ı
∑
k′′ηl

∂θl
∂fλµ(st)

√
λ′(λ′ + 1)Cλ′k′′

λ′k′1ηqηlFλ′k′′(s
′t′). (13)

As a result, for ∂
∂fλµ(st)

we obtain

∂

∂fλµ(st)
= exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗ ∂

∂Fλk′(st)
+ ı

∂ϕ

∂fλµ(st)

(
−ı

∂

∂ϕ
− n̂

2

)
+

+
∑
l

∂θl
∂fλµ(st)

(
∂

∂θl
− ı
∑
η

qηl(θ⃗)L̂η

)
, (14)

where

n̂ = 2
∑
λkst

Fλk(st)
∂

∂Fλk(st)
, (15)

L̂η =
∑
λkk′

∑
st

√
λ(λ+ 1)Cλk

λk′1ηFλk(st)
∂

∂Fλk′(st)
. (16)

If we use the well-known expression for the angular momentum projection operator on the axis
of the intrinsic coordinate system:

L̂η = −ı
∑
l

q−1
ηl

∂

∂θl
, (17)

then

∂

∂fλµ(st)
= ı

∂ϕ

∂fλµ(st)

(
−ı

∂

∂ϕ
− n̂

2

)
+ ı
∑
lη

∂θl
∂fλµ(st)

qηl

(
L̂η − L̂η

)
+

+exp (−ıϕ)
∑
k′

(
Dλ

µk′

)∗ ∂

∂Fλk′(st)
. (18)

In order to find the expressions for ∂ϕ
∂fλµ(st)

and ∂θl
∂fλµ(st)

, it is necessary to use the additional
conditions (9) from which it follows that

∂Φη

∂fλµ(st)
=
∑

λ′k′s′t′

∂Fλ′k′(s
′t′)

∂fλµ(st)

∂Φη

∂Fλ′k′(s′t′)
= 0 (19)
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and the analogous relation for Ψ is

∂Ψ

∂fλµ(st)
=
∑

λ′k′s′t′

∂Fλ′k′(s
′t′)

∂fλµ(st)

∂Ψ

∂Fλ′k′(s′t′)
= 0. (20)

Applying Eq. (14) to Φη, we obtain

− ı

2

∂ϕ

∂fλµ(st)
[n̂,Φη] +

∑
l

(−ı)
∑
η′

qη′l[L̂η′ ,Φη]
∂θl

∂fλµ(st)
+

+ exp (−ıϕ)
∑
k′

(Dλ
µk′)

∗ ∂Φη

∂Fλk′(st)
= 0 (21)

and analogous relation including Ψ

− ı

2

∂ϕ

∂fλµ(st)
[n̂,Ψ]− ı

∑
l

∑
η′

qη′l[L̂η′ ,Ψ]
∂θl

∂fλµ(st)
+

+ exp (−ıϕ)
∑
k′

(Dλ
µk′)

∗ ∂Ψ

∂Fλk′(st)
= 0. (22)

From the last two relations, we get

− ı

2

∂ϕ

∂fλµ(st)
[n̂,Φη] + exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗ ∂Φη

∂Fλk′(st)
=

= ı
∑
lη′

qη′l
∂θl

∂fλµ(st)
[L̂η′ ,Φη] (23)

and

− ı

2

∂ϕ

∂fλµ(st)
[n̂,Ψ] + exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗ ∂Ψ

∂Fλk′(st)
=

= ı
∑
lη′

qη′l
∂θl

∂fλµ(st)
[L̂η′ ,Ψ]. (24)

As the functions Ψ and Φη, we take the eigenfunctions of the operator n̂. This means that Ψ
and Φη are polynomials of degree n. Then [n̂,Φη] = nΦη and [n̂,Ψ] = nΨ.

Suppose Ψ is a scalar with respect to the vector operator L̂η, i.e., [L̂η,Ψ] = 0. Then
from (24) it follows that

ı
∂ϕ

∂fλµ(st)
= 2 exp(−ıϕ)

∑
k′

(Dλ
µk′)

∗ 1

nΨ

∂Ψ

∂Fλk′(st)
. (25)

Substituting this result into (23) and (18), we obtain

ı
∑
l

∂θl
∂fλµ(st)

∑
η′

qη′l(θ⃗)[L̂η′ ,Φη] = − exp (−ıϕ)
∑
k′

(Dλ
µk′)

∗Φη

Ψ

∂Ψ

∂Fλk′(st)
+

+ exp (−ıϕ)
∑
k′

(Dλ
µk′)

∗ ∂Φη

∂Fλk′(st)
(26)
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and

∂

∂fλµ(st)
= exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗
(

1

nΨ

∂Ψ

∂Fλk′(st)
(N̂ − n̂) +

∂

∂Fλk′(st)

)
+

+ ı
∑
l

∂θl
∂fλµ(st)

∑
η

qηl(θ⃗)(L̂η − L̂η). (27)

Let us introduce a new notation

ı
∑
l

∂θl
∂fλµ(st)

qηl(θ⃗) = exp (−ıϕ)
∑
k′

(Dλ
µk′)

∗ · Aλk′,−η(−1)1−η. (28)

Then Eqs. (26) and (27) can be rewritten as∑
η′

(−1)1−η′Aλk′,−η′(st) · [L̂η′ ,Φη] = −Φη

Ψ

∂Ψ

∂Fλk′(st)
+

∂Φη

∂Fλk′(st)
(29)

and

∂

∂fλµ(st)
= exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗
(

1

nΨ

∂Ψ

∂Fλk′(st)
(N̂ − n̂) +

∂

∂Fλk′(st)
+

+
∑
η

(−1)1−ηAλk′,−η(st)(L̂η − L̂η)

)
. (30)

Until now, the function Φη has been treated as arbitrary, without assuming that Φη is an n-
degree polynomial. In what follows, we will take Φη to represent the components of an arbitrary
vector that transforms under the action of the operator L̂ as follows:

[L̂η′ ,Φη] = −
√
2C1λ

1η′1ηΦλ. (31)

Using this relation, we obtain∑
η

(−1)1−η′Aλk′,−η′(st) · [L̂η′ ,Φη] =
√
2
∑
η′λ

C1η
1η′1λAλk′,η′(st)Φλ. (32)

Substituting (32) into (29), we get

√
2
∑
η′λ

C1η
1η′1λAλk′,η′(st)Φλ = −Φη

Ψ

∂Ψ

∂Fλk′(st)
+

∂Φη

∂Fλk′(st)
. (33)

The expression on the left-hand side of (33) is the vector product of A⃗λk′(st) and Φ⃗. In the
general case, knowledge of the vector product does not allow us to uniquely determine one of
the vectors in the vector product if the other is known. This means that in the general case we
cannot determine the vector A⃗λk′(st) from the relation (33). This ambiguity can be eliminated
if we search for the solution only among vectors orthogonal to Φ⃗. Then

Aλk′,η(st) =

√
2∑

µΦµΦ−µ

∑
µν

C1η
1µ1νΦµ

(
∂Φν

∂Fλk′(st)
− Φν

Ψ

∂Ψ

∂Fλk′(st)

)
. (34)

7
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Substituting (34) in (30), we obtain

∂

∂fλµ(st)
= exp (−ıϕ)

∑
k′

(Dλ
µk′)

∗
(

∂

∂Fλk′(st)
+

1

nΨ

∂Ψ

∂Fλk′(st)
(N̂ − n̂) +

+
∑
η

(−1)1−η

√
2∑

ν(−1)νΦνΦ−ν

∑
νλ

C1η
1ν1λΦν

(
∂Φλ

∂Fλk′(st)
− Φλ

Ψ

∂Ψ

∂Fλk′(st)

)
· (L̂η − L̂η)

)
. (35)

It is easy to check that [ ∂
∂fλµ(st)

,Φη] = [ ∂
∂fλµ(st)

,Ψ] = 0. This means that additional condi-
tions (9) are compatible with the Hamiltonian. Substituting (35) into (4) and (5), we obtain

N̂ = −2ı
∂

∂ϕ
,

Îµ =
∑
η

D1
µη(θ⃗)L̂η.

(36)

In the new variables, the Hamiltonian takes the form

H = H̃0 −
G

4
Ã+Ã− κ

∑
k

(−1)kQ2kQ2−k, (37)

where

H̃0 = 2
∑
λkst

εsFλk(st)
∂

∂gλk(st)
,

Ã = 2
∑
s

√
js + 1/2

∂

∂g00(ss)
,

Ã+ = 2
∑
s

√
js + 1/2F00(ss)− 2

√
2
∑

ss′tλλ′

∑
λ′′kk′k′′

√
(2λ+ 1)(2λ′ + 1)(−1)js+jt+λ+λ′′×

×
{

λ′′ js′ jt
js λ′ λ

}
Cλ′′k′′

λkλ′k′Fλk(ss
′)Fλ′k′(st)

∂

∂gλ′′k′′(s′t)
,

Q2k = 2
∑

ss′tλλ′

(−1)js+jt−λ′√
2λ′ + 1⟨s||r2Y2||s′⟩ ×

{
jt js′ λ′

2 λ js

}
Cλk′

λ′k′′2kFλk′(st)
∂

∂gλ′k′′(s′t)
.

Here we use the notation

∂

∂gλk(st)
≡ ∂

∂Fλk(st)
+

1

nΨ

∂Ψ

∂Fλk(st)
(N̂ − n̂) +

+
∑
η

(−1)1−η

√
2∑

ν(−1)νΦνΦ−ν

∑
νλ

C1η
1ν1λΦν(

∂Φλ

∂Fλk(st)
− Φλ

Ψ

∂Ψ

∂Fλk(st)
)× (L̂η − L̂η). (38)

For the consideration below it is important to note that, due to our choice of functions Ψ
and Φη, the Hamiltonian (37) commutes with the operators n̂ and L̂η:

[H, n̂] = 0, (39)

[H, L̂η] = 0. (40)

8
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The Hamiltonian (37) depends on ϕ and θl through the operators N̂ and L̂η only. The
absence of an explicit dependence on θl and ϕ means that the Hamiltonian is invariant under

rotation in three-dimensional and phase spaces, and eigenvalues of N̂ and ˆ⃗L
2

are conserved.
It should be emphasized that we obtained a finite-term expression for the Hamiltonian, rather
than an infinite series, due to the use of the finite boson representation.

Let us show that the expression (37) for the Hamiltonian can be simplified. Since the
operator of the number of particles N̂ commutes with the Hamiltonian, it can be replaced
by its eigenvalue N . As the consequence, the operator n̂ in (39) can also be replaced by its
eigenvalue, which we choose to be N . Thus, the operator (N̂ − n̂) gives zero acting on any
eigenfunction of the Hamiltonian. This result, however, introduces an additional condition

2
∑
λkst

Fλk(st)
∂

∂Fλk(st)
= N. (41)

Consider the action of the operator (L̂η − L̂η) on the eigenfunctions of the Hamiltonian.
According to the relation (40) and the rotational invariance of the total Hamiltonian, the
eigenfunctions of the Hamiltonian can be presented in the following way:

ξIK(θ⃗, Fλk) =
∑
K

DI
µK(θ⃗)UIK(Fλk), (42)

where the function UIK is constructed so that [19]

LηUIK(Fλk) = −
√

I(I + 1)CIK+η
1ηIK UIK+η(Fλk). (43)

The intrinsic angular momentum operator Lη acting on the Wigner function DI
µK(θ⃗) gives the

following result:

LηD
I
µK = (−1)η

√
I(I + 1)CIK−η

IK1−ηD
I
µK−η. (44)

Combining (43) and (44), we can see

(L̂η − L̂η)ξIK = 0. (45)

This means that the action of the operator L̂η on the eigenfunction of the Hamiltonian is
equivalent to the action of the operator L̂η. From these results it follows that we can omit in
the Hamiltonian the terms proportional to (N̂ − n̂) and (L̂η − L̂η).

The following step is to determine a self-consistent nuclear mean field using canonical trans-
formation:

Fλk(st) → Γλk(st) + β+
λk(st),

∂

∂Fλk(st)
→ ∆λk(st) + βλk(st),

(46)

where β+
λk(st) (βλk(st)) is a boson creation (annihilation) operator, Γλk(st) and ∆λk(st) are

c-numbers. Let us replace in the Hamiltonian (37) Fλk(st) by Γλk(st) and ∂
∂Fλk(st)

by ∆λk(st).
As a result, the expression for the Hamiltonian takes the form of the energy functional obtained

9
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by performing Hartree–Fock–Bogoliubov factorization of H which we denote by Hcc. This is
especially easy to see if we rewrite the expression for Hcc in terms of the elements of the density
matrix: ⟨a+smas′m′⟩, ⟨as′m′asm⟩, ⟨a+sma+s′m′⟩, which can be expressed in terms of Γλk(ss

′) and
∆λk(ss

′) by the relations

⟨a+smas′m′⟩ =
∑
t,m

Γsm,tn∆s′m′,tn ≡ ρsm,s′m′ ,

⟨as′m′asm⟩ = ∆sm,s′m′ ≡ κsm,s′m′ ,

⟨a+sma+s′m′⟩ = Γsm,s′m′ −
∑
tn,t′n′

Γsm,tnΓs′m′,t′n′∆tn,t′n′ ≡ κ∗
sm,s′m′ ,

(47)

where

Γsm,s′m′ =
1√
2

∑
λk

Cλk
jsmjs′m

′Γλk(ss
′),

∆sm,s′m′ =
1√
2

∑
λk

Cλk
jsmjs′m

′∆λk(ss
′).

(48)

Starting from this point, our consideration is practically coincides with that realized by
E. R. Marshalek and G. Holzwarth in [21]. The only difference is that in [21] the dynamical
variables related to the symmetries of the Hamiltonian (ϕ and θ⃗) have not been separated before
deriving Hartree–Fock–Bogoliubov energy functional, and the infinite Belyaev–Zelevinsky boson
representation has been used instead of the finite Dyson-type boson representation.

It is easy to show directly the validity of the following matrix relations:

ρ̂× ρ̂− κ̂× κ̂∗ = ρ̂, ρ̂× κ̂ = κ̂× ρ̂∗,

ρ̂∗ × ρ̂∗ − κ̂∗ × κ̂ = ρ̂∗, ρ̂∗ × κ̂∗ = κ̂∗ × ρ̂.
(49)

Hence it follows that the matrix

K̂ =

(
ρ̂ κ̂
κ̂∗ I − ρ̂∗

)
(50)

satisfies the requirement

K̂ × K̂ = K̂, (51)

and, therefore, is the density matrix.
Thus, if the boson operators are replaced by c-numbers, then the images of the bifermion op-

erators can be interpreted as elements of the density matrix K̂ of the Hartree–Fock–Bogoliubov
theory. In particular, ρ̂ can be identified with the one-particle density matrix and κ̂ with
the pairing tensor. When rotational motion is neglected, the Hartree–Fock–Bogoliubov energy
functional is minimized with respect to the matrix elements of ρ̂ and κ̂, subject to the constraint
K̂ × K̂ = K̂. Since our boson parametrization of K̂ automatically satisfies this constraint, the
solutions of the resulting equations

∂Hcc

∂Γλk(st) (∆λk(st))
= 0, (52)

10
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without further restrictions, correspond precisely to solutions of the Hartree-Fock-Bogoliubov
variational equations [21].

It was indicated in [21] that replacement of the boson operators by c-numbers can be made
in such a way that the quantal commutators of two operators A and B become Poisson brackets:

[A,B] → 1

2

∑
sm,s′m′

(
∂A

∂∆sm,s′m′

∂B

∂Γsm,s′m′
− ∂B

∂∆sm,s′m′

∂A

∂Γsm,s′m′

)
. (53)

Since the variational parameters Γsm,s′m′ and ∆sm,s′m′ are defined by Eq. (52), the commuta-
tor [Hcc,K] found in correspondence with Eq. (53) is equal to zero and, therefore, we obtain
equations of the Hartree–Fock–Bogoliubov approximation.

However, in order to come to the self-consistent cranking model, the additional conditions
imposed on Γλk(st) and ∆λk(st) should be taken into account. In the harmonic approximation,
we can limit ourselves to the terms linear in bosonic operators in the expressions for the single
particle operators. Then

n̂ = 2
∑
λkst

Γλk(st)∆λk(st) + 2
∑
λkst

(∆λk(st)β
+
λk(st) + Γλk(st)βλk(st)) (54)

and

L̂η =
∑
λkk′st

√
λ(λ+ 1)Cλk

λk′1ηΓλk(st)∆λk′(st) +

+
∑
λkk′st

√
λ(λ+ 1)Cλk

λk′1η(∆λk′(st)β
+
λk(st) + Γλk(st)βλk′(st)). (55)

The first additional condition is given by the relation

N = 2
∑
λkst

Γλk(st)∆λk(st). (56)

This relation should be taken into account in the variational procedure of minimization of the
Hamiltonian over Γλk(st) and ∆λk′(st) by the usual way using the Lagrange factor. The sit-
uation with the additional conditions following from the relations (45) is more complicated,
because the operators L̂η do not commute with each other. The problem is solved by con-
structing the Routhian

H̃cc = Hcc − Λ · 2
∑
λkst

Γλk(st)∆λk(st)−
∑
η

Ωη

∑
λkk′st

√
λ(λ+ 1)Cλk

λk′1ηΓλk(st)∆λk′(st), (57)

where Λ is the chemical potential, which is determined taking into account (56). In the general
case, which includes the possibility of nuclear rotation about an axis tilted relative to the
principal axes of the deformed nuclear mean field [20], Ω⃗ is given by

Ω⃗ = (|Ω| sinϑ sinφ, |Ω| sinϑ cosφ, |Ω| cosϑ).

The minimization of the Routhian includes minimization with respect to ϑ and φ at fixed |Ω|.
The value of |Ω| is detemined by the value of the total angular momentum I by the relation [22]

I =

√∑
η

L̄2
η, (58)

11
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where

L̄η =
∑
λkk′st

√
λ(λ+ 1)Cλk

λk′1ηΓλk(st)∆λk′(st) (59)

is an average of L̂η over the boson vacuum.
In the case of the axial symmetry of the self-consistent nuclear mean field, one of the

components of the angular momentum operator corresponding to the axis orthogonal to the
symmetry axis is taken to be equal to the total angular momentum I. Two other components
are taken to be equal to zero.

The conditions [Ĥ, n̂] = 0 and [Ĥ, L̂η] = 0 tell us that the operators
∑

λkst(∆λk(st)β
+
λk(st)+

Γλk(st)βλk(st)) and
∑

λkk′st

√
λ(λ+ 1)Cλk

λk′1η(∆λk′(st)β
+
λk(st) + Γλk(st)βλk′(st)) generate zero

energy modes, i.e., correspond to the unphysical modes and therefore should be excluded from
consideration.

Thus, as a result of the canonical transformation, the angle ϕ and the Euler angles θl are
separated from the total number of dynamic variables. Therefore, subsequent approximations
will no longer violate gradient and rotational invariance. Additional conditions encountered in
solving the problem exclude from consideration the dynamic variables describing unphysical
modes.

3. Conclusion

The problem of extracting dynamic variables directly related to the symmetry of the Hamil-
tonian with respect to rotations in ordinary three-dimensional and phase spaces from a system
of fermions is examined. It is demonstrated that the use of a boson representation of bifermion
operators enables the solution of this problem through the canonical transformation of dynamic
variables, as proposed by N. N. Bogoliubov. The finite boson representation allows for the
derivation of a closed-form expression for the Hamiltonian. Furthermore, the non-hermiticity
of the boson representation in the conventional metric does not pose any difficulties when solving
the problem within the self-consistent mean-field approximation. The resulting Hamiltonian,
combined with the additional conditions that must be considered, provides a justification for
the application of the cranking model in describing the rotational excitations of nuclei.
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