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Abstract

We give a brief overview of the BRST approach to the gauge-invariant Lagrangian formulation for
free massive higher-spin bosonic fields, focusing on two-specific aspects. First, the theory is considered
in four-dimensional flat space in terms of spin-tensor fields with two-component undotted and dotted
indices. This leads to a significant simplification of the whole approach in comparison with the one
where the fields with vector indices were used, since now there is no need to introduce a constraint
responsible for the traces of the fields into the BRST charge. Second, we develop an extremely simple
and clear procedure to eliminate all the auxiliary fields and prove that the BRST equations of motion
identically reproduce the basic conditions for irreducible representations of the Poincáre group with
a given mass and spin. Similar to the massless theory, the final Lagrangian for massive higher-spin
fields is formulated in triplet form. The BRST formulation leads to a system of fields that are clearly
subdivided into the basic spin s field, Zinoviev-like auxiliary fields, Singh–Hagen-like auxiliary fields,
and special BRST auxiliary fields. The auxiliary fields can be partially eliminated by gauge fixing
and/or using the equations of motion. This allows one to obtain formally different (with different
numbers of auxiliary fields) but equivalent Lagrangian formulations.
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1. Introduction

Higher-spin field theory is one of the actively developing trends in modern theoretical physics
(see, e.g., the reviews [1–9]). Recently, there has been renewed interest in studying various as-
pects of the Lagrangian formulation for massive higher-spin fields (see, e.g., the papers [10–17]
and references therein).

Lagrangian formulation of free massive arbitrary spin field theory in Minkowski space has
been developed in the pioneer works by Singh and Hagen [18, 19].1 As was first pointed out
in the work by Fierz and Pauli [21], a local Lagrangian formulation of the free massive bosonic
field with spin s > 1 cannot be constructed in terms of this field alone, but requires a certain
set of auxiliary fields of lower spins. This means that the Lagrangian must have a very spe-
cial structure. The corresponding equations of motion must lead to vanishing auxiliary fields
together with the conditions determining the irreducible representation of the Poincáre group
with a given mass and spin. It is precisely this Lagrangian formulation that was constructed in
[18], although for some specific spins this had been done earlier. In general, it was established
that the Lagrangian describing the dynamics of a free field with spin s must include at least
auxiliary fields with spins s − 2, s − 3, . . . , 0. It should be noted that the procedure for elimi-
nating auxiliary fields from the equations of motion, presented in [18], is in general extremely
cumbersome and is associated with rather nontrivial combinatorics.

The next important step in studying the structure of the Lagrangian formulation of a free
massive field of arbitrary spin was made by Zinoviev in [22–24], where additional auxiliary
Stückelberg fields were introduced, which provided a gauge-invariant Lagrangian formulation
and led to certain simplifications compared to the original formulation in [18]. The gauge-
invariant formulation was further developed by different authors (see, e.g., [25–30] and most
detailed paper [35] and references therein).2

The problem of constructing a gauge-invariant Lagrangian formulation of massive higher-
spin fields with the required number of auxiliary fields, including the necessary Stückelberg
fields, is automatically solved within the BRST approach to higher-spin field theory [27–30].3
The central object in this approach is the BFV (Batalin, Fradkin, Vilkovisky) charge Q, also
called the canonical BRST charge. By construction, the charge Q is a Hermitian nilpotent
operator acting in the auxiliary Fock space of vectors ∣Φ⟩ containing higher-spin fields and ghost
fields. The free Lagrangian is constructed as L ∼ ⟨Φ̄∣Q∣Φ⟩. Since the charge Q is Hermitian,
such a Lagrangian is automatically real. The corresponding equations of motion are written
in the form Q∣Φ⟩ = 0. Due to the nilpotency of the BRST charge, both the Lagrangian and
the equations of motion are invariant under the gauge transformations ∣Φ′⟩ = ∣Φ⟩ +Q∣Λ⟩ with
the parameters ∣Λ⟩ belonging to the same Fock space as the vectors ∣Φ⟩. The most important
final step of the approach under discussion consists in proving that the equations of motion
Q∣Φ⟩ = 0 automatically yield, as direct consequences, the conditions defining an irreducible

1Lagrangian formulation of a free massive field with an arbitrary integer or half-integer spin has also been
considered by Schwinger in the monograph [20] within the framework of the multispinor formalism; however,
such an approach has not been developed for a long time.

2This paper is a brief review of the BRST approach to the Lagrangian formulation of free massive fields of
arbitrary integer spin. The issues related to massless fields, to fermion fields, to supersymmetric higher-spins
and to the description of the interaction of higher-spin fields are undoubtedly also interesting but are beyond
the scope of this review.

3Note also the papers [31–33] where the Lagrangian description for the massive higher-spin fields was obtained
by dimensional reduction of the massless theory in the BRST formalism. A similar reduction was considered in
the later more detailed paper [14].
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representation with a given mass and spin. The latter circumstance ensures the correctness of
the entire approach.4

The BRST approach has two obvious advantages over the conventional approach, which di-
rectly uses higher-spin fields.5 The Lagrangian obtained in this way contains all the necessary
auxiliary fields by construction. Indeed, as is well known, beginning with [21], the Lagrangian
formulation of a higher-spin field cannot be constructed without using auxiliary fields. Since
in the BRST approach the Lagrangian consistent with the conditions of the irreducible repre-
sentation is presented explicitly, this automatically means the presence of the necessary auxil-
iary fields. In addition, in the BRST approach, the Lagrangian is gauge-invariant. However,
gauge invariance in massive theories is achieved by using suitable Stückelberg fields. It follows
that the Lagrangian constructed in the BRST approach automatically contains the necessary
Stückelberg fields. Therefore, the BRST approach to the theory of massive higher-spin fields
is closely related to Zinoviev’s gauge-invariant Lagrangian formulation for massive higher-spin
fields [22–24, 35].

In this paper, we revise and essentially modify some aspects of the BRST approach to free
massive integer higher-spin field theory in four-dimensional Minkowski space. Unlike the pre-
vious papers [27–29], where fields with vector indices were considered, we propose here, similar
to the papers [36, 37], that it is more convenient to use, as fields, the irreducible represen-
tations of the Lorentz group with dotted and undotted two-component indices. Such fields
φ
β̇(s)

α(s)
= φ

(β̇1β̇2...β̇s)

(α1α2...αs)
automatically satisfy the tracelessness condition that leads to a significant

simplification of the whole construction. There is no need to introduce a constraint responsible
for the field trace into the BRST charge. The second aspect concerns the proof that the BRST
equation of motion identically reproduces the conditions defining the irreducible representation
with a given mass and spin. The previous proofs [27, 28] were a bit long and very techni-
cal. Here we present an amazingly simple and clear derivation of the above conditions from
the BRST equations of motion. Unlike the proof of these conditions in [18], our proof uses
only simple relations for annihilation and creation operators [b, b+] = 1, b ∣0⟩ = 0 and avoids
tedious combinatorics. The final gauge-invariant Lagrangian is completely given in terms of
the Fock space vector triplet including the basic higher-spin field, Singh–Hagen-like auxiliary
fields, Zinoviev-like gauge auxiliary fields, and additional specific BRST auxiliary fields. Par-
tial elimination of auxiliary fields due to their equations of motion and/or gauge fixing leads to
formally different (e.g., involving different numbers of auxiliary fields) but certainly equivalent
Lagrangian formulations.

The paper is organized as follows. Section 2 is devoted to the formulation of free massive
integer higher-spin fields in terms of the Fock space, the derivation of second-class constraints,
the definition of a field of a given mass and spin, and the conversion of second-class constraints
into first-class ones. In Section 3 we develop the BRST construction, find the equations of mo-
tion and the gauge-invariant Lagrangian in the extended Fock space, prove that these equations
of motion yield correct conditions on the fields with a given mass and spin, and describe the
field contents of the theory under consideration. Section 4 is a summary of the results. In the
Appendix we present the resulting Lagrangian in terms of component fields, including a full set
of auxiliary fields following from the BRST formulation.

4It is worth pointing out that this circumstance must be proved in any approach to higher-spin Lagrange
formulation. In particular, it was one of the main results in the paper [18].

5Power of the BRST approach in formulating nonlinear equations for supersymmetric higher-spin theory was
emphasized in a recent paper [34].
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2. Description of free massive higher-spin fields in the Fock space

2.1. Fock space associated with massive higher-spin fields

The conventional description of the Poincáre group irreducible representations with a given
mass m and a given spin s is realized on totally symmetric tensor fields φm1...ms = φ(m1...ms)

with s Lorentz indices, subject to the conditions 6

(∂m∂m −m
2)φm1...ms = 0 , ∂m1φm1...ms = 0 , ηm1m2φm1m2...ms = 0. (2.1)

However, in four dimensions it is much more convenient to convert each vector index into a
pair of two-component indices α (α = 1,2) and α̇ (α̇ = 1̇, 2̇)7 and work with fields φ

β̇(s)

α(s)
(x) of

the form

φ
β̇(s)

α(s)
= (σm1)α1

β̇1 . . . (σms)αs
β̇sφ(m1...ms). (2.2)

In terms of the fields φβ̇(s)

α(s)
(x), the last of the conditions (2.1) is fulfilled automatically and the

rest conditions are rewritten as follows:

(◻ −m2)φ
β̇(s)

α(s)
(x) = 0 , ∂α

β̇
φ
β̇(s)

α(s)
(x) = 0 . (2.3)

Here ◻ = ∂2 = ∂m∂m =
1

2
∂β̇
α∂

α
β̇

and ∂α
β̇
φ
β̇(s)

α(s)
∶= ∂γ

γ̇φ
γ̇β̇1...β̇s−1
γα1...αs−1 .

Let us introduce the Fock space associated with the fields φ
β̇(s)

α(s)
(x). For this purpose, one

defines the bosonic creation c̄α̇, cα and annihilation āα̇, aα operators subject to the conditions

⟨0∣c̄α̇ = ⟨0∣c
α = 0 , āα̇∣0⟩ = aα∣0⟩ = 0 , ⟨0∣0⟩ = 1 (2.4)

and commutations relations

[āα̇, c̄β̇] = δ
α̇
β̇
, [aα, c

β] = δβα . (2.5)

The rest commutation relations vanish. The Hermitian conjugation for these operators looks
like

(aα)
+ = c̄α̇ , (āα̇)+ = cα . (2.6)

Massive higher-spin Fock space vectors are defined as follows:

∣φs⟩ =
1

s!
φ
β̇(s)

α(s)
(x) cα(s) c̄β̇(s)∣0⟩ . (2.7)

The dual (conjugate) vectors are written in the form

⟨φ̄s∣ =
1

s!
⟨0∣ āα̇(s) aβ(s)φ̄

β(s)

α̇(s)
. (2.8)

6The space-time metric is ηmn = diag(−1,+1,+1,+1).
7See the details in [38].
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2.2. Constraints for massive higher-spin Fock space vectors

In this subsection we reformulate the conditions of the irreducible representation (2.3) as
the conditions on the Fock space vectors ∣φs⟩. Let us introduce the operators

l0 = ◻ −m
2 , l = ∂αβ̇a

αāβ̇ , l+ = − cβ∂βα̇c̄
α̇ . (2.9)

The only non-vanishing commutator for these operators has the form

[l+, l] =Kl0 +m
2K , (2.10)

where
K = N + N̄ + 2 , N = cαaα , N̄ = c̄α̇ā

α̇ . (2.11)
The commutation relation including (2.9) and (2.11) is written as follows:

[l,N] = l , [l, N̄] = l , [l+,N] = − l+ , [l+, N̄] = − l+ , (2.12)

[l,K] = 2l , [l+,K] = − 2l+ . (2.13)
Consider the subclass of the Fock space vectors ∣φs⟩ subject to the conditions

l0∣φs⟩ = 0 , l∣φs⟩ = 0 (2.14)

and show that they describe the irreducible representations with a given mass m and spin s,
where the spin takes the values s = 0,1, . . .. The first relation in (2.14) evidently corresponds to
mass irreducibility. To check spin irreducibility, it remains to calculate the action of the second
Casimir operator of the Poincáre group on the vectors ∣φs⟩.

It is easy to see that the vectors ∣φs⟩ satisfy the relations

N ∣φs⟩ = s∣φs⟩ , N̄ ∣φs⟩ = s∣φs⟩, (2.15)

and hence the following constraint automatically takes place:

K ∣φs⟩ = (2s + 2)∣φs⟩ . (2.16)

The anti-Hermitian translation operator is Pm = ∂m, and the anti-Hermitian Lorentz rotation
operatorMmn has the form

Mmn =Mmn + M̄mn , Mmn ∶= c
α (σmn)

β
α aβ , M̄mn ∶= c̄α̇ (σ̃mn)

α̇
β̇
āβ̇ , (2.17)

where (Mmn)
† = −Mmn. Then, the square of the Pauli–Lubanski operator Wm = −

1

2
ϵmnklP

nMkl

looks like

WmWm = − (cσ
mc̄)(aσnā)∂m∂n + [

N

2
(
N

2
+ 1) +

N̄

2
(
N̄

2
+ 1) +

NN̄

2
]∂m∂m . (2.18)

It is evident that the action of this operator on the vectors ∣φs⟩, subject to (2.14), has the

form WmWm = m2 s(s + 1), where s =
N + N̄

2
. As a result, the constraints (2.14) define the

irreducible representation of the Poincáre group with a given mass m and given spin s in the
Fock space.

To construct real Lagrangian within the framework of the BRST approach, we should have
the Hermitian BRST charge. However, the BRST charge constructed on the basis of constraints
(2.14) will be non-Hermitian, since the system of constraints (2.14) is not closed under the
Hermitian conjugation. In principle, we can extend the system of constraints (2.14) by adding
the operator l+. However, since the operators l and l+ do not commute, the extended system of
constraints will form a system of second-class constraints, and the standard construction of the
BRST charge is not applicable. In the next subsection, we will show how to convert a system
of second-class constraints into a system of first-class constraints.
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2.3. Conversion of second-class constraints

Since the BRST charge is constructed on the basis of the first-class constraints, we introduce
a new equivalent system of first-class constraints closed under Hermitian conjugation. Such a
procedure assumes involving additional variables and is called the conversion of second-class
constraints [39, 40].

The second-class constraints l and l+ are formulated in terms of oscillators c̄α̇, cα and āα̇, aα.
For conversion, we add to these oscillators new bosonic oscillators b and b+ subject to the
standard commutation relations:

[b, b+] = 1 . (2.19)

The converted constraints are defined as follows:

ℓ0 = l0 + l
′

0 , ℓ = l + l′ , ℓ+ = l+ + l+′ (2.20)

Here l0, l, l+ are the initial constraints (2.9) and l′0, l′, l+′ are the additional parts dependent on
additional annihilation and creation operators b and b+. The main principle of the conversion
procedure states that the converted constraints, unlike initial ones, should form the first-class
constraint algebra.

In the case under consideration, the converted constraints are constructed as follows:

• The mass constraint l0 is not changed under conversion

ℓ0 = l0 . (2.21)

• Additional parts l′, l+′ are taken in the form

l′ = As(n)b , l+′ = b+As(n) , (2.22)

where As(n) is some function of the operator

n ∶= b+b . (2.23)

It is assumed that this function can be represented as a series in the operator n (2.23).
Thus, the operators (2.22) are conjugate to one another and are linear in b and b+ up to
As(n).

• The function As(n) is found from the condition that the converted constraint algebra is
closed.

Let us begin constructing converted constraints based on the above conditions. Since the
converted constraints should contain the new operators b and b+, we have to generalize the Fock
space using the operator b+ and introduce the vectors 8

∣ϕs⟩ =
s

∑
k=0

mk

√
k!
(b+)k∣φs−k⟩ , (2.24)

where the vectors ∣φr⟩ (k = 0 ÷ s) are defined as before (see (2.7)):

∣φr⟩ =
1

r!
φ
β̇(r)

α(r)
(x) cα(r) c̄β̇(r)∣0⟩. (2.25)

8We use the mass parameter m in this expansion to explicitly distinguish between the massive and massless
cases and to be able to have the limit m→ 0 at the level of states/fields.
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The vacuum is also extended:
b∣0⟩ = 0 , ⟨0∣ b+ = 0 . (2.26)

The conjugate extended vector is written as follows:

⟨ϕ̄s∣ =
s

∑
k=0

mk

√
k!
⟨φ̄s−k∣(b)

k , (2.27)

where ⟨φ̄s∣ is defined like (2.8):

⟨φ̄r∣ =
1

r!
⟨0∣ āα̇(r) aβ(r)φ̄

β(r)

α̇(r)
. (2.28)

As we noted, the converted constraints have the form

ℓ = l +As(n)b , ℓ+ = l+ + b+As(n) . (2.29)

They contain the operators b and b+ and act in the Fock space of the ∣ϕs⟩ vectors (2.24). The
commutator of the initial constraints l and l+ is given by relation (2.10), where the second term
in the right-hand side violates the closure of the generators algebra. We will require that the
commutator of the constraints ℓ and ℓ+ on the vectors ∣ϕs⟩ (2.24) be closed on ℓ0 and the system
of constraints on the above vectors be a first-class one. To provide this condition, we postulate
the commutator ℓ and ℓ+ in the form

[ℓ+, ℓ] =Kℓ0 + 2m
2(S − s) , (2.30)

where the operator S should preserve the operators (2.29):

[ℓ, S] = ℓ , [ℓ+, S] = − ℓ+ (2.31)

and act on the ∣ϕs⟩ vectors (2.24) as follows:

S∣ϕs⟩ = s∣ϕs⟩. (2.32)

That is, the condition S − s = 0 on the vectors ∣ϕs⟩ is satisfied. Using the form of the ℓ, ℓ+
operators (2.29) and conditions (2.31), (2.32), one can find that the operator S has the form

S =
1

2
(N + N̄) + n =

1

2
(K − 2) + n , (2.33)

where n is defined in (2.23). As a result, on the ∣ϕs⟩ vectors (2.24) the commutator (2.30)
reduces to

[ℓ+, ℓ] =Kℓ0. (2.34)

All that remains is to find the function As(n).
The form of the function As(n) is dictated by the requirement to fulfil relation (2.30). Using

the relations
bAs(n) = As(n + 1)b , As(n)b = bAs(n − 1) , (2.35)

b+As(n) = As(n − 1)b
+ , As(n)b

+ = b+As(n + 1) , (2.36)

based on (2.19), one gets

[b+As(n),As(n)b] = nAs(n − 1)As(n − 1) − (n + 1)As(n)As(n) . (2.37)
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To get the commutator (2.30), one puts

As(n) =m(2s + 2 − n)
1/2

. (2.38)

As a result, the operators (2.29) have the final form

ℓ = l + m(2s + 2 − n)
1/2

b , ℓ+ = l+ + mb+(2s + 2 − n)
1/2

. (2.39)

In the Fock space of the vectors ∣ϕs⟩ satisfying equation (2.32), the operator S − s vanishes,
and we arrive at the following first-class constraints:

ℓ0 , ℓ , ℓ+ . (2.40)

The only nonzero commutator among these constraints has the form

[ℓ+, ℓ] =Kℓ0 . (2.41)

Let us emphasize that the situation in the massive higher-spin theory is completely analogous
to the massless one (see, e.g., [37]). The only difference is the presence in the Fock space of
one more creation operator b+ in comparison with the massless case. It necessitates, unlike
the massless case, the use of a tower of Fock space vectors with all spins from 0 to s in the
corresponding BRST construction, which is the reason for a large number of auxiliary fields in
the massive theory.

Pay attention to the fact that the operator (2.38) is well defined as a convergent power
series.

3. Lagrangian formulation

In this section we will derive the Lagrangian formulation for the theory under considera-
tion and discuss the fundamental principal issue related with obtaining the conditions (2.14)
that define the irreducible representations of the Poincáre group with a given mass and spin.
The derivation of these conditions as direct consequences of the equations of motion is the
justification of the correctness of the Lagrangian formulation for free higher-spin field theory.

3.1. Equations of motion and Lagrangian in terms of extended Fock space

The canonical BRST construction is realized in the extended Fock space where the fermionic
ghost coordinate operators η0, η, η+ and the corresponding ghost momenta P0, P+, P are added
to the bosonic oscillators c, c̄, a, ā, b, b+. The ghosts η0 and P0 are Hermitian, η+0 = η0, P+0 = P0,
whereas (η)+ = η+, (P)+ = P+. The only nonzero anticommutators for the ghost variables have
the form

{η,P+} = {P, η+} = {η0,P0} = 1. (3.1)

The extended vacuum ∣0⟩ is defined, besides (2.4) and (2.26), by the conditions

η∣0⟩ = P ∣0⟩ = P0∣0⟩ = 0 . (3.2)

The ghost operators are characterized by the following ghost numbers: gh(η0) = gh(η) =
gh(η+) = 1, gh(P0) = gh(P) = gh(P+) = −1.

The vectors of the extended Fock space are written in the form

∣Φ⟩ = ∣ϕ⟩ + η0P
+∣ϕ1⟩ + η+P+∣ϕ2⟩ , (3.3)

8
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and possess zero ghost number.
The extended Fock space for higher-spin field theory under consideration is obtained by

extension of the vectors (2.24) by the ghost operators. Therefore, the corresponding vectors in
extended space look like

∣Φs⟩ = ∣ϕs⟩ + η0P
+∣ϕ1(s−1)⟩ + η+P+∣ϕ2(s−2)⟩ , (3.4)

where ∣ϕs⟩ are defined in (2.24), (2.25) and

∣ϕ1(s−1)⟩ =
s−1

∑
k=0

mk

√
k!
(b+)k∣φ1(s−1−k)⟩ , ∣φ1(r)⟩ =

1

r!
φ1,

β̇(r)

α(r)
(x) cα(r) c̄β̇(r)∣0⟩ , (3.5)

∣ϕ2(s−2)⟩ =
s−2

∑
k=0

mk

√
k!
(b+)k∣φ2(s−2−k)⟩ , ∣φ2(r)⟩ =

1

r!
φ2,

β̇(r)

α(r)
(x) cα(r) c̄β̇(r)∣0⟩ . (3.6)

As a result, we arrive at a triplet of vectors ∣ϕs⟩, ∣ϕ1(s−1)⟩, ∣ϕ2(s−2)⟩ in the initial Fock space.
Let us turn to constructing the BRST charge. According to the general scheme, the BRST

charge is derived with the help of first-class constraints. Therefore, using the constraints
ℓ0, ℓ, ℓ+, one obtains the following Hermitian operator:

Q̃ = η0ℓ0 + η+ℓ + η ℓ+ + Kη+ηP0 . (3.7)

However,
Q̃2 = − 2m2η+η (S − s) = − 2m2η+η (Ŝ − s − 1) , (3.8)

where the Hermitian operator Ŝ has the form

Ŝ = S + η+P +P+η =
1

2
(N + N̄) + n + η+P +P+η , (3.9)

and the operator S is defined in (2.33). The operator Ŝ acts in the extended Fock space and
generalizes the operator S that defines the true massive higher-spin field due to relation (2.32).
To define subspace of true massive higher-spin fields in the extended Fock space, it is natural
to impose the condition

Ŝ ∣Φs⟩ = s ∣Φs⟩ . (3.10)

Vectors (3.4) of the extended Fock space obey precisely this condition. However, according to
(3.8), the operator (3.7) will not be nilpotent in subspace of the vectors ∣Φs⟩ subject to relation
(3.10). The reason for the loss of nilpotency may be due to the use of not quite suitable
constraints. Instead of constraints ℓ and ℓ+, one introduces new constraints according to the
rule

ℓ̂ = l + As−1(n)b = l + m(2s − n)
1/2

b ,

ℓ̂+ = l+ + b+As−1(n) = l+ + mb+(2s − n)
1/2

.
(3.11)

The constraint ℓ0 does not change. The commutator of the constraints (3.11) has the form

[ℓ̂+, ℓ̂] = Kℓ0 + 2m
2(S − s + 1) . (3.12)

Let us construct the BRST charge on the basis of the constraints ℓ0, ℓ̂, ℓ̂+ and show that it
will be Hermitian and nilpotent in subspace of vectors subject to (3.10). The general definition
of the BRST charge allows one to introduce the operator

Q = η0ℓ0 + η+ℓ̂ + η ℓ̂+ + Kη+ηP0 . (3.13)

9
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Expression (3.13) leads to

Q2 = − 2m2η+η (S − s + 1) = − 2m2η+η (Ŝ − s) . (3.14)

Thus, the operator (3.13) is nilpotent on the vectors (3.4) under the condition (3.10): Q2∣Φs⟩ = 0.
The equation of motion for a free bosonic massive higher-spin field is postulated as follows:

Q ∣Φs⟩ = 0. (3.15)

It is worth emphasizing that this postulate is not arbitrary. The general principle of the La-
grange formulation for free higher-spin field theories in any approach states that the Lagrangian
equations of motion must reproduce, as their direct consequences, the conditions defining the
irreducible representations of the Poincáre group. In the next subsection, we will prove that
the equation of motion (3.15) is completely consistent with this general principle.

Equation (3.15) possesses a large gauge freedom. Due to nilpotency of the BRST charge in
subspace of vectors (3.4), the vector ∣Φs⟩ in equation (3.15) is defined up to gauge transformation

∣Φ′s⟩ = ∣Φs⟩ + Q ∣Λs⟩ , (3.16)

where the gauge parameter ∣Λs⟩ with ghost number −1 is the extended Fock space vector of the
form

∣Λs⟩ = P
+∣λ̂s−1⟩ . (3.17)

Let us emphasize that the vectors ∣ϕ⟩, ∣ϕ1⟩, ∣ϕ2⟩ in relation (3.4) are given by the expansions
(2.24), (2.25), (3.5), (3.6). The Fock vector parameter ∣λ̂⟩ is defined by a similar expansion

∣λ̂s−1⟩ =
s−1

∑
k=0

mk

√
k!
(b+)k∣λs−1−k⟩ , ∣λσ⟩ =

1

σ!
λ
β̇(σ)

α(σ)
(x) cα(σ) c̄β̇(σ)∣0⟩ (3.18)

The equation of motion (3.15) can be identically rewritten as a system of equations for a
triplet of vectors ∣ϕs⟩, ∣ϕ1(s−1)⟩, ∣ϕ2(s−2)⟩:

ℓ0∣ϕs⟩ − ℓ̂
+∣ϕ1(s−1)⟩ = 0 , (3.19)

ℓ̂ ∣ϕs⟩ − ℓ̂
+∣ϕ2(s−2)⟩ +K ∣ϕ1(s−1)⟩ = 0 , (3.20)

ℓ0∣ϕ2(s−2)⟩ − ℓ̂ ∣ϕ1(s−1)⟩ = 0. (3.21)

Analogously, the gauge transformation (3.16) can be identically rewritten as a system of gauge
transformations for the above triplet

δ∣ϕs⟩ = ℓ̂+ ∣λ̂s−1⟩ , δ∣ϕ1(s−1)⟩ = ℓ0 ∣λ̂s−1⟩ , δ∣ϕ2(s−2)⟩ = ℓ̂ ∣λ̂s−1⟩. (3.22)

Equations (3.19)–(3.21) and gauge transformations (3.22) are another equivalent form of the
equations of motion and gauge transformations for free bosonic massive higher-spin field theory,
where we have moved from the description in the extended Fock space to the description in the
conventional Fock space without ghost operators.

Now it is easy to see that the Lagrangian corresponding to the equation of motion (3.15) is
written as follows:

Ls = ∫ dη0 ⟨Φ̄s∣Q ∣Φs⟩ . (3.23)

10
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It is evident that this Lagrangian is invariant under the gauge transformation (3.16).
In the Lagrangian (3.23), one can calculate the scalar product over ghost variables. As

a result, we arrive at the equivalent master Lagrangian in terms of a triplet of vectors ∣ϕs⟩,
∣ϕ1(s−1)⟩, ∣ϕ2(s−2)⟩:

Ls = ⟨ϕ̄s∣ℓ0∣ϕs⟩ − ⟨ϕ̄1(s−1)∣K ∣ϕ1(s−1)⟩ − ⟨ϕ̄2(s−2)∣ℓ0∣ϕ2(s−2)⟩ −

− ⟨ϕ̄1(s−1)∣ ℓ̂ ∣ϕs⟩ − ⟨ϕ̄s∣ ℓ̂
+∣ϕ1(s−1)⟩ + ⟨ϕ̄2(s−2)∣ ℓ̂ ∣ϕ1(s−1)⟩ + ⟨ϕ̄1(s−1)∣ ℓ̂

+∣ϕ2(s−2)⟩ . (3.24)

The triplet of vectors ∣ϕs⟩, ∣ϕ1(s−1)⟩, ∣ϕ2(s−2)⟩ in this Lagrangian describes the traceless spin-
tensor fields corresponding to massive spins from 0 to s, s − 1, s − 2, respectively. As will
be shown in the next section, after eliminating auxiliary and gauge fields, the physical fields
describe single massive spin s. In the limit m → 0, the dependence on all the operators b and
b+ vanishes, and we arrive at the Lagrangian of the massless higher-spin theory.

3.2. Completion of the Lagrangian formulation

We proceed to prove that relations (2.14), which define the irreducible representation of the
Poincáre group with a given mass and spin, are an identical consequence of the equation of
motion (3.15) or an identical consequence of the equivalent equations of motion (3.19), (3.20),
(3.21).

First of all we note that the vector ∣ϕ1(s−1)⟩ is purely auxiliary and can be eliminated
algebraically with the help of the equation of motion (3.20):

∣ϕ1(s−1)⟩ = −K
−1 (ℓ̂ ∣ϕs⟩ − ℓ̂

+∣ϕ2(s−2)⟩) . (3.25)

Here we take into account that the operator K (2.11) is non-singular and the inverse operator
K−1 is well defined (at least in terms of power series). Substituting the result (3.25) into
Lagrangian (3.24), one gets the Lagrangian in terms of vectors ∣ϕs⟩ and ∣ϕ2(s−2)⟩ in the form

Ls = ⟨ϕ̄s∣ (ℓ0 + ℓ̂
+K−1ℓ̂) ∣ϕs⟩ − ⟨ϕ̄2(s−2)∣ (ℓ0 − ℓ̂K

−1ℓ̂+) ∣ϕ2(s−2)⟩ −

− ⟨ϕ̄2(s−2)∣ ℓ̂K
−1ℓ̂ ∣ϕs⟩ − ⟨ϕ̄s∣ ℓ̂

+K−1ℓ̂+ ∣ϕ2(s−2)⟩ , (3.26)

The corresponding equations of motion are written as follows:

(ℓ0 + ℓ̂
+K−1ℓ̂) ∣ϕs⟩ − ℓ̂+K−1ℓ̂+ ∣ϕ2(s−2)⟩ = 0 , (3.27)

(ℓ0 − ℓ̂K
−1ℓ̂+) ∣ϕ2(s−2)⟩ + ℓ̂K−1ℓ̂ ∣ϕs⟩ = 0 . (3.28)

Solution (3.25) for ∣ϕ1(s−1)⟩ preserves gauge invariance; therefore, both Lagrangian (3.26) and
equations of motion (3.27) and (3.28) are still gauge-invariant under the transformations for
the remaining vectors

δ∣ϕs⟩ = ℓ̂+ ∣λ̂s−1⟩ , δ∣ϕ2(s−2)⟩ = ℓ̂ ∣λ̂s−1⟩. (3.29)

Relations (3.29) lead to important consequences. Using relations (2.24) and (3.18), where
the vectors ∣ϕs⟩ and ∣λ̂s−1⟩ are expressed as polynomials in b+, one gets the gauge transformations
for the coefficient vectors in these polynomials in the form

δ∣φs−k⟩ =
√
k(2s − k + 1) ∣λs−k⟩ + l

+ ∣λs−1−k⟩ , k = 0 ÷ (s − 1) , (3.30)

δ∣φ0⟩ =
√
s(s + 1) ∣λ0⟩ . (3.31)

11
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It is evident that the first term in the right-hand side of (3.30) vanishes at k = 0. Relation (3.31)
shows that the vector ∣φ0⟩ can be gauged away and the parameter ∣λ0⟩ will be fixed. Putting
k = s − 1 in (3.30), one gets

δ∣φ1⟩ =
√
(s − 1)(s + 2) ∣λ1⟩ + l

+ ∣λ0⟩, (3.32)

where the parameter ∣λ0⟩ is already fixed. Using the freedom in choosing the parameter ∣λ1⟩,
we can fix this parameter and gauge away the vector ∣φ1⟩. Continuing such a procedure step
by step, one gets

δ∣φs−1⟩ =
√
2s ∣λs−1⟩ + l

+ ∣λs−2⟩ . (3.33)

The parameter ∣λs−2⟩ is fixed at the previous step. Hence fixing the parameter ∣λs−1⟩, we can
gauge away the vector ∣φs−1⟩. At the last step, one puts k = 0. This leads to

δ∣φs⟩ = l+ ∣λs−1⟩ . (3.34)

The parameter ∣λs−1⟩ is already fixed at the previous step. Therefore, relation (3.34) does not
allow one to gauge away the vector ∣φs⟩ and it remains unchanged. As a result, relations (3.30)
and (3.31) provide the possibility of the gauge

∣φs−k⟩ = 0 , k = 1 ÷ s . (3.35)

In this gauge, the vector ∣ϕs⟩ does not depend on b+ and is reduced only to a single vector

∣ϕs⟩ = ∣φs⟩ . (3.36)

The gauge freedom in the theory under consideration is completely fixed and we arrive at non-
gauge theory. Nevertheless, we still have a large number of auxiliary fields. Now we discuss how
all these auxiliary fields are eliminated and how the fundamental conditions (2.14) are derived.

After imposing the gauge (3.35), the equations of motion (3.27), (3.28) take the form

∣Es⟩ ∶= (ℓ0 + ℓ̂
+K−1l) ∣φs⟩ − ℓ̂+K−1ℓ̂+ ∣ϕ2(s−2)⟩ = 0 , (3.37)

∣E2(s−2)⟩ ∶= (ℓ0 − ℓ̂K
−1ℓ̂+) ∣ϕ2(s−2)⟩ + lK−1l ∣φs⟩ = 0 . (3.38)

Here we have already used that b ∣φs⟩ = 0 and ℓ̂ ∣φs⟩ = l ∣φs⟩. Taking into account the form of
constraint ℓ̂+ = l+ +mb+(2s−n)

1/2
in equation (3.37), we see that the first term in this equation

contains the term independent of b+ and terms linear in b+. As to the second term in this
equation, it contains the terms with (b+)k, k = 2÷s. This is easily seen if one takes into account
the expansion (3.6) for the vector ∣ϕ2(s−2)⟩. Let us act on the equation ∣Es⟩ = 0 (3.37) by the
operator (b)s and substitute ∣ϕ2(s−2)⟩ in the form (3.6). Taking into account that acting on
the first term in ∣Es⟩ leads to identities bs∣φs⟩ = 0 or bs−1∣φs⟩ = 0.9 After that, the equation
bs∣Es⟩ = 0 is reduced to

bs(A + B b+ + C(b+)2)
s−2

∑
k=0

mk

√
k!
(b+)k∣φ2(s−2−k)⟩ = 0 , (3.39)

9Since ∣φs⟩ does not contain the operators b+, we can either immediately transfer the operator bs to vacuum
and get zero or recommute the operator bs with the operator b+ to obtain bs−1 acting on vacuum that gives
zero.

12
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where A, B, C are some operators. The explicit form for A, B is unessential for further consider-
ation. It is only important that the operator C equals C =m2K−1(2s+1−n)

1/2
(2s+2−n)

1/2
and

is nonsingular on all ∣φ2(s−2−k)⟩. Further, we should recommute the operator bs to ∣φ2(s−2−k)⟩

using (2.19) and (2.35). The only nonzero result in bs∣Es⟩ arises from the term bs(b+)s∣φ2(0)⟩,
which must vanish due to bs∣Es⟩ = 0. This means that ∣φ2(0)⟩ = 0. Putting this relation into
∣ϕ2(s−2)⟩ in (3.37), acting on this equation by the operator bs−1 and repeating the same consid-
eration as before, one gets ∣φ2(1)⟩ = 0. Then acting by the operator bs−2 on equation (3.37), one
obtains ∣φ2(2)⟩ = 0 and so all. At the end, acting by the operator b2 on equation (3.37), one
obtains ∣φ2(s−2)⟩ = 0. As a result, we get ∣φ2(s−2−k)⟩ = 0, k = 0 ÷ (s − 2) in expression (3.6) for
∣ϕ2(s−2)⟩. This is a compact form of the conditions

φ2,
β̇(s−2−k)

α(s−2−k)
= 0 , k = 0 ÷ (s − 2) (3.40)

on the Singh–Hagen-like auxiliary component fields (see (3.51)). Hence we have

∣ϕ2(s−2)⟩ = 0 (3.41)

in the equation ∣Es⟩ = 0 (3.37). After that, this equation takes the form

(l0 + ℓ̂
+K−1ℓ) ∣φs⟩ = 0 . (3.42)

Acting on this equation by the operator b, one gets

l ∣φs⟩ = 0 . (3.43)

Then, the conditions (3.42) and (3.43) lead to

l0 ∣φs⟩ = 0 . (3.44)

Equations (3.43) and (3.44) coincide with conditions (2.14) defining the irreducible represen-
tation of the Poincáre group with a given mass and spin. We emphasize that these conditions
are direct consequences of the equation of motion (3.15) which are coding basic equations (2.3)
for component fields. In essence, the latter circumstance serves as a justification of the cor-
rectness and consistency of the BRST approach to the Lagrangian formulation of free massive
higher-spin field theory.

Note that when equations (3.41), (3.43) and (3.44) are satisfied, equation (3.38) is satisfied
automatically.

It is clear that the Lagrangian (3.26) can be simplified by imposing the gauge (3.41). After
that, the Zinoviev-like gauge auxiliary vector ∣ϕ1(s−2)⟩ is eliminated, and we arrive at the La-
grangian in terms of a doublet of Fock space vectors ∣φs⟩ and ∣ϕ2(s)⟩ in the form

Ls = ⟨φ̄s∣ (ℓ0 + l
+K−1l) ∣φs⟩ − ⟨ϕ̄2(s−2)∣ (ℓ0 − ℓ̂K

−1ℓ̂+) ∣ϕ2(s−2)⟩ −

− ⟨ϕ̄2(s−2)∣ lK
−1l ∣φs⟩ − ⟨φ̄s∣ l

+K−1l+ ∣ϕ2(s−2)⟩ . (3.45)

The Lagrangian (3.45) now contains only basic higher-spin field and Singh–Hagen-like auxiliary
fields.

We emphasize that there is no need to specially prove the equivalence of all such different
Lagrangian formulations. All of them are based on the same single criterion of correctness: the
equations of motion reproduce the relations that determine the irreducible representations of
the Poincáre group with a given mass and spin (see, e.g., [29, 30]).

13
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3.3. Field contents

We have shown that the BRST Lagrangian description of massive arbitrary spin fields is
formulated in terms of triplet vectors ∣ϕs⟩, ∣ϕ1(s−1)⟩ and ∣ϕ2(s−2)⟩. Each of these vectors includes
the standard space-time fields the number of which increases with spin. Let us discuss the
structure of these vectors in more detail. The expansions (2.24), (2.25), (3.5), (3.6) allow us to
describe completely the structure of component fields in the form

∣ϕs⟩ ∶ {∣φs⟩ , ∣φs−1⟩ , ∣φs−2⟩ , . . . , ∣φ1⟩ , ∣φ0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zinoviev-like gauge states

} , (3.46)

∣ϕ1(s−1)⟩ ∶ { ∣φ1(s−1)⟩ , ∣φ1(s−2)⟩ , . . . , ∣φ1(1)⟩ , ∣φ1(0)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

BRST auxiliary states

} , (3.47)

∣ϕ2(s−2)⟩ ∶ { ∣φ2(s−2)⟩ , ∣φ2(s−3)⟩ , . . . , ∣φ2(1)⟩ , ∣φ2(0)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Singh–Hagen-like auxiliary states

} (3.48)

with spins 0 ÷ s, 0 ÷ (s − 1), and 0 ÷ (s − 2), respectively. These sets of vectors are born from
the vacuum by acting on the powers of the additional creation operator b+ inherent only in the
massive case. The vectors (3.46), (3.47), (3.48) are described by the fields

φ
β̇(s−k)

α(s−k)
, k = 0 ÷ s ∶ {φ

β̇(s)

α(s)
, φ

β̇(s−1)

α(s−1)
, φ

β̇(s−2)

α(s−2)
, . . . , φβ̇

α , φ0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Zinoviev-like gauge fields

} , (3.49)

φ1,
β̇(s−1−k)

α(s−1−k)
, k = 0 ÷ (s − 1) ∶ {φ1,

β̇(s−1)

α(s−1)
, φ1,

β̇(s−2)

α(s−2)
, . . . , φ1,

β̇
α , φ1,0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BRST auxiliary fields

} , (3.50)

φ2,
β̇(s−2−k)

α(s−2−k)
, k = 0 ÷ (s − 2) ∶ {φ2,

β̇(s−2)

α(s−2)
, φ2,

β̇(s−3)

α(s−3)
, . . . , φ2,

β̇
α , φ2,0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Singh–Hagen-like auxiliary fields

} . (3.51)

In the BRST approach, the vectors (3.46), (3.47), (3.48) and the corresponding fields (3.49),
(3.50), (3.51) play a very clear and understandable role.

The vectors ∣ϕ1(s−1−k)⟩ and the corresponding fields φ1,
β̇(s−1−k)

α(s−1−k)
(x), k = 0÷(s−1) are auxiliary

and are eliminated algebraically by using their equations of motion (3.25). They present in the
initial action as a result of using the BRST triplet formulation of the theory.

The Lagrangian (3.26) obtained after eliminating ∣ϕ1(s−1−k)⟩ possesses gauge symmetry and
contains gauge Stückelberg degrees of freedom for the massive higher-spin theory. This La-
grangian corresponds to the massive spin theory proposed by Zinoviev in [22–24]. If we take
into account the gauge transformations (3.30), (3.31), then it is natural to consider the vectors
∣φs−k⟩ and the corresponding fields φ

β̇(s−k)

α(s−k)
(x), k = 0 ÷ (s − 1) as Stückelberg vectors/fields.

After gauge fixing (3.35) that excludes these vectors/fields, we obtain the Lagrangian in the
Singh–Hagen formulation [18] in terms of the vectors ∣φs⟩, ∣φ2(s−2−k)⟩ and the corresponding
fields φ

β̇(s)

α(s)
(x), φ2,

β̇(s−2−k)

α(s−2−k)
(x), k = 0 ÷ (s − 2). In this formulation the fields φ2,

β̇(s−2−k)

α(s−2−k)
(x),

k = 0 ÷ (s − 2) are auxiliary, whereas the field φ
β̇(s)

α(s)
(x) is physical one.

Note that the scheme considered here is a generalization of the massless case (see, for
example, [37]). Using the mass parameter in the expansions (2.24), (3.5), (3.6), we have only
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vectors ∣ϕs⟩ = ∣φs⟩, ∣ϕ1(s−1)⟩ = ∣φ1(s−1)⟩, ∣ϕ2(s−2)⟩ = ∣φ2(s−2)⟩ remaining at m = 0 and we completely
reproduce the triplet formulation of a massless particle of an arbitrary spin (helicity).

4. Summary

In this paper we have significantly modified and simplified the previously developed BRST
construction to derive the Lagrangian formulation for the free massive integer higher-spin field
in four-dimensional flat space-time. We emphasize the novelty of the approach under consider-
ation.

Unlike the previous approaches [27, 28], where the Lagrangian BRST construction was
developed for massive higher-spin fields, we use the formulation in terms in the Fock space
vectors formed by annihilation and creation operators with two-component undotted and dotted
spinor indices.10 Therefore, the corresponding massive higher-spin fields are irreducible spin-
tensors with respect to the Lorentz group. This leads to a significant simplification of the whole
BRST construction since now there is no need to introduce into the BRST charge the constraint
associated with tracelessness. The matter is that such spin-tensor fields will automatically be
traceless after restoration of vector indices (see, e.g., (2.2)).11

As well as in the previous approaches, the conditions defining the irreducible representation
of the Poincáre group with a given mass and spin are formulated in the Fock space under
consideration with the help of the constraints l0 and l (2.9) according to conditions (2.14).
The constraint l0 is the Klein–Gordon operator and provides the mass irreducibility, while the
constraint l is the transversality operator and provides the spin irreducibility. It was shown that
the constraint l and conjugate constraint l+ are the second-class ones, which leads to a problem
of constructing the Hermitian BRST charge. The transformation of the second-class constraints
into the first-class ones is based on the conversion procedure (see, e.g., [39, 40]). In our case,
the conversion was realized by introducing the new bosonic annihilation and creation operators
b, b+. This makes it possible to construct an equivalent theory which is characterized by modified
constraints (2.40) that form the first-class algebra (2.41) in the Fock space. Moreover, the action
of the operators b and b+ on the vacuum, unlike the massless case, generates additional fields
(see, e.g., (2.24)) which can be associated with auxiliary fields in the massive higher-spin theory.
The BRST charge (3.13) constructed on the basis of modified first-class constraints defines the
gauge-invariant Lagrangian and generates a triplet field theory. The formal construction turns
out to be marvelously similar to the massless higher-spin field theory that is also formulated in
terms of the fields triplet. However, since in the massive case we have additional annihilation
and creation operators b, b+ in the Fock space, we get additional auxiliary fields in comparison
with the massless case.

The main issue of any approach to the Lagrangian formulation for free higher-spin fields
is the proof that the Lagrange equations of motion reproduce as their direct consequences
the relations that determine the irreducible higher-spin representations of the Poincáre group.
Such a proof in the original paper [18] (see also [12]) looked like extremely complicated for an
arbitrary spin s. In the previous papers on the BRST approach to massive higher spins [27–29],
the study of this issue involved the consideration of a large number of specific details and also
was not very simple. In the present paper, we have developed an elegant and extremely simple
derivation of the above relations from the Lagrange equations of motion. The procedure uses

10Such a Fock space was introduced earlier to describe the supersymmetric massless higher-spin fields in [36].
11The Lagrangian formulation of 4d massive higher spin fields in terms of two-component spinors was con-

sidered in [17] without using the BRST construction.
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only very well-known properties [b, b+] = 1 and b∣0⟩ = 0 of the bosonic annihilation and creation
operators.

The Lagrangian was derived in terms of expectation values over the Fock space vectors, in
fact in terms of vacuum expectation values from the products of some numbers of annihilation
and creation operators. After calculating the above expectation values, one gets the Lagrangian
in terms of spin-tensor space-time fields. These fields are naturally divided into basic higher-
spin field, Zinoviev-like auxiliary fields, Singh–Hagen-like auxiliary fields and specific BRST-
like auxiliary fields. Eliminating parts of the auxiliary fields with the help of gauge fixing or
equations of motion, we have the formally different but equivalent Lagrangian formulations.
Their equivalence does not require a special test; it is evident because all of them are based
on the same relations determining the irreducible representation of the Poincáre group with a
given mass and spin.

It is interesting to note once more that formally the same triplet Lagrangian structure takes
place in both massless and massive cases. The only difference is the number of auxiliary fields
and the form of constraints with their same algebra on the Fock space under consideration.
Therefore, one can hope to derive interaction vertices for the massive higher-spin field theory
using the vertices for the massless one.

Note that infinite and finite higher-spin (helicity) field theories in the framework of the BRST
formulation on the basis of oscillators with two-component spinor indices and the corresponding
two-component spin-tensor fields were earlier considered in [41] and [37]. In this paper, we have
studied the last earlier unconsidered case of the BRST Lagrangian formulation in terms of two-
component spin-tensors, viz. the case of the BRST formulation for massive higher-spin fields
in four dimensions.
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Appendix. Component field Lagrangian

After using the relations

⟨0∣aα1 . . . aαsc
β1 . . . cβs ∣0⟩ = s! δβ1

(α1
. . . δβs

αs)
, ⟨0∣aα(s1)c

β(s2)∣0⟩ = 0 at s1 ≠ s2 , (A.1)

⟨0∣ āα̇1 . . . āα̇s c̄β̇1
. . . c̄β̇s

∣0⟩ = s! δ
(α̇1

β̇1
. . . δ

α̇s)

β̇s
, ⟨0∣ āα̇(s1)c̄β̇(s2)∣0⟩ = 0 at s1 ≠ s2 , (A.2)

⟨0∣ (b)k(b+)k∣0⟩ = k! , ⟨0∣ (b)k1(b+)k2 ∣0⟩ = 0 at k1 ≠ k2 (A.3)

and expansions (2.24), (2.25), (2.27), (2.28), the master BRST Lagrangian (3.24) yields the
following component Lagrangian:

Ls =
s

∑
k=0

m2kφ̄
α(s−k)

β̇(s−k)
(◻ −m2)φ

β̇(s−k)

α(s−k)
− 2

s−1

∑
k=0

m2k(s − k)φ̄1,
α(s−1−k)

β̇(s−1−k)
φ1,

β̇(s−1−k)

α(s−1−k)
−

−
s−2

∑
k=0

m2kφ̄2,
α(s−2−k)

β̇(s−2−k)
(◻ −m2)φ2,

β̇(s−2−k)

α(s−2−k)
+

+
s−1

∑
k=0

m2k(s − k)(φ̄1,
α(s−1−k)

β̇(s−1−k)
∂α
β̇
φ
β̇(s−k)

α(s−k)
+ ∂β̇

αφ̄
α(s−k)

β̇(s−k)
φ1,

β̇(s−1−k)

α(s−1−k)
) −

−
s−1

∑
k=0

m2k+2
√
(2s − k)(k + 1)(φ̄1,

α(s−1−k)

β̇(s−1−k)
φ
β̇(s−1−k)

α(s−1−k)
+ φ̄

α(s−1−k)

β̇(s−1−k)
φ1,

β̇(s−1−k)

α(s−1−k)
)+
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+
s−1

∑
k=0

m2k(s − 1 − k)(φ̄1,
α(s−1−k)

β̇(s−1−k)
∂β̇
αφ2,

β̇(s−2−k)

α(s−2−k)
+ ∂α

β̇
φ̄2,

α(s−2−k)

β̇(s−2−k)
φ1,

β̇(s−1−k)

α(s−1−k)
) +

+
s−1

∑
k=0

m2k
√
k(2s + 1 − k)(φ̄1,

α(s−1−k)

β̇(s−1−k)
φ2,

β̇(s−1−k)

α(s−1−k)
+ φ̄2,

α(s−1−k)

β̇(s−1−k)
φ1,

β̇(s−1−k)

α(s−1−k)
) . (A.4)

The field model with the Lagrangian (A.4) is described by the triplet of fields: φβ̇(s−k)

α(s−k)
, k = 0÷s,

φ1,
β̇(s−1−k1)

α(s−1−k1)
, k1 = 0 ÷ (s − 1) and φ2,

β̇(s−2−k2)

α(s−2−k2)
, k2 = 0 ÷ (s − 2) having the mass dimensions

[φ
β̇(s−k)

α(s−k)
] = [φ2,

β̇(s−2−k)

α(s−2−k)
] = [m]1−k , [φ1,

β̇(s−1−k)

α(s−1−k)
] = [m]2−k .

Note that the penultimate term in (A.4) does not contain a term with k = s − 1, since for
this value of k there is no field φ2,

β̇(s−2−k)

α(s−2−k)
. This is taken into account automatically, since the

coefficient in this term for k = s − 1 is identically equal to zero. Similarly, the last term does
not contain a term with k = 0, since for this value of k there is no field φ2,

β̇(s−1−k)

α(s−1−k)
. This is also

taken into account automatically, since the coefficient in this term for k = 0 is identically equal
to zero. It is instructive to compare a simple and compact Lagrangian (3.24) written in terms
of the Fock space vectors with an equivalent cumbersome Lagrangian (A.4) written in terms of
component fields.

For m=0, only terms with three fields φ
β̇(s)

α(s)
, φ1,

β̇(s−1)

α(s−1)
, φ2,

β̇(s−2)

α(s−2)
survive in the Lagrangian

(A.4), and the Lagrangian (A.4) goes over to the Fronsdal Lagrangian for the massless spin
(helicity) field s in the triplet BRST formulation presented in [37].
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