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Abstract

Using the generalised renormalisation group formalism, we calculate quantum corrections to the effec-
tive potential in α-attractor models describing the inflationary stage of the Universe evolution. We
demonstrate that quantum corrections lead to a change in the initial classical potential, changing its
value at the minimum, which can be interpreted as a manifestation of the cosmological constant or
dark energy.
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1. Introduction

Inflationary theory is one of the most promising models for describing the accelerated ex-
pansion and properties of the early Universe [1–3]. It solves a number of cosmological problems
and is in agreement with modern observational data [4, 5]. In the simplest realisation of the
inflationary scenario, it is usually assumed that after the Universe leaves the inflationary stage
and post-inflationary reheating, it remains in a state with a minimum potential with a value of
Λ ∼ 10−120M4

Pl, where MPl is the Planck mass [6].
In this paper, we demonstrate that taking into account quantum corrections to the effective

potential in some cosmological models can lead to a significant change in the classical poten-
tial [7, 8] and the appearance of a non-zero value of the ground state energy of the Universe,
which can be interpreted as a cosmological constant.

In our analysis we use the standard formalism of the effective potential and apply it to the
inflationary model of α-attractors, the so-called T model [9–11] with the potential

V (φ) = g tanhn

(
φ√

6αMPl

)
= gVT (1)

(we will mainly consider the cases with n = 2, 4, and call them the T 2 and T 4 models, respec-
tively) [12]. Here φ is the inflaton scalar field, g = m2

infM
2
Pl is the scale of inflation, where
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minf ≈ 10−5MPl is the mass of the inflaton, and α is a positive number. These models have
been successfully used to study the early accelerated expansion phase of the Universe, as well
as the dark energy-dominated phase [11, 13, 14]. The predictions from these models are in
agreement with the PLANCK and BICEP/Keck [4, 5] observations.

First, we recall the main ideas of the derivation of the generalised renormalisation group
equation (RG equation) for the effective potentials of non-renormalisable interactions, which
allows us to sum the leading contributions to the effective potential in all orders of perturbation
theory. This approach generalises the original work [15]. Then, using these equations, we
calculate quantum corrections to the effective potential for a number of cosmological T models
and demonstrate how the non-zero cosmological constant arises as a result of accounting for
radiative corrections.

2. Effective potential in the general scalar model

The effective potential Veff(φ) can be considered as complementing the classical potential
with quantum loop corrections. It is defined as the part of the effective action that does not
contain any derivatives [16]. The calculation of the effective potential requires summing all
vacuum 1PI diagrams with propagators containing an effective mass term that depends on the

classical field φ: m2(φ) = gv2(φ), where v2(φ) ≡
d2V (φ)

dφ2
and to each vertex there corresponds

vn(φ) ≡ dnV (φ)

dφn
, where n is equal to the number of interior lines at each vertex. Then the

effective potential is constructed as a perturbative expansion on the coupling constant g:

Veff(φ, g) = g
∞∑
n=0

(−g)nVn(φ). (2)

For regularisation of UV divergences we use dimensional regularisation, when the integration
is carried out in D = 4 − 2ϵ dimensions of spacetime. The divergent parts of ∼ 1/ϵn are
absorbed by the corresponding counter terms that in renormalisable theories repeat the form of
the original Lagrangian. In the non-renormalisable case, these counterterms, on the contrary,
do not repeat the original Lagrangian and lead to an infinite number of new structures. This
means that in the non-renormalisable case there is infinite arbitrariness, which is not reducible
to renormalising a finite number of coupling constants. However, the leading logarithms are
free from this arbitrariness and in this paper we focus our attention only on such contributions.
For this reason, in the following we omit the singular terms and are concerned only with the
logarithmic dependence.

To compute the leading logarithms ∼ logn
(
m2

µ2

)
, we take advantage of the fact that the

coefficient of the singular term ∼ 1/ϵn coincides with the coefficient of the corresponding log-
arithm ∼ logn(gv2(φ)) giving the contribution to the effective potential. This is true for all
orders of PT. Then, by computing the leading poles of 1/ϵn and replacing the pole by the
logarithm, we can obtain the leading contribution to the effective potential.

To obtain the leading poles, we can use the R-operation [17–19] and the Bogoliubov–
Parasiuk theorem [20], which states that, after the subtraction of divergent subgraphs in an
arbitrary local theory, the remaining singular part is always local in coordinate space or has a
polynomial structure in momentum space. This is always true regardless of whether the theory
is renormalisable or non-renormalisable and imposes restrictions on the structure of the singular
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terms and allows us to obtain recurrence relations for the leading divergences in subsequent
orders of perturbation theory [8]. In turn, the recurrence relations can be transformed into a dif-
ferential equation, which is a generalisation of the RG equation to the non-renormalisable case.

Let us introduce a function Σ(z, φ) given by the equation

Σ(φ, g) = g

∞∑
n=0

(−g)n∆Vn(φ), (3)

where ∆Vn is the coefficient of the leading pole 1/ϵn in the expression for the effective potential.
Then the generalised WG equation on the function Σ(z, φ) has the following form [8]:

∂Σ

∂z
= −1

4

(
∂2Σ

∂φ2

)2

, Σ(0, φ) = V0(φ), (4)

where z = g/ϵ. To obtain the effective potential, it is enough to replace in the obtained solution
the argument z by the corresponding logarithm:

Veff(g, φ) = gΣ(z, φ)|z→− g

16π2 log (gv2/µ2). (5)

The resulting effective potential contains the leading logarithmic contributions from all
orders of perturbation theory.

In general, the above equation is a nonlinear partial derivative equation. Unfortunately,
except for the renormalisable case with the φ4 potential, we cannot obtain an analytical solution
to this equation and must resort to numerical calculation. The full solution, which takes into
account all orders of perturbation theory, usually has smoother behaviour than the one-loop
approximation and can include both poles and discontinuities and restore the original symmetry
of the classical potential [7].

Let us apply the formalism of the generalised RG to the study of properties of effective
potentials of α-attractor models.

3. Cosmological constant due to quantum corrections

Let us briefly recall the description of α-attractor models. In [21] it was shown that there
exists a wide class of so-called α-attractor models with hyperbolic geometry of the following
kind:

S =

∫
d4x

√
−g

M2
Pl

2
R(g) +

1

2

∂µϕ∂
µϕ[

1− ϕ2

6αM2
Pl

]2 − V (ϕ)

 , (6)

where α is the free parameter, ϕ is the inflaton field, R(g) is the scalar curvature, g = det(gµν),
gµν is the spacetime metric, and V (ϕ) is the inflaton potential. The models derived from this
action are in good agreement with the observed data.

In the action (6), it is possible to convert to the canonical form of the kinetic term. For

this purpose, we need to solve the equation ∂ϕ/

(
1− ϕ2

6αM2
Pl

)
= ∂φ, whose solution is ϕ =

√
6αMPl tanh

(
φ√

6αMPl

)
. Then the action (6) can be written in terms of the canonical field

φ with a canonical kinetic term in the following form:

S =

∫
d4x

√
−g

[
M2

Pl

2
R(g) +

1

2
∂µφ∂

µφ− V

(√
6αMPl tanh

(
φ√

6αMPl

))]
. (7)
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Thus, potentials of type VT = tanhn

(
φ√

6αMPl

)
correspond to degree potentials ϕn for non-

canonical fields ϕ. In the theory of α-attractors, the degree potentials is generalised to an

arbitrary function F

(
tanh

(
φ√

6αMPl

))
of the hyperbolic tangent [9].

In the following, we consider the equation for the effective potential in T models focus-
ing on the cases n = 2, 4. To investigate the RG equation (4) in the theory with the po-
tentials (1), we rewrite the function Σ in terms of dimensionless variables x = z/M4

Pl and
yn = tanhn(φ/

√
6αMPl). Then we have

Σ(z/M4
Pl, tanh

n(φ/
√
6αMPl)) ≡ S(x, yn). (8)

The function S(x, yn) for the general T model satisfies the RG differential equation

Sx = −
n2y2−

4
n

(
y2/n − 1

)2
144α2

((
y2/n + n

(
y2/n − 1

)
+ 1

)
Sy + ny

(
y2/n − 1

)
Syy

)2
. (9)

(Here and below we omit the n index of the variable y.)
The boundary conditions for the T 2 and T 4 models coincide and are chosen such that when

φ → ∞, tanh(φ/
√
6αMPl) → 1 the potential reaches a plateau with zero derivative, namely,

S(0, y) = y, S(x, 1) = 1, Sy(x, 1) = 0. (10)

Substituting the variables in the original equation ((4)), the generalised RG equation for the
function S(x, y) can be written as follows:

for n = 2

Sx = −(y − 1)2 ((3y − 1)Sy + 2(y − 1)ySyy)
2

36α2
, (11)

for n = 4

Sx = −
y
(
4y

(√
y − 1

)2
Syy +

(
5y − 8

√
y + 3

)
Sy

)2

9α2
. (12)

The RG equations for these cases were first derived in [8].
Now we can solve these partial differential equations and then choose a line on the surface

(x, y) corresponding to the effective potential x = − g

16π2
log (gv2(φ)/µ

2). This line has an

additional parameter, the scale µ. In the renormalisable case, the explicit dependence on this
scale is compensated by the implicit dependence on µ of the coupling constant g. However,
in the non-renormalisable case µ remains a free parameter. For different values of µ, one can
obtain different behaviour of the potential.

Quantum corrections can significantly affect the behaviour of the potential; in particular,
they can “uplift” the minimum, which can be interpreted as the presence of the cosmological
constant [8].

The behaviour of the effective potential for the T 2 model compared to the one-loop case is
shown in Fig. 1.

One can see how the one-loop quantum correction leads to a change in the vacuum state
of the potential and to the appearance of additional minima (the Coleman–Weinberg mecha-
nism [15]) under the choice of some values of the parameter µ. However, the sum of all leading
quantum corrections smoothes the behaviour of the potential and restores the initial symmetry,
as it was in the original paper [15] for the renormalisable theory.
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Figure 1. Comparison of the classical T 2-model potential (blue dashed line), the single-loop correction
(orange dashed line with a dot), and the effective RG potential (black solid line). For illustrative
purposes, when choosing g ∼ 1, µ < MPl, φ̃ = φ/(

√
6MPl).

Figures 2 and 3 show the phase planes for the classical and effective potentials of the T 2 and
T 4 models. The blue (grey) region is responsible for the inflation condition. It can be seen that
due to quantum corrections the phase trajectories are distorted and new points of attraction
(additional minima of the potential) can arise.

It should be noted that, when taking into account quantum corrections, the attractor prop-
erties are preserved and the solutions of the inflationary cosmology equations with the obtained
effective potentials do not depend globally on the initial conditions. Similar results are obtained
in the case µ ≫ 1.

Figure 4 shows a detailed view of the total effective potential for different values of µ in the
T 2 model. It can be seen that there is an uplift of the potential leading to a non-zero value of
the energy at the minimum, which can be interpreted as the appearance of a non-zero value of
the cosmological constant Λ. As follows from the figure, there are two ways to get a positive
value of Λ. The first way is when the effective potential has no additional minima but only a

Figure 2. Phase portrait for the classical (a) and quantum, in the case of µ ≪ 1 (b), potential of the
T 2 model.

5



V. A. Filippov et al. Natural Science Review 1 3 (2024)

Figure 3. Phase portrait for the classical (a) and quantum, in the case of µ ≪ 1 (b), potential T 4

model.

Figure 4. T 2-model potential: variation of µ. Classical potential (blue dashed line), solid lines denote
the all-loop effective potential µ < MPl (black line with dot), µ ≪ MPl (red line), and µ > MPl (green
line with triangle). The scales are chosen for clarity as follows: φ̃ = φ/(

√
6MPl) and g = 2, α = 1.

rise. The second way is when the potential has additional minima in addition to the rise. The
choice between these two options depends only on the value of µ.

If the result does not differ much from the one-loop correction, it is convenient to analyse
its properties using the exact formulae for the one-loop potential. The formula for the one-loop
effective potential is as follows:

Veff = V0 +
g2

16π2

v22
4
log

(
gv2(φ)

µ2

)
, (13)

where v2(φ) is the second derivative of the classical potential V0.
As already mentioned, the non-zero value of the potential at the minimum can be interpreted

as a cosmological constant given by the relation

Λ =

[
g2

16π2

v22
4
log

(
gv2
µ2

)]∣∣∣∣
φ=φvac

. (14)
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Applying this condition to the T 2 model, we can obtain an expression for the parameter µ

µ2 =
g

3αM2
Pl

exp

(
−576π2α

2

g2
ΛM4

Pl

)
. (15)

Choosing the following set of parameters corresponding to the observational data: g =

10−10M4
Pl, MPl = (8πG)−

1
2 , α = 1, and Λ ∼ 10−120M4

Pl, we obtain that µ ≈ 10−6MPl, which is
close enough to the inflaton mass. We can reverse this argument and take a value of µ of the
order of the inflaton mass and get a sufficiently small value of the cosmological constant.

For potentials of T 4 and higher powers, there is no such uplift as in the case of the T 2

model, as can be seen from the numerical solution shown in Fig. 5. This is due to the fact
that v2(0) = 0. Thus, these potentials are not suitable for describing the small cosmological
constant.

Returning to the T 2-model potential, we can calculate the point at which Λ changes sign.
This point is found from the condition for changing the sign of the logarithm in (14) when the

argument passes through unity, i.e., gv2/µ2
c |φ=φvac = 1, then the critical point is µc =

10−5

√
3α

MPl.

When the values of µ < µc, Λ are positive, when µ > µc, Λ is negative. This is the scale
of the inflaton mass. The critical value of µ defines the geometry of spacetime, namely: de
Sitter space (dS) when µ > µc, Minkowski space when µ = µc, and anti-de Sitter space (AdS)
when µ < µc.

The same takes place if we consider not only the one-loop contribution to the effective
potential but also the full solution including all leading logarithms from all loops. In this case,
the effective potential has only one minimum at φvac = 0. This minimum shows a small uplift
for small values of µ. For very small values of µ, additional minima can occur, but it is not
possible to obtain small values of Λ with such µ.

In conclusion, at such small values of Λ that follow from the experimental data, the value
of µ is almost independent of the exact value of Λ. Changing Λ, consistent with the observed
data, affects the value of µ only to decimal places. However, if we start increasing Λ, we find
that starting from about Λ ≈ 10−23M4

Pl, the parameter µ depends very strongly on Λ and µ

Figure 5. Classical potential of the T 4 model (blue dashed line). Solid lines denote the all-loop
effective potential: red at µ2 ≪ M2

Pl and green with a triangle at µ2 ≫ M2
Pl. The scales are chosen for

clarity as follows: φ̃ = φ/(
√
6MPl) and g = 1, α = 1.
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rapidly tends to zero at Λ ≈ 10−20M4
Pl. However, such values of the cosmological constant are

unacceptable from the point of view of observational data.

4. Conclusions

In the present study we have investigated the effect of quantum loop corrections on the
potentials of α-attractors used in inflationary cosmology, which from the point of view of
quantum field theory are non-renormalisable models. For this purpose, we derive a generalised
WG equation whose solution summarises the sequence of leading logarithmic contributions to
the effective potential. The full solution depends on the value of the free scaling parameter µ
and either preserves the potential minimum at the origin or generates new minima. In both
cases, the solution can have an uplift of the potential at the minimum. It is important to
note that quantum corrections essentially modify the potential only at small values of the field,
preserving the attractor properties of the potential.

We interpreted the uplift of the potential as the appearance of the cosmological constant Λ
for the model T 2. Such an uplift can also be realised for other potentials satisfying the condition
v2(0) ̸= 0. The obtained value of the free parameter µ ≈ 10−5MPl calculated in the one-loop
approximation lies in the energy region close to the inflaton mass. The numerical estimate
obtained from the full equation changes this value only slightly. Since the T 4 potential and
higher degree potentials do not satisfy the condition v2(0) ̸= 0, they cannot be used for the
mechanism of generation of the cosmological constant Λ described in this paper.

As a result, we can conclude that the cosmological constant Λ can arise as a consequence of
quantum loop corrections to the effective potential with some value of the scaling parameter µ
in the models of cosmological inflation. The value of the cosmological constant Λ can be used
to fix the parameter µ, which can be regarded as a free parameter in non-perturbative theory.
It is hoped that the mechanism of radiative corrections can shed light on the existence of dark
energy in the early Universe.
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