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Abstract

This introductory review is devoted to the newest section of the theory of symmetries — the theory
of quantum groups. The principles of the theory of quantum groups are reviewed from the point of
view of the possibility of their use for deformations of symmetries in physics models. The R-mat-
rix approach to the theory of quantum groups is discussed in detail and is taken as the basis of the
quantization of classical Lie groups, as well as some Lie supergroups. We start by laying out the
foundations of noncommutative and noncocommutative Hopf algebras. Much attention has been paid
to the Hecke and Birman–Murakami–Wenzl (BMW) R-matrices and related quantum matrix algebras.
Noncommutative differential geometry on quantum groups of special types is discussed. Trigonometric
solutions of the Yang–Baxter equations associated with the quantum groupsGLq(N), SOq(N), Spq(2n)
and supergroups GLq(N |M), Ospq(N |2m), as well as their rational (Yangian) limits, are presented.
Rational R-matrices for exceptional Lie algebras and elliptic solutions of the Yang–Baxter equation are
also considered. The basic concepts of the group algebra of the braid group and its finite-dimensional
quotients (such as the Hecke and BMW algebras) are outlined. A sketch of the representation theories
of the Hecke and BMW algebras is given, including methods for finding idempotents (quantum Young
projectors) and their quantum dimensions. Applications of the theory of quantum groups and Yang–
Baxter equations in various areas of theoretical physics are briefly discussed.

This is a modified version of the review paper published in 2004 as a preprint [47] of the Max-
Planck-Institut für Mathematik (MPIM) in Bonn.

Keywords: Noncommutative differential geometry, quantum groups, Yang–Baxter equations,
Feynman diagrams, spin chains, braid groups, knot theory

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Hopf algebras. Universal R-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Heisenberg and quantum doubles. Yetter–Drinfeld modules . . . . . . . . . . . . . . 14

∗Corresponding author e-mail address: isaevap@theor.jinr.ru

Received: 10 February 2025; Revised: 6 March 2025; Accepted: 6 March 2025; Published: 31 March 2025
Copyright: © by the author(s), 2025, under license to Joint Institute for Nuclear Research. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International license (CC
BY-NC License 4.0).

https://nsr.jinr.int
https://doi.org/doi/number


A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

2.5. Twisted, ribbon and quasi-Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . 18
3. The Yang–Baxter equation and quantization of Lie groups . . . . . . . . . . . . . . . . . . 22

3.1. Numerical R-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1. Invertible and skew-invertible R-matrices . . . . . . . . . . . . . . . . . . . 22
3.1.2. Quantum traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3. R-matrix formulation of link and knot invariants . . . . . . . . . . . . . . . . 30
3.1.4. Spectral decomposition of R-matrices and examples of knot/link invariants . . 31

3.2. Quantum matrix algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1. RTT algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2. Faddeev–Reshetikhin–Takhtajan L± algebras . . . . . . . . . . . . . . . . . 36
3.2.3. Reflection equation algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.4. Central and commuting subalgebras for reflection equation and RTT algebras . 40
3.2.5. Heisenberg double for the RTT and reflection equation algebras . . . . . . . . 43
3.2.6. Quantum matrix algebras in general setting . . . . . . . . . . . . . . . . . . 44

3.3. The semiclassical limit (Sklyanin brackets and Lie bialgebras) . . . . . . . . . . . . . 46
3.4. The quantum groups GLq(N), SLq(N) and their quantum algebras and hyperplanes . 48

3.4.1. GLq(N) quantum hyperplanes and R-matrices . . . . . . . . . . . . . . . . . 48
3.4.2. Quantum groups Fun(GLq(N)), Fun(SLq(N)) and q-determinants . . . . . . 51
3.4.3. Quantum algebras Uq(gl(N)) and Uq(sl(N)). Universal R-matrix for Uq(g) . . 54

3.5. Hecke-type R-matrices. Related quantum matrix algebras . . . . . . . . . . . . . . . 58
3.5.1. Definitions. (Anti)symmetrizers for Hecke-type R-matrices . . . . . . . . . . 58
3.5.2. Quantum determinants for RTT and RLRL algebras . . . . . . . . . . . . . 61
3.5.3. Differential calculus on the RTT algebras. Quantum group covariant connec-

tions and curvatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.4. α-Deformation of the Heisenberg double of RTT and RLRL algebras. Quan-

tum Cayley–Hamilton–Newton identities . . . . . . . . . . . . . . . . . . . . 70
3.6. Multiparameter deformations of linear groups . . . . . . . . . . . . . . . . . . . . . 73
3.7. The quantum supergroups GLq(N |M) and SLq(N |M) . . . . . . . . . . . . . . . . . 75
3.8. GLq(N)- and GLq(N |M)-invariant Baxterized R-matrices. Dynamical R-matrices . . 81
3.9. Quantum matrix algebras with spectral parameters. Yangians Yq(glN ) and Y (glN ) . . 84
3.10. The quantum groups SOq(N) and Spq(2n) (B, C, and D series) . . . . . . . . . . . 88

3.10.1. Spectral decomposition for SOq(N)- and Spq(2n)-type R-matrices . . . . . . 88
3.10.2. Quantum algebras Fun(SOq(N)), Fun(Spq(2n)) and their dual algebras . . . . 90
3.10.3. Quantum traces and quantum hyperplanes for SOq(N) and Spq(N) . . . . . . 93

3.11. The multiparameter deformations SOq,aij , Spq,aij and q-supergroups Ospq(N |2m) . . 94
3.11.1. General multiparametric R-matrices of the OSp type . . . . . . . . . . . . . 94
3.11.2. The case of SOq(N) and Spq(N) groups . . . . . . . . . . . . . . . . . . . . 98
3.11.3. The case of Ospq(N |2m) supergroups . . . . . . . . . . . . . . . . . . . . . 100

3.12. SOq(N)-, Spq(2n)- and Ospq(N |2m)-invariant Baxterized R-matrices . . . . . . . . . 102
3.13. Split Casimir operators and rational solutions of Yang–Baxter equations. Yangians . . 105

3.13.1. Invariant R-matrices for simple Lie algebras g . . . . . . . . . . . . . . . . . 106
3.13.2. Yangians Y (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.14. Quantum Knizhnik–Zamolodchikov equations . . . . . . . . . . . . . . . . . . . . . 115
3.15. Elliptic solutions of the Yang–Baxter equation . . . . . . . . . . . . . . . . . . . . . 118

4. Group algebra of braid group and its quotients . . . . . . . . . . . . . . . . . . . . . . . 119
4.1. Affine braid groups and Coxeter graphs . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2. Group algebra of the braid group BM+1 and shuffle elements . . . . . . . . . . . . . 122

2



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

4.3. A-type Hecke algebra HM+1(q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.1. Jucys–Murphy elements, symmetrizers and antisymmetrizers in HM+1 . . . . 124
4.3.2. Primitive orthogonal idempotents in HM+1 and Young tableaux . . . . . . . . 128
4.3.3. Irreducible representations of HM+1 and recurrence formula for primitive idem-

potents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3.4. Idempotents in HM+1(q) and Baxterized elements. Matrix units in HM+1 . . . 134
4.3.5. Affine Hecke algebras and reflection equation . . . . . . . . . . . . . . . . . 138
4.3.6. q-Dimensions of idempotents in HM (q) and knot/link polynomials . . . . . . 142

4.4. Birman–Murakami–Wenzl algebras BMWM+1(q, ν) . . . . . . . . . . . . . . . . . . 147
4.4.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.2. Symmetrizers, antisymmetrizers and Baxterized elements in BMWM+1 . . . . 148
4.4.3. Affine algebras αBMWM+1 and their central elements. Baxterized solution of

reflection equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.4. Intertwining operators in αBMWM+1 algebra . . . . . . . . . . . . . . . . . 154

4.5. Representation theory of BMWM+1 algebras . . . . . . . . . . . . . . . . . . . . . 155
4.5.1. Representations of affine algebra αBMW2 . . . . . . . . . . . . . . . . . . . 156
4.5.2. Spec(y1, . . . , yn) and rules for strings of eigenvalues . . . . . . . . . . . . . . 159
4.5.3. Colored Young graph for BMW algebras . . . . . . . . . . . . . . . . . . . . 160
4.5.4. Primitive idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.5.5. q-Dimensions of idempotents in the BMW algebra . . . . . . . . . . . . . . . 163

5. Applications and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.1. Quantum periodic spin chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2. Factorizable scattering: S-matrix and boundary K-matrix . . . . . . . . . . . . . . . 168
5.3. Yang–Baxter equations and calculations of multiloop Feynman diagrams . . . . . . . 172

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Conflict of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Selected books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

1. Introduction

In modern theoretical and mathematical physics, the ideas of symmetry and invariance play
a very important role. Sets of symmetry transformations form groups, and therefore the most
natural language for describing symmetries is the group theory language.

About 40 years ago, in the study of quantum integrable systems [1–5], in particular, in the
framework of the quantum inverse scattering method [6–9], new algebraic structures arose, the
generalizations of which were later called quantum groups [10]1. Yang–Baxter equations (which
firstly appeared and were used in [2, 3]) became a unifying basis of all these investigations. The
history of the creation of the quantum inverse scattering method and the origin of the term
“Yang–Baxter equation” are described in the review [11], Section 5.

The most important nontrivial examples of quantum groups are quantizations (or deforma-
tions) of ordinary classical Lie groups and algebras (more precisely, one considers the deforma-
tions of the algebra of functions of a Lie group and the universal enveloping of a Lie algebra;
see, e.g., [113, 114]). The quantization is accompanied by the introduction of an additional
parameter q (the deformation parameter), which plays a role analogous to the role of Planck’s

1In pure mathematics, analogous structures appeared as nontrivial examples of “ring-groups” introduced by
G. Kac; see, e.g., [62] and references therein.
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constant in quantum mechanics. In the special limit q → 1, the quantum groups and algebras
go over into the classical ones. Although quantum groups are deformations of the usual groups,
they nevertheless still possess several properties that make it possible to speak of them as of
“symmetry groups”. Moreover, one can claim that the quantum groups serve as symmetries and
provide integrability in exactly solvable quantum systems (see, e.g., [12–14])2. In this connec-
tion, the idea naturally arises of looking for and constructing other physical models possessing
such quantum symmetries. Some of the realizations of this idea use the similarity of the repre-
sentation theories of quantum and classical Lie groups and algebras (for q not equal to the root
of unity). Thus, there were attempts to apply quantum groups and algebras in the classification
and phenomenology of elementary particles and in nuclear spectroscopy investigations. Further,
it is natural to investigate already existing field-theoretical models (especially gauge quantum
field theories) from the point of view of relations (see, e.g., [16, 17]) to the noncommutative
geometry [15]3 and, in particular, the possibility of their invariance with respect to quantum-
group transformations. An attractive idea is that of relating the deformation parameters of
quantum groups to the mixing angles that occur in the Standard Model as free parameters.
One of the possible realizations of this idea was proposed in [21] (see also [22]). Of course, it
is necessary to mention here numerous attempts to deform Lorentz and Poincaré groups and
construct a covariant quantum Minkowski space–time corresponding to these deformations [23–
31]. Finally, promising studies of Yangian symmetries of planar Feynman graphs and scattering
amplitudes in supersymmetric Yang–Mills theories should be noted (see, e.g., [32–40]; see also
the review [41] and references therein).

It is clear that the approaches listed above (associated with deformations of symmetries in
physics) present only a small fraction of all the applications of the theory of quantum groups.
Quantum groups and Yang–Baxter equations naturally arise in many problems of theoretical
physics, and this makes it possible to speak of them and their theories as of an important
paradigm in mathematical physics. Unfortunately, the strict limits of this review make it im-
possible to discuss in detail all applications of quantum groups and Yang–Baxter equations.
We have therefore restricted ourselves to a brief listing of certain areas in theoretical and
mathematical physics in which quantum groups and Yang–Baxter equations play an important
role. The incomplete list is given in Section 5. In Section 2, the mathematical foundations
of the theory of quantum groups are outlined. A significant part of Section 3 is a detailed
exposition of the results of the famous work by Faddeev, Reshetikhin, and Takhtajan [42] who
formulated the R-matrix approach to the theory of quantum groups. In Section 3, we also
consider R-matrix formulation of link and knot invariants, problems of invariant Baxterization
of R-matrices, multiparameter deformations of Lie groups, the quantization of some Lie super-
groups, and various aspects of differential geometry on special types of quantum groups. The
rational solutions of the Yang–Baxter equation for exceptional Lie algebras are also considered
in Section 3. At the end of Section 3, we present the basic notions of the theory of quantum
Knizhnik–Zamolodchikov equations and discuss elliptic solutions of the Yang–Baxter equation
for which the algebraic basis (the type of quantum universal enveloping Lie algebras Uq(g) in
the case of trigonometric solutions) has not yet been completely clarified (see, however, [43–45]).
In Section 4, we briefly discuss the group algebra of a braid group and its finite-dimensional
quotients such as the Hecke and Birman–Murakami–Wenzl (BMW) algebras. The Hecke and
BMW algebras are, respectively, quantum analogs of the group algebra of the permutation

2The Yangian symmetries are the symmetries of the same type.
3After the quantization of any Poisson manifold [18] and the appearance of papers [19, 20], the subject of

field theories on noncommutative spaces became very popular from the point of view of string theories.
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group and the Brauer algebra. A sketch of the representation theories of the Hecke and BMW
algebras is given (including methods for finding idempotents and their quantum dimensions).
The representation theories of the Hecke and BMW algebras are important for understanding
of the quantum analog of Schur–Weyl and Schur–Weyl–Brauer dualities for linear and orthog-
onal/simplectic quantum groups. The part of the content of Section 4 can be considered as a
different presentation of some facts from Section 3. In Section 5, some applications of quantum
groups and Yang–Baxter equations are outlined.

This introductory review is based on the paper [46] and the MPIM (Bonn) preprint [47]
published in 1995 and 2004, respectively. An extended version of the preprint [47] is available
in [48]. Comparing to the previous version [47], this text has been considerably changed only
in Subsections 3.1, 3.2, 3.4.3, 3.8, 4.3.6, and 5.3. The structure of the review has also been
significantly modified. Three new Subsections 3.5.3, 3.13, and 4.5 have been added, and
Subsection 4.4 has been extended. In the course of the presentation, we have also tried briefly
mention some of the new results. According to this, we have refreshed the list of references.
Among the added references, we highlight the paper [11], where Section 6 provides a brief
overview of the quantum group theory, including a discussion of the quantum dilogarithm and
Faddeev’s modular double.

2. Hopf algebras

2.1. Coalgebras

We consider an associative unital algebra A (over the field of complex numbers C; in what
follows, all algebras that are introduced will also be understood to be over the field of complex
numbers). Each element of A can be expressed as a linear combination of basis elements ei ∈ A,
where i = 1, 2, 3, . . . , and the identity element I is given by the formula

I = Ei ei (Ei ∈ C)

(we imply summation over repeated indices). Then for any two elements ei and ej, we define
their multiplication in the form

A⊗A m−→ A ⇒ ei · ej = mk
ijek, (2.1.1)

where mk
ij is a certain set of complex numbers that satisfy the condition

Eimk
ij = mk

jiE
i = δkj (2.1.2)

for the identity element, and also the condition

ml
ijm

n
lk = mn

ilm
l
jk ≡ mn

ijk (2.1.3)

that is equivalent to the condition of associativity for the algebra A:

(eiej)ek = ei(ejek). (2.1.4)

The condition of associativity (2.1.4) for the multiplication (2.1.1) can obviously be represented
in the form of the commutativity of the diagram in Figure 1:
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A⊗A⊗A -
id⊗m

A⊗A
?

m⊗ id

-
m

A⊗A

?
m

A

Figure 1. Associativity axiom.

In Figure 1, the map m represents multiplication: A⊗A m−→ A, and id denotes the identity
mapping. The existence of the unit element I means that one can define a mapping i: C → A
(embedding of C in A)

k
i−→ k · I, k ∈ C. (2.1.5)

For I we have the condition (2.1.2), which is visualized as the diagram in Figure 2:

Figure 2. Axioms for the identity.

Here the mappings
C⊗A ↔ A and A⊗ C ↔ A (2.1.6)

are natural isomorphisms. One of the advantages of the diagrammatic language used here is
that it leads directly to the definition of a new fundamental object — the coalgebra — if we
reverse all the arrows in the diagrams of Figures 1 and 2.

Definition 1. A coalgebra C is a vector space (with the basis {ei}) equipped with the mapping
∆ : C → C ⊗ C

∆(ei) = ∆kj
i ek ⊗ ej, (2.1.7)

which is called the comultiplication, and also equipped with the mapping ϵ : C → C, which
is called the coidentity. The coalgebra C is called coassociative if the mapping ∆ satisfies the
condition of coassociativity (cf. the diagram in Figure 1 with the arrows reversed and the symbol
m changed to ∆)

(id⊗∆)∆ = (∆⊗ id)∆ ⇒ ∆nl
i ∆

kj
l = ∆lj

i ∆
nk
l ≡ ∆nkj

i . (2.1.8)

The coidentity ϵ must satisfy the following conditions (cf. the diagram in Figure 2 with arrows
reversed and symbols m, i changed to ∆, ϵ)

m
(
(ϵ⊗ id)∆(C)

)
= m

(
(id⊗ ϵ)∆(C)

)
= C ⇒ ϵi∆

ij
k = ∆ji

k ϵi = δjk. (2.1.9)

Here m realizes the natural isomorphisms (2.1.6) as a multiplication map: m(c⊗ ei) = m(ei ⊗
c) = c · ei (∀c ∈ C), and the complex numbers ϵi are determined from the relations ϵ(ei) = ϵi.

For algebras and coalgebras, the concepts of modules and comodules can be introduced.
Thus, if A is an algebra, the left A-module can be defined as a vector space N and a mapping ψ:
A⊗N → N (action of A on N) such that the diagrams in Figure 3 are commutative.
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A⊗A⊗N -
id⊗ ψ

A⊗N
?

m⊗ id

-
ψ

A⊗N

?
ψ

N

C⊗N
H

HHj
Y

�
��i⊗id
A⊗N

N
?

ψ

Figure 3. Axioms for the left A-module.

In other words, the space N is the representation space of the algebra A.
If N is a (co)algebra and the mapping ψ preserves the (co)algebraic structure of N (see be-

low), then N is called the left A-module (co)algebra. The concept of the right module (co)algebra
is introduced similarly. If N is simultaneously the left and the right A-module, then N is called
the two-sided A-module. It is obvious that the algebra A itself is a two-sided A-module for
which the left and right actions are given by the left and right multiplications in the algebra.

Now suppose that C is a coalgebra; then a left C-comodule can be defined as a space M
together with a mapping ∆L: M → C ⊗ M (coaction of C on M) satisfying the axioms in
Figure 4 (in the diagrams of Figure 3, where the modules were defined, it is necessary to
reverse all the arrows):

C ⊗ C ⊗M �
id⊗∆L

C ⊗M

6∆⊗ id

� ∆L

C ⊗M

6∆L

M

C⊗M
HHHj
Y

�
�	

ϵ⊗ id

C ⊗M

M

6
∆L

Figure 4. Axioms for the left A-comodule.

IfM is a (co)algebra and the mapping ∆L preserves the (co)algebraic structure (for example,
is a homomorphism; see below), then M is called a left C-comodule (co)algebra. The right
comodules are introduced similarly, after which two-sided comodules are defined in the natural
manner. It is obvious that the coalgebra C is a two-sided C-comodule.

Let V , Ṽ be two vector spaces with bases {ei}, {ẽi}. We denote by V∗, Ṽ∗ the corresponding
dual linear spaces whose basis elements are linear functionals {ei} : V → C, {ẽi} : Ṽ → C. For
the values of these functionals, we use the expressions ⟨ei |ej⟩ and ⟨ẽi |ẽj⟩. For every mapping L:
V → Ṽ it is possible to define a unique mapping L∗ : Ṽ∗ → V∗ induced by the equations

⟨ẽi |L(ej)⟩ = ⟨L∗(ẽi) |ej⟩, (2.1.10)

if the matrix ⟨ei |ej⟩ is invertible. In addition, for the dual objects there exists the linear
injection

ρ : V∗ ⊗ Ṽ∗ → (V ⊗ Ṽ)∗,

which is given by the equations

⟨ρ(ei ⊗ ẽj) |ek ⊗ ẽl⟩ = ⟨ei |ek⟩ ⟨ẽj |ẽl⟩.

A consequence of these facts is that for every coalgebra (C, ∆, ϵ), it is possible to define an
algebra C∗ = A (as dual object to C) with multiplication m = ∆∗ · ρ and the unit element I
that satisfy the relations (∀a, a′ ∈ A, ∀c ∈ C):

⟨a|c(1)⟩⟨a′|c(2)⟩ = ⟨ρ(a⊗ a′)|∆(c)⟩ = ⟨∆∗ · ρ(a⊗ a′)|c⟩ = ⟨a · a′ | c⟩, ⟨I|c⟩ = ϵ(c).

7
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Here we denote a · a′ := ∆∗ · ρ(a ⊗ a′) and use the convenient Sweedler notation of [11] for
comultiplication in C (cf. Eq. (2.1.7)):

∆(c) =
∑
c

c(1) ⊗ c(2). (2.1.11)

The summation symbol
∑

c will usually be omitted in the equations. We also use the Sweedler
notation for the left and right coactions ∆L(v) = v̄(−1) ⊗ v(0) and ∆R(v) = v(0) ⊗ v̄(1), where
index (0) is reserved for the comodule elements and summation symbols

∑
v are also omitted.

Thus, duality in the diagrammatic definitions of the algebras and coalgebras (reversal of the
arrows) has, in particular, the consequence that the algebras and coalgebras are indeed duals
to each other.

It is natural to expect that an analogous duality can also be traced for modules and co-
modules. Let V be a left comodule for C. Then the left coaction of C on V : v 7→

∑
v v̄(−1) ⊗

v(0) (v̄(−1) ∈ C, v(0) ∈ V) induces the right action of C∗ = A on V :

(v, a) 7→ v ◁ a = ⟨a |v̄(−1)⟩ v(0), a ∈ A,

and therefore V is a right module for A. Conversely, the right coaction of C on V : v 7→ v(0)⊗ v̄(1)
induces the left action of A = C∗ on V :

(a, v) 7→ a ▷ v = v(0)⟨a|v̄(1)⟩.

From this we immediately conclude that the coassociative coalgebra C (which coacts on itself
by the coproduct) is a natural module for its dual algebra A = C∗. Indeed, the right action
C ⊗ A → C is determined by the equations

(c, a) 7→ c ◁ a = ⟨a|c(1)⟩c(2), (2.1.12)

whereas for the left action A⊗ C → C we have

(a, c) 7→ a ▷ c = c(1)⟨a|c(2)⟩. (2.1.13)

Here a ∈ A and c ∈ C. The module axioms (shown as the diagrams in Figure 3) hold by virtue
of the coassociativity of C.

Finally, we note that the action of a certain algebra H on C from the left (from the right)
induces an action of H on A = C∗ from the right (from the left). This obviously follows from
relations of the type (2.1.10).

2.2. Bialgebras

So-called bialgebras are the next important objects that are used in the theory of quantum
groups.

Definition 2. An associative algebra A with identity that is simultaneously a coassociative
coalgebra with coidentity is called a bialgebra if the algebraic and coalgebraic structures are
self-consistent. Namely, the comultiplication and coidentity must be homomorphisms of the
algebras:

∆(ei)∆(ej) = mk
ij∆(ek) ⇒ ∆i′i′′

i ∆j′j′′

j mk′

i′j′m
k′′

i′′j′′ = mk
ij ∆

k′k′′

k , (2.2.1)

∆(I) = I ⊗ I, ϵ(ei · ej) = ϵ(ei) ϵ(ej), ϵ(I) = Ei ϵi = 1.

8
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Note that for every bialgebra we have a certain freedom in the definition of the multiplica-
tion (2.1.1) and the comultiplication (2.1.7). Indeed, all the axioms (2.1.3), (2.1.8), and (2.2.1)
are satisfied if instead of (2.1.1) we take

ei · ej = mk
ji ek,

or instead of (2.1.7) we choose
∆op(ei) = ∆jk

i ek ⊗ ej (2.2.2)

(such algebras are denoted as Aop and Acop, respectively). Then the algebra A is called non-
commutative if mk

ij ̸= mk
ji, and noncocommutative if ∆ij

k ̸= ∆ji
k .

In quantum physics, it is usually assumed that all algebras of observables are bialgebras.
Indeed, a coalgebraic structure is needed to define the action of the algebra A of observables on
the state |ψ1⟩ ⊗ |ψ2⟩ of the system that is the composite system formed from two independent
systems with wave functions |ψ1⟩ and |ψ2⟩:

a ▷ (|ψ1⟩ ⊗ |ψ2⟩) = ∆(a) (|ψ1⟩ ⊗ |ψ2⟩) = a(1) |ψ1⟩ ⊗ a(2) |ψ2⟩ (∀a ∈ A). (2.2.3)

In other words, for bialgebras it is possible to formulate a theory of representations in which
new representations can be constructed by direct multiplication of old ones.

A classical example of a bialgebra is the universal enveloping algebra of a Lie algebra g,
in particular, the spin algebra su(2) in three-dimensional space. To demonstrate this, we
consider the Lie algebra g with generators Jα (α = 1, 2, 3, . . . ), that satisfy the antisymmetric
multiplication rule (defining relations)

[Jα, Jβ] = tγαβJγ. (2.2.4)

Here tγαβ = −tγβα are structure constants which satisfy Jacoby identity. The enveloping algebra
of this algebra is the algebra U(g) with basis elements consisting of the identity I and the
elements ei = Jα1 · · · Jαn ∀n ⩾ 1, where the products of the generators J are ordered lexico-
graphically, i.e., α1 ⩽ α2 ⩽ . . . ⩽ αn. The coalgebraic structure for the algebra U(g) is specified
by means of the mappings

∆(Jα) = Jα ⊗ I + I ⊗ Jα, ϵ(Jα) = 0, ϵ(I) = 1, (2.2.5)

which satisfy all the axioms of a bialgebra. The mapping ∆ in (2.2.5) is none other than
the rule for addition of spins. In fact, one can quantize the coalgebraic structure (2.2.5) for
universal enveloping algebra U(g) and consider the noncocommutative comultiplications ∆.
Such quantizations will be considered below in Subsection 3.3 and lead to the definition of Lie
bialgebras.

Considering exponentials of elements of a Lie algebra, one can arrive at the definition of a
group bialgebra of the group G with structure mappings

∆(h) = h⊗ h, ϵ(h) = 1 (∀ h ∈ G), (2.2.6)

which obviously follow from (2.2.5). The next important example of a bialgebra is the algebra
A(G) of functions f on a group (f : G → C). This algebra is dual to the group algebra of the
group G, and its structure mappings have the form (f, f ′ ∈ A(G); h, h′ ∈ G):

(f · f ′)(h) = f(h)f ′(h), f(h · h′) = (∆(f))(h, h′) = f(1)(h) f(2)(h
′), ϵ(f) = f(I), (2.2.7)

9
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where IG is the identity element in the group G. In particular, if the functions T i
j realize a

matrix representation of the group G, then we have

T i
j (hh

′) = T i
k(h)T

k
j (h

′) ⇒ ∆(T i
j ) = T i

k ⊗ T k
j , (2.2.8)

(the functions T i
j can be regarded as generators of a subalgebra in the algebra A(G)). Note

that if g is non-Abelian, then U(g) and G are noncommutative but cocommutative bialgebras,
whereas A(G) is a commutative but noncocommutative bialgebra. Anticipating, we mention
that the most interesting quantum groups are associated with noncommutative and noncocom-
mutative bialgebras.

It is obvious that for a bialgebra H it is also possible to introduce the concepts of left
(co)modules and (co)module (co)algebras (right (co)modules and (co)module (co)algebras are
introduced in exactly the same way). Moreover, for the bialgebra H it is possible to introduce
the concept of a left (right) bimodule B, i.e., a left (right) H-module that is simultaneously
a left (right) H-comodule; at the same time, the module and comodule structures must be
self-consistent:

∆L(H ▷ B) = ∆(H) ▷∆L(B),

(ϵ⊗ id)∆L(b) = b, b ∈ B,

where ∆L(b) = b̄(−1)⊗b(0) and b̄(−1) ∈ H, b(0) ∈ B. On the other hand, in the case of bialgebras,
the conditions of conserving of the (co)algebraic structure of (co)modules can be represented in
a more explicit form. For example, for the left H-module algebra A we have (a, b ∈ A; h ∈ H):

h ▷ (ab) = (h(1) ▷ a)(h(2) ▷ b), h ▷ IA = ϵ(h)IA.

In addition, for the left H-module coalgebra A we must have

∆(h ▷ a) = ∆(h) ▷∆(a) = (h(1) ▷ a(1))⊗ (h(2) ▷ a(2)), ϵ(h ▷ a) = ϵ(h)ϵ(a).

Similarly, the algebra A is a left H-comodule algebra if

∆L(ab) = ∆L(a)∆L(b), ∆L(IA) = IH ⊗ IA,

and, finally, the coalgebra A is a left H-comodule coalgebra if

(id⊗∆)∆L(a) = mH(∆L ⊗∆L)∆(a), (id⊗ ϵA)∆L(a) = IHϵA(a), (2.2.9)

where
mH(∆L ⊗∆L)(a⊗ b) = ā(−1)b̄(−1) ⊗ a(0) ⊗ b(0).

We now consider the bialgebra H, which acts on a certain module algebra A. One further
important property of bialgebras is that we can define a new associative algebra A♯H as the
cross product (smash product) of A and H. Namely:

Definition 3. The left smash product A♯H of the bialgebra H and its left module algebra A is
an associative algebra such that:
1) as a vector space, A♯H is identical to A⊗H;
2) the product is defined in the sense (h, g ∈ H; a, b ∈ A):

(a♯g) (b♯h) =
∑
g

a(g(1) ▷ b)♯(g(2)h) ≡ (a♯I) (∆(g) ▷ (b♯h)) ; (2.2.10)

3) the identity element is I♯I.

10
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If the algebra A is the bialgebra dual to the bialgebra H, then the relations (2.2.10) and (2.1.13)
define the rules for interchanging the elements (I♯g) and (a♯I):

(I♯g) (a♯I) = (a(1)♯I) ⟨g(1)|a(2)⟩ (I♯g(2)). (2.2.11)

Thus, the subalgebras A and H in A ♯H do not commute with each other. The smash product
depends on which action (left or right) of the algebra H on A we choose. In addition, the
smash product generalizes the concept of the semidirect product. In particular, if we take as
bialgebra H the Lorentz group algebra (see (2.2.6)), and as module A the group of translations
in Minkowski space, then the smash product A ♯H defines the structure of the Poincare group.

The coanalog of the smash product, the smash coproduct A ♯H, can also be defined. For
this, we consider the bialgebra H and its comodule coalgebra A. Then on the space A⊗H it
is possible to define the structure of a coassociative coalgebra

∆(a ♯ h) = (a(1) ♯ ā
(−1)

(2) h(1))⊗ (a
(0)

(2) ♯ h(2)), ϵ(a ♯ h) = ϵ(a)ϵ(h). (2.2.12)

The proof of the coassociativity reduces to verification of the identity

(mH(∆L ⊗∆H)⊗ id)(id⊗∆L)∆A(a) = (id⊗ id⊗∆L)(id⊗∆A)∆L(a),

which is satisfied if we take into account the axiom (2.2.9) and the comodule axiom

(id⊗∆L)∆L(a) = (∆H ⊗ id)∆L(a). (2.2.13)

Note that from the two bialgebras A and H, which act and coact on each other in a special
manner, it is possible to organize a new bialgebra that is simultaneously the smash product
and smash coproduct of A and H (bicross product; see [52]).

2.3. Hopf algebras. Universal R-matrices

We can now introduce the main concept in the theory of quantum groups, namely, the
concept of the Hopf algebra.

Definition 4. A bialgebra A equipped with an additional mapping S : A → A such that

m(S ⊗ id)∆ = m(id⊗ S)∆ = i · ϵ⇒
S(a(1)) a(2) = a(1) S(a(2)) = ϵ(a) · I (∀a ∈ A)

(2.3.1)

is called a Hopf algebra. The mapping S is called the antipode and is an antihomomorphism
with respect to both multiplication and comultiplication:

S(ab) = S(b)S(a), (S ⊗ S)∆(a) = σ ·∆(S(a)), (2.3.2)

where a, b ∈ A and σ denotes the operator of transposition, σ(a⊗ b) = (b⊗ a).

If we set
S(ei) = Sj

i ej, (2.3.3)

then the axiom (2.3.1) can be rewritten in the form

∆ij
k S

n
i m

l
nj = ∆ij

k S
n
j m

l
in = ϵkE

l. (2.3.4)

11
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From the axioms for the structure mappings of a Hopf algebra, it is possible to obtain the useful
equations

Si
jϵi = ϵj, Si

jE
j = Ei,

∆ji
k (S

−1)nim
l
nj = ∆ji

k (S
−1)njm

l
in = ϵkE

l,
(2.3.5)

which we shall use in what follows. Note that, in general, the antipode S is not necessarily
invertible. An invertible antipode is called bijective.

In quantum physics, the existence of the antipode S is needed to define a space of contragre-
dient states ⟨ψ| (contragredient module of A) with pairing ⟨ψ|ϕ⟩: ⟨ψ| ⊗ |ϕ⟩ → C. Left actions
of the Hopf algebra A of observables to the contragredient states are (cf. the actions (2.2.3)
of A to the states |ψ1⟩ ⊗ |ψ2⟩):

a ▷ ⟨ψ| := ⟨ψ|S(a) (a ∈ A), (2.3.6)

a ▷ (⟨ψ1| ⊗ ⟨ψ2|) := (⟨ψ1| ⊗ ⟨ψ2|)∆(S(a)) = ⟨ψ1|S(a(2))⊗ ⟨ψ2|S(a(1)).

The states ⟨ψ| are called left dual to the states |ϕ⟩; the right dual ones are introduced with the
help of the inverse antipode S−1 (see, e.g., [60, 61]). Then the covariance of the pairing ⟨ψ|ϕ⟩
under the left action of A can be established:

a ▷ ⟨ψ|ϕ⟩ ≡ (a(1) ▷ ⟨ψ|) (a(2) ▷ |ϕ⟩) = ⟨ψ|S(a(1)) a(2)|ϕ⟩ = ϵ(a)⟨ψ|ϕ⟩,
a ▷ ⟨ψ1|ϕ1⟩ ⟨ψ2|ϕ2⟩ = a ▷ (⟨ψ1| ⊗ ⟨ψ2|)(|ϕ1⟩ ⊗ |ϕ2⟩) =

= ⟨ψ1|S(a(2))a(3)|ϕ1⟩⟨ψ1|S(a(1))a(4)|ϕ1⟩ = ϵ(a) ⟨ψ1|ϕ1⟩ ⟨ψ2|ϕ2⟩.

The universal enveloping algebra U(g) and the group bialgebra of the group G that we
considered above can again serve as examples of cocommutative Hopf algebras. An example
of a commutative (but noncocommutative) Hopf algebra is the bialgebra A(G), which we also
considered above. The antipodes for these algebras have the form

U(g) : S(Jα) = −Jα, S(I) = I,
G : S(h) = h−1,

A(G) : S(f)(h) = f(h−1),
(2.3.7)

and satisfy the relation S2 = id, which holds for all commutative or cocommutative Hopf
algebras.

From the point of view of the axiom (2.3.1), S(a) looks like the inverse of the element a,
although in the general case S2 ̸= id. We recall that if a set G of elements with associative
multiplication G ⊗G → G and with identity (semigroup) also contains all the inverse elements,
then such a set G becomes a group. Thus, from the point of view of the presence of the
mapping S, a Hopf algebra generalizes the notion of the group algebra (for which S(h) =
h−1), although by itself it obviously does not need to be a group algebra. In accordance with
Drinfeld’s definition [13], the concepts of a Hopf algebra and a quantum group are more or
less equivalent. Of course, the most interesting examples of quantum groups arise when one
considers noncommutative and noncocommutative Hopf algebras.

Consider a noncommutative Hopf algebra A which is also noncocommutative ∆ ̸= ∆op ≡
σ∆, where σ is the transposition operator σ(a⊗ b) = b⊗ a (∀a, b ∈ A).

12
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Definition 5. A Hopf algebra A for which there exists an invertible element R ∈ A⊗A such
that

∆op(a) = R∆(a)R−1, ∀a ∈ A, (2.3.8)

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12 (2.3.9)

is called quasitriangular. Here the element

R =
∑
ij

R(ij)ei ⊗ ej (2.3.10)

is called the universal R-matrix, R(ij) ∈ C are the constants and the symbols R12,R13,R23 have
the meaning

R12 =
∑
ij

R(ij)ei ⊗ ej ⊗ I, R13 =
∑
ij

R(ij)ei ⊗ I ⊗ ej, R23 =
∑
ij

R(ij)I ⊗ ei ⊗ ej. (2.3.11)

The relation (2.3.8) shows that the noncocommutativity in a quasitriangular Hopf algebra is
kept “under control”. It can be shown [51] that for such a Hopf algebra the universal R-mat-
rix (2.3.10) satisfies the Yang–Baxter equation

R12R13R23 = R23R13R12, (2.3.12)

(to which a considerable part of the review will be devoted) and the relations

(id⊗ ϵ)R = (ϵ⊗ id)R = I, (2.3.13)

(S ⊗ id)R = R−1 ⇔ (S−1 ⊗ id)R−1 = R,
(id⊗ S)R−1 = R ⇔ (id⊗ S−1)R = R−1.

(2.3.14)

The Yang–Baxter equation (2.3.12) follows from (2.3.8) and (2.3.9):

R12R13R23 = R12 (∆⊗ id)(R) = (∆op ⊗ id)(R) R12 = R23R13R12. (2.3.15)

It is easy to derive the relations (2.3.13) by applying (ϵ⊗ id⊗ id) and (id⊗ id⊗ ϵ), respectively,
to the first and second relation in (2.3.9), and then taking into account (2.1.9). Next, we prove
the equalities in (2.3.14). We consider expressions R· (S⊗ id)R and R· (id⊗S−1)R and make
use of the Hopf algebra axioms (2.3.1) and equations (2.3.9) and (2.3.13):

R23 · (id⊗ S ⊗ id)R23 = (m12 ⊗ id3)
(
R13 (id⊗ S ⊗ id)R23

)
=

= (m12 ⊗ id3) (id⊗ S ⊗ id)R13R23 = (m12 ⊗ id3)
(
(id⊗ S)∆⊗ id

)
R = (i · ϵ⊗ id)R = I,

R12 (id⊗ S−1)R12 = (id1 ⊗m23) (id⊗ id⊗ S−1)R12R13 =

= (id1 ⊗m23)
(
id⊗ (id⊗ S−1)∆op

)
R = (id⊗ i · ϵ)R = I,

where the ultimate equality follows from (2.3.1) which is written in the form a(2)S
−1(a(1)) =

ϵ(a)I.
The next important concept that we shall need in what follows is the concept of the Hopf

algebra A∗ that is the dual of the Hopf algebra A. We choose in A∗ basis elements {ei} and
define multiplication, identity, comultiplication, coidentity, and antipode for A∗ in the form

eiej = mij
k e

k, I = Ēie
i, ∆(ei) = ∆i

jke
j ⊗ ek, ϵ(ei) = ϵ̄i, S(ei) = S̄i

je
j. (2.3.16)
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Definition 6. Two Hopf algebras A and A∗ with corresponding bases {ei} and {ei} are said
to be dual to each other if there exists a nondegenerate pairing ⟨.|.⟩: A∗ ⊗A → C such that

⟨eiej|ek⟩ ≡ ⟨ei ⊗ ej|∆(ek)⟩ = ⟨ei|ek′⟩∆k′k′′

k ⟨ej|ek′′⟩,

⟨ei|ejek⟩ ≡ ⟨∆(ei)|ej ⊗ ek⟩ = ⟨ei′ |ej⟩∆i
i′i′′⟨ei

′′|ek⟩,

⟨S(ei)|ej⟩ = ⟨ei|S(ej)⟩, ⟨ei|I⟩ = ϵ(ei), ⟨I|ei⟩ = ϵ(ei).

(2.3.17)

Since the pairing ⟨.|.⟩ (2.3.17) is nondegenerate, we can always choose basis elements {ei} such
that

⟨ei|ej⟩ = δij. (2.3.18)

Then from the axioms for the pairing (2.3.17) and from the definitions of the structure maps
(2.1.1), (2.3.3), and (2.3.16) in A and A∗ we readily deduce

mij
k = ∆ij

k , mk
ij = ∆k

ij, S̄i
j = Si

j, ϵ̄i = Ei, Ēi = ϵi. (2.3.19)

Thus, the multiplication, identity, comultiplication, coidentity, and antipode in a Hopf algebra
define, respectively, comultiplication, coidentity, multiplication, identity, and antipode in the
dual Hopf algebra.

Remark. In [63], L. Pontryagin showed that the set of characters of an Abelian locally com-
pact group G is an Abelian group, called the dual group G∗ of G. The group G∗ is also locally
compact. Moreover, the dual group of G∗ is isomorphic to G. This beautiful theory becomes
wrong if G is a noncommutative group, even if it is finite. To restore the duality principle, one
can replace the set of characters for a finite noncommutative group G by the category of its
irreducible representations (irreducible representations for the commutative groups are exactly
characters). Indeed, T. Tannaka and M. Krein showed that the compact group G can be recov-
ered from the set of its irreducible unitary representations. They proved a duality theorem for
compact groups, involving irreducible representations of G (although no group-like structure
is to be put on that class, since the tensor product of two irreducible representations may no
longer be irreducible). However, the tensor product of two irreducible representations of the
compact group G can be expanded as a sum of irreducible representations and, thus, the dual
object has the structure of an algebra. Recall (see (2.2.8)) that matrix representations of group
G are realized by the sets of special functions T i

k. One can consider the group algebra G of
finite group G and the algebra A(G) ≡ G⋆ of functions on the group G as simplest examples
of the Hopf algebras. The structure mappings for these algebras have been defined in (2.2.6),
(2.2.7), and (2.3.7). Note that the algebras G and G⋆ are Hopf dual to each other. The detailed
structure of G⋆ follows from the representation theory of finite groups (see, e.g., [54]).

2.4. Heisenberg and quantum doubles. Yetter–Drinfeld modules

In Subsection 2.2, we have defined (see Definition 3) the notion of the smash (cross) product
of the bialgebra and its module algebra. Since the Hopf dual algebra A∗ is the natural right
and left module algebra for the Hopf algebra A (2.1.12), (2.1.13), one can immediately define
the right A∗♯A and the left A♯A∗ cross products of the algebra A on A∗. These cross-product
algebras are called Heisenberg doubles of A and they are the associative algebras with nontrivial
cross-multiplication rules (cf. Eq. (2.2.11)):

a ā = (a(1) ▷ ā) a(2) = ā(1) ⟨a(1) | ā(2)⟩ a(2), (2.4.1)

14
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ā a = a(1)(ā ◁ a(2)) = a(1) ⟨ā(1) | a(2)⟩ ā(2), (2.4.2)

where a ∈ A and ā ∈ A∗. Here we discuss only the left cross-product algebra A♯A∗ (2.4.1) (the
other one (2.4.2) is considered analogously).

As in the previous subsection, we denote {ei} and {ei} as the dual basis elements of A∗
and A, respectively. In terms of this basis, we rewrite (2.4.1) in the form

er e
n = ei ∆n

if⟨ej|ef⟩∆jk
r ek = mn

ij e
i ek ∆

jk
r . (2.4.3)

Let us define a right A∗-coaction and a left A-coaction on the algebra A♯A∗ such that these
coactions respect the algebra structure of A♯A∗:

∆R(z) = C (z ⊗ 1)C−1, ∆L(z) = C−1 (1⊗ z)C, C ≡ ei ⊗ ei. (2.4.4)

The inverse of the canonical element C is

C−1 = S(ei)⊗ ei = ei ⊗ S(ei),

and ∆R, ∆L (2.4.4) are represented in the form

∆R(z) = (ek(1) z S(ek(2)))⊗ ek, ∆L(z) = ek ⊗ S(ek(1)) z e
k
(2). (2.4.5)

Note that ∆R(z̄) = ∆(z̄) ∀z̄ ∈ A∗ and ∆L(z) = ∆(z) ∀z ∈ A (here A and A∗ are understood as
the Hopf subalgebras in A♯A∗ and ∆ are corresponding comultiplications). Indeed, for z ∈ A
we have

∆L(z) = ek ⊗ S(ek(1)) z e
k
(2) = ek ⊗ S(ek(1)) e

k
(2) ⟨z(1) | ek(3)⟩z(2) =

= ek ⟨z(1) | ek⟩ ⊗ z(2) = z(1) ⊗ z(2),

(the proof of ∆R(z̄) = ∆(z̄) is similar). The axioms

(id⊗∆)∆R = (∆R ⊗ id)∆R, (id⊗∆L)∆L = (∆⊗ id)∆L,

(id⊗∆R)∆L(z) = C−113 (∆L ⊗ id)∆R(z)C13

can be verified directly by using relations (cf. (2.3.9))

(id⊗∆)C12 = C13C23, (∆⊗ id)C12 = C13C23

and the pentagon identity [55, 56] for C:

C12C13C23 = C23C12. (2.4.6)

The proof of (2.4.6) is straightforward (see (2.4.3)):

C12C13C23 = ei ej ⊗ ei ek ⊗ ej ek = en ⊗mn
ij e

i ek ∆
jk
r ⊗ er =

= en ⊗ er e
n ⊗ er = C23C12.

The pentagon identity (2.4.6) is used for the construction of the explicit solutions of the tetra-
hedron equations (3D generalizations of Yang–Baxter equations).

Although A and A∗ are Hopf algebras, their Heisenberg doubles A♯A∗, A∗♯A are not Hopf
algebras. But as we have just seen before, the algebra A♯A∗ (as well as A∗♯A) still possesses
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some covariance properties, since the coactions (2.4.4) are covariant transformations (homo-
morphisms) of the algebra A♯A∗.

The natural question is the following: is it possible to invent such a cross-product of the
Hopf algebra and its dual Hopf algebra to obtain a new Hopf algebra? V. Drinfeld [10] showed
that there exists a quasitriangular Hopf algebra D(A) that is a special smash product of the
Hopf algebras A and Ao: D(A) = A ⋊⋉ Ao, which is called the quantum double. Here we
denote by Ao the algebra A∗ with opposite comultiplication: ∆(ei) = mi

kje
j⊗ek, Ao = (A∗)cop.

It follows from (2.3.5) that the antipode for Ao will be not S but the skew antipode S−1. Thus,
the structure mappings for Ao have the form

eiej = ∆ij
k e

k, ∆(ei) = mi
kje

j ⊗ ek, S(ei) = (S−1)ije
j. (2.4.7)

The algebras A and Ao are said to be antidual, and for them we can introduce the antidual
pairing ⟨⟨.|.⟩⟩: Ao ⊗A → C, which satisfies the conditions

⟨⟨eiej|ek⟩⟩ ≡ ⟨⟨ei ⊗ ej|∆(ek)⟩⟩ = ∆ij
k ,

⟨⟨ei|ekej⟩⟩ ≡ ⟨⟨∆(ei)|ej ⊗ ek⟩⟩ = mi
kj,

⟨⟨S(ei)|ej⟩⟩ = ⟨⟨ei|S−1(ej)⟩⟩ = (S−1)ij,

⟨⟨ei|S(ej)⟩⟩ = ⟨⟨S−1(ei)|ej⟩⟩ = Si
j,

⟨⟨ei|I⟩⟩ = Ei, ⟨⟨I|ei⟩⟩ = ϵi.

(2.4.8)

The universal R-matrix can be expressed in the form of the canonical element

R = (ei ⋊⋉ I)⊗ (I ⋊⋉ ei), (2.4.9)

and the multiplication in D(A) is defined in accordance with (the summation signs are omitted)

(a ⋊⋉ α)(b ⋊⋉ β) = a
(
(α(3) ▷ b) ◁ S(α(1))

)
⋊⋉ α(2)β, (2.4.10)

where α, β ∈ Ao, a, b ∈ A, ∆2(α) = α(1) ⊗ α(2) ⊗ α(3) and

α ▷ b = b(1)⟨⟨α|b(2)⟩⟩, b ◁ α = ⟨⟨α|b(1)⟩⟩b(2). (2.4.11)

The coalgebraic structure on the quantum double is defined by the direct product of the
coalgebraic structures on the Hopf algebras A and Ao:

∆(ei ⋊⋉ ej) = ∆(ei ⋊⋉ I)∆(I ⋊⋉ ej) = ∆nk
i m

j
lp(en ⋊⋉ ep)⊗ (ek ⋊⋉ el). (2.4.12)

Finally, the antipode and coidentity for D(A) have the form

S(a ⋊⋉ α) = S(a) ⋊⋉ S(α), ϵ(a ⋊⋉ α) = ϵ(a)ϵ(α). (2.4.13)

All the axioms of a Hopf algebra can be verified for D(A) by direct calculation. A simple
proof of the associativity of the multiplication (2.4.10) and the coassociativity of the comulti-
plication (2.4.12) can be found in [53].
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Taking into account (2.4.11), we can rewrite (2.4.10) as the commutator for the elements
(I ⋊⋉ α) and (b ⋊⋉ I):

(I ⋊⋉ α)(b ⋊⋉ I) = ⟨⟨S(α(1))|b(1)⟩⟩(b(2) ⋊⋉ I)(I ⋊⋉ α(2))⟨⟨α(3)|b(3)⟩⟩ (2.4.14)

or, in terms of the basis elements α = et and b = es, we have [10]:

(I ⋊⋉ et)(es ⋊⋉ I) = mt
klp∆

njk
s (S−1)pn(ej ⋊⋉ I)(I ⋊⋉ el) ≡

≡
(
mt

ip(S
−1)pn∆

nr
s

) (
mi

kl∆
jk
r

)
(ej ⋊⋉ I)(I ⋊⋉ el),

(2.4.15)

where mt
klp and ∆njk

s are defined in (2.1.3) and (2.1.8), and (S−1)pn is the matrix of the skew
antipode.

The consistence of definitions of left and right bimodules over the quantum double D(A)
should be clarified in view of the nontrivial structure of the cross-multiplication rule (2.4.14),
(2.4.15) for subalgebras A and Ao. It can be done (see, e.g., [198]) if one considers left or
right coinvariant bimodules (Hopf modules): ML = {m : ∆L(m) = 1 ⊗ m} or MR = {m :
∆R(m) = m⊗1}. For example, for MR one can define the left A and left Ao-module actions as

a ▷ m = a(1)mS(a(2)), (2.4.16)

α ▷ m = ⟨⟨S(α),m(−1)⟩⟩m(0), (2.4.17)

where ∆L(m) = m(−1) ⊗ m(0) is the left A-coaction on MR and a ∈ A, α ∈ Ao. Note that
the left A-module action (2.4.16) respects the right coinvariance of MR. The compatibility
condition for the left A-action (2.4.16) and the left A-coaction ∆L is written in the form (we
represent ∆L(a ▷ m) in two different ways):

(a ▷ m)(−1) ⊗ (a ▷ m)(0) = a(1)m(−1) S(a(3))⊗ a(2) ▷ m(0). (2.4.18)

A module with the property (2.4.18) is called the Yetter–Drinfeld module. Then, using (2.4.16),
(2.4.18) and opposite coproduct for Ao, we obtain

α ▷ (a ▷ m) = α ▷ (a(1)mS(a(2))) = ⟨⟨S(α), a(1)m(−1) S(a(3))⟩⟩ a(2) ▷ m(0) =

= ⟨⟨S(α(1)), a(1)⟩⟩ ⟨⟨α(3), a(3)⟩⟩ a(2) ▷ (α(2) ▷ m),
(2.4.19)

and one can recognize in Eq. (2.4.19) the quantum double multiplication formula (2.4.14).
It follows from Eqs. (2.1.3), (2.1.8) and from the identities for the skew antipode (2.3.5)

that (
mq

tk∆
ks
m

) (
mt

ip(S
−1)pn∆

nr
s

)
= δqi δ

r
m, (2.4.20)

and this enables us to rewrite (2.4.15) in the form(
mq

tk∆
ks
m

)
(I ⋊⋉ et)(es ⋊⋉ I) = (mq

kl∆
jk
m )(ej ⋊⋉ I)(I ⋊⋉ el).

This equation is equivalent to the axiom (2.3.8) for the universal matrix R (2.4.9). The relations
(2.3.9) for R (2.4.9) are readily verified. Thus, D(A) is indeed a quasitriangular Hopf algebra
with universal R-matrix represented by (2.4.9).

In conclusion, we note that many relations for the structure constants of Hopf algebras (for
example, the relation (2.4.5)) can be obtained and represented in a transparent form by means
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of the following diagrammatic technique:

∆ij
k =

�
�
	

i

?

k

@
@

R

j

mk
ij =

�
�	

j

?

k

@
@R

i

ϵi =
?jϵ
i

Ei = ?

j
i

Si
j =

?

j

j
?

s

i

For example, the axioms of associativity (2.3) and coassociativity (2.1.8) and the axioms
for the antipode (2.3.4) can be represented in the form

��	n

?l
@@Ik

��	
j

@@R
i

=
��	n

�l
@@Ik

��	

j

@@R

i

��	n

?l
@@R k

���

j
@@R
i

=
��	n

-l
@@R k

���

j

@@R

i
?

?
k

ks
l

�
�? ?

?

=
?

?
k

ks
l

�
�??

?

=

?iϵ
k

?

i
l

Now we make three important remarks relating to the further development of the theory of
Hopf algebras.

2.5. Twisted, ribbon and quasi-Hopf algebras

Remark 1. Twisted Hopf algebras.
Consider a Hopf algebra A (∆, ϵ, S). Let F be an invertible element of A⊗A such that

(ϵ⊗ id)F = 1 = (id⊗ ϵ)F , (2.5.1)

and we denote F =
∑

i αi ⊗ βi, F−1 =
∑

i γi ⊗ δi, I ≡ 1. Following the twisting procedure [60,
61], one can define a new Hopf algebra A(F ) (∆(F ), ϵ(F ), S(F )) (twisted Hopf algebra) with the
new structure mappings

∆(F )(a) = F ∆(a)F−1, (2.5.2)

ϵ(F )(a) = ϵ(a), S(F )(a) = U S(a)U−1(∀a ∈ A), (2.5.3)

where the twisting element F satisfies the cocycle equation

F12 (∆⊗ id)F = F23 (id⊗∆)F , (2.5.4)

and the element U = αi S(βi) is invertible and obeys

U−1 = S(γi) δi, S(αi)U
−1 βi = 1 (2.5.5)

(the summation over i is assumed). First of all, we show that the algebra A(F ) (∆(F ), ϵ) is a
bialgebra. Indeed, the cocycle equation (2.5.4) guarantees the coassociativity condition (2.1.8)
for the new coproduct ∆(F ) (2.5.2). Then the axioms for counit ϵ (2.1.9) are easily deduced
from (2.5.1). Considering the identity

m(id⊗ S ⊗ id)
(
F−123 F12 (∆⊗ id)F

)
= m(id⊗ S ⊗ id)(id⊗∆)F ,

we obtain the form for U−1 (2.5.5). The second relation in (2.5.5) is obtained from the identity
m(S ⊗ id)F−1F = 1.
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Now the new antipode S(F ) (2.5.3) follows from equation

m(id⊗ S) (∆(F )(a)F) = m(id⊗ S) (F ∆(a)),

which is rewritten in the form ã(1)US(ã(2)) = ϵ(a)U , where ∆(F )(a) = ã(1) ⊗ ã(2).
If the algebra A is a quasitriangular Hopf algebra with the universal R-matrix (2.3.8), then

the new Hopf algebra A(F ) is also quasitriangular and a new universal R-matrix is

R(F ) = F21RF−1, (2.5.6)

since we have

∆(F )′ = F21∆
op F−121 = F21R∆R−1F−121 =

(
F21RF−1

)
∆(F )

(
F R−1F−121

)
.

The Yang–Baxter equation (2.3.12) for R-matrix (2.5.6) can be directly checked with the help
of (2.3.8) and (2.5.4).

Impose additional relations on F :

(∆⊗ id)F = F13F23, (id⊗∆)F = F13F12, (2.5.7)

which, together with (2.5.4), imply the Yang–Baxter equation for F . Using (2.3.8), one deduces
from (2.5.7) the equations

R12F13F23 = F23F13R12, F12F13R23 = R23F13F12. (2.5.8)

Equations (2.5.8) and the Yang–Baxter relations for universal elements R, F define the twist
which is proposed in [57] (the additional condition F21F = 1⊗ 1 is assumed in [57]).

Note that if A is the Hopf algebra of functions on the group algebra of group G (2.2.7),
then Eq. (2.5.4) can be written in the form of 2-cocycle equation

F(a, b)F(ab, c) = F(b, c)F(a, bc), (∀a, b, c ∈ G),

for the projective representation ρ of G: ρ(a)ρ(b) = F(a, b) ρ(a b). That is why Eq. (2.5.4) is
called the cocycle equation.

Many explicit solutions of the cocycle equation (2.5.4) are known (see, e.g., [64–66] and
references therein).
Remark 2. Ribbon Hopf algebras.
Here we explain the notion of the ribbon Hopf algebras [58]. Consider quasitriangular Hopf
algebra A and represent the universal R-matrix in the form

R =
∑
µ

αµ ⊗ βµ, R−1 =
∑
µ

γµ ⊗ δµ, (2.5.9)

where αµ, βµ, γµ, δµ ∈ A. By using the right equalities in (2.3.14), we represent the identities
(id⊗ S)

(
RR−1

)
= I = (id⊗ S)

(
R−1R

)
as

αµ αν ⊗ βν S(βµ) = I = αµ αν ⊗ S(βν) βµ (2.5.10)

(the summation over repeated indices µ and ν is assumed and we write I instead of (I ⊗ I)),
while for (S ⊗ id)RR−1 = I = (S ⊗ id)R−1R we have

S(γµ) γν ⊗ δν δµ = I = γµ S(γν)⊗ δν δµ. (2.5.11)

We use identities (2.5.10) and (2.5.11) below in Subsection 3.1.2 (Remark 1).
Consider the element u =

∑
µ S(βµ)αµ for which the following proposition holds.
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Proposition 2.1 (see [51]).
1. For any a ∈ A we have

S2(a)u = u a. (2.5.12)

2. The element u is invertible, with

u−1 = S−1(δµ) γµ. (2.5.13)

Proof. 1. From the relation (2.3.8) it follows that ∀a ∈ A (the summation signs are omitted):

αµ a(1) ⊗ βµ a(2) ⊗ a(3) = a(2) αµ ⊗ a(1) βµ ⊗ a(3),

where a(1) ⊗ a(2) ⊗ a(3) = (∆⊗ id)∆(a). From this we obtain

S2(a(3))S(βµ a(2))αµa(1) = S2(a(3))S(a(1) βµ) a(2)αµ,

or
S2(a(3))S(a(2))u a(1) = S2(a(3))S(βµ)S(a(1)) a(2)αµ.

Applying to this equation the axioms (2.3.1), we obtain (2.5.12).
2. Putting w = S−1(δµ) γµ, we have

uw = uS−1(δµ) γµ = S(δµ)u γµ = S(βν δµ)αν γµ.

Since R · R−1 = ανγµ ⊗ βνδµ = I, we have uw = I. It follows from the last equation and
from (2.5.12) that S2(w)u = 1, and therefore the element u has both a right and left in-
verse (2.5.13).
Thus, the element u is invertible and we can rewrite (2.5.12) in the form

S2(a) = u a u−1. (2.5.14)

This relation shows, in particular, that the operation of taking the antipode is not involutive.

Proposition 2.2 (see [51]).
Define the following elements:

u1 ≡ u = S(βµ)αµ, u2 = S(γµ) δµ, u3 = βµ S
−1(αµ), u4 = γµ S

−1(δµ). (2.5.15)

The relations (2.5.14) are satisfied if we take any of the elements ui from (2.5.15):

S2(a) = ui a u
−1
i , ∀a ∈ A. (2.5.16)

In addition, we have S(u1)−1 = u2, S(u3)−1 = u4, and it turns out that all ui commute with
each other, while the elements uiu−1j = u−1j ui are central in A. Consequently, the element
uS(u) = u1 u

−1
2 is also central.

Proof. In view of relation (2.5.13) we have S(u1)−1 = S(u−1) = S(γµ)δµ = u2 and u−12 =
S(u) = S−1(u) = S−1(αµ) βµ, where we use the identity S2(u) = u which follows from (2.5.14).
Applying the map S to both parts of (2.5.14), we deduce S3(a) = u2S(a)u

−1
2 which is equivalent

to (2.5.16) for i = 2. Note that from (2.3.14) we have R± = (S−1 ⊗ S−1)R±. Thus, one can
make in all formulas above the substitution αµ → S−1(αµ), βµ → S−1(βµ) and γµ → S−1(γµ),
δµ → S−1(δµ) to exchange the elements u1 and u2, respectively, to the elements u3 and u4. It
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means that equations (2.5.16) are valid for i = 3, 4 and we have u4 = S(u3)
−1. Relations (2.5.16)

yield S2(uj) = uj (∀j) and substitution a = uj to (2.5.16) gives uiuj = ujui (∀i, j = 1, . . . , 4).
Finally, for any a ∈ A we have u−1j ui a u

−1
i uj = u−1j S2(a)uj = a, which means that elements

u−1j ui = uiu
−1
j are central.

In [51], it was noted that

∆(u) = (R21R12)
−1(u⊗ u) = (u⊗ u)(R21R12)

−1.

On the basis of all these propositions, we introduce the important concept of a ribbon Hopf
algebra (see [58]):

Definition 7. Consider a quasitriangular Hopf algebra (A, R). Then the triplet (A, R, v) is
called a ribbon Hopf algebra if v is a central element in A and

v2 = uS(u), S(v) = v, ϵ(v) = 1,

∆(v) = (R21R12)
−1 (v ⊗ v).

For each quasitriangular Hopf algebra A we can define A-colored ribbon graphs [58]. If, more-
over, A is a ribbon Hopf algebra, then for each A-colored ribbon graph we can associate the
central element of A that generalizes the Jones polynomial being an invariant of a knot in R3

(see [58, 67]).
Remark 3. Quasi-Hopf algebras.
One can introduce a generalization of a Hopf algebra, called a quasi-Hopf algebra [60, 61],
which is defined as an associative unital algebra A with homomorphism ∆ : A → A ⊗ A,
homomorphism ϵ : A → C, antiautomorphism S : A → A, and invertible element Φ ∈
A⊗A⊗A. At the same time, ∆, ϵ, Φ, and S satisfy the axioms

(id⊗∆)∆(a) = Φ · (∆⊗ id)∆(a) · Φ−1, a ∈ A, (2.5.17)

(id⊗ id⊗∆)(Φ) · (∆⊗ id⊗ id)(Φ) = (I ⊗ Φ) · (id⊗∆⊗ id)(Φ) · (Φ⊗ I), (2.5.18)

(ϵ⊗ id)∆ = id = (id⊗ ϵ)∆, (id⊗ ϵ⊗ id)Φ = I ⊗ I, (2.5.19)

S(a(1))α a(2) = ϵ(a)α, a(1) β S(a(2)) = ϵ(a) β, (2.5.20)

ϕi β S(ϕ
′
i)αϕ

′′
i = I, S(ϕ̄i)α ϕ̄

′
i β S(ϕ̄

′′
i ) = I,

where α and β are certain fixed elements of A, ∆(a) = a(1) ⊗ a(2), and

Φ := ϕi ⊗ ϕ′i ⊗ ϕ′′i , Φ−1 := ϕ̄i ⊗ ϕ̄′i ⊗ ϕ̄′′i

(summation over i is assumed). Thus, a quasi-Hopf algebra differs from an ordinary Hopf
algebra in that the axiom of coassociativity is replaced by the weaker condition (2.5.17). In
other words, a quasi-Hopf algebra is noncoassociative, but this noncoassociativity is kept under
control by means of the element Φ. The axioms (2.5.20) (which look like different definitions
of the left and right antipodes) generalize the axioms (2.3.1) for usual Hopf algebras and con-
sequently the elements α and β involved into the play with the contragredient representations
of the quasi-Hopf algebras.

To make the pentagonal condition (2.5.18) more transparent, let us consider (following [60,
61]) the algebra A as the algebra of functions on a “noncommutative” space X equipped with
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a ∗ product: X × X → X. Then elements a ∈ A, b ∈ A ⊗ A, . . . are written in the form
a(x), b(x, y) . . . and ∆(a) is represented as a(x ∗ y). The homomorphism ϵ defines the point
in X, which we denote 1 and instead of ϵ(a) we write a(1). Then Eqs. (2.5.17)–(2.5.19) are
represented in the form [60, 61]:

a(x ∗ (y ∗ z)) = Φ(x, y, z) a((x ∗ y) ∗ z) Φ(x, y, z)−1,

Φ(x, y, z ∗ u) Φ(x ∗ y, z, u) = Φ(y, z, u) Φ(x, y ∗ z, u) Φ(x, y, z), (2.5.21)

a(1 ∗ x) = a(x) = a(x ∗ 1), Φ(x, 1, z) = 1.

Now it is clear that (2.5.21) (and respectively (2.5.18)) is the sufficient condition for the com-
mutativity of the diagram:

a (((x ∗ y) ∗ z) ∗ u) −→ a((x ∗ y) ∗ (z ∗ u)) −→ a(x ∗ (y ∗ (z ∗ u)))

?

a((x ∗ (y ∗ z)) ∗ u) →
?

a(x ∗ ((y ∗ z) ∗ u))

Remark 4. Applications of the theory of quasi-Hopf algebras to the solutions of the Knizhnik–
Zamolodchikov equations are discussed in [60, 61]. On the other hand, one can suppose that,
by virtue of the occurrence of the pentagonal relation (2.5.18) for the element Φ, quasi-Hopf
algebras will be associated with multidimensional generalizations of Yang–Baxter equations.

3. The Yang–Baxter equation and quantization of Lie groups

In this section, we discuss the R-matrix approach to the theory of quantum groups [42],
on the basis of which we perform a quantization of classical Lie groups and also some Lie
supergroups. We present trigonometric solutions of the Yang–Baxter equation invariant un-
der the adjoint action of the quantum groups GLq(N), SOq(N), Spq(2n) and supergroups
GLq(N |M), Ospq(N |2m). We briefly discuss the corresponding Yangian (rational) solutions
and ZN ⊗ZN symmetric elliptic solutions of the Yang–Baxter equation. We also show that for
every (trigonometric) solution R(x) of the Yang–Baxter equation one can construct the set of
difference equations which are called quantum Knizhnik–Zamolodchikov equations.

3.1. Numerical R-matrices

This subsection is based on the results presented in [67, 68].

3.1.1. Invertible and skew-invertible R-matrices

Let A be a quasitriangular Hopf algebra. Consider representations T (ν) of A in Nν-
dimensional vector spaces Vν (the index ν enumerates representations). In view of (2.2.8)
and (2.3.12), the matrix (R(ν,µ))

iνjµ
kν lµ

= (T
(ν)iν

kν
⊗ T

(µ)jµ
lµ
)R, where R ∈ A ⊗ A is the universal

element (2.3.10), satisfies the generalized matrix Yang–Baxter equation

(R(ν,µ))
iν iµ
jνjµ

(R(ν,λ))
jν iλ
kνjλ

(R(µ,λ))
jµjλ
kµkλ

= (R(µ,λ))
iµiλ
jµjλ

(R(ν,λ))
iνjλ
jνkλ

(R(ν,µ))
jνjµ
kνkµ

. (3.1.1)

Here the summation over repeated indices jν , jµ, jλ is assumed. Let the representations T (ν),
T (µ), T (λ) be equivalent to a representation T which acts in N -dimensional vector space V .
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In this case, according to (3.1.1), the image Rij
kℓ = (T i

k ⊗ T j
ℓ)R of the universal element

R ∈ A⊗A satisfies the standard matrix Yang–Baxter equation

Ri1i2
j1j2

Rj1i3
k1j3

Rj2j3
k2k3

= Ri2i3
j2j3

Ri1j3
j1k3

Rj1j2
k1k2

. (3.1.2)

A lot of numerical solutions of the Yang–Baxter equations (3.1.1), (3.1.2) can be constructed
as representations of the universal R-matrices. However, not all numerical solutions R of
Eqs. (3.1.1) and (3.1.2) are images (T (ν) ⊗ T (µ))R and (T ⊗ T )R of the universal element R
for some quasitriangular Hopf algebra A. Below we consider solutions R ∈ End(V ⊗ V ) of the
standard matrix Yang–Baxter equation (3.1.2) that are not necessarily the universal R-matrix
representations.

First, we assume that a solution R of Eq. (3.1.2) is the invertible matrix

Ri1i2
k1ℓ2

(R−1)k1ℓ2j1j2
= δi1j1 δ

i2
j2
= (R−1)i1i2k1ℓ2 R

k1ℓ2
j1j2

. (3.1.3)

Note that for all images R = (T⊗T )R, such invertibility follows from the invertibility (2.3.14) of
the universal element R. In terms of the concise matrix notation [42], we write relations (3.1.3)
and (3.1.2) in the following equivalent forms:

R12R
−1
12 = I12 = R−112 R12 ⇐⇒ R̂12R̂

−1
12 = I12 = R̂−112 R̂12, (3.1.4)

R12R13R23 = R23R13R12 =⇒ (3.1.5)

R̂12 R̂23 R̂12 = R̂23 R̂12 R̂23 =⇒ (3.1.6)

R̂23 R̂
−1
12 R̂

−1
23 = R̂−112 R̂

−1
23 R̂12, R̂12 R̂

−1
23 R̂

−1
12 = R̂−123 R̂

−1
12 R̂23. (3.1.7)

Here R̂ := P R, the matrix P is the permutation:

P i1i2
j1j2

= δi1j2δ
i2
j1
, R̂i1i2

j1j2
= (P R)i1i2j1j2

= Ri2i1
j1j2

, (3.1.8)

I12 := I ⊗ I (I ∈ Mat(N) is the unit matrix in V ) and indices 1, 2, 3 label the vector spaces
V in V ⊗3 where the corresponding matrices R12, R23, . . . act nontrivially, e.g., R12 = R ⊗ I,
R23 = I ⊗ R, etc. We also note that if matrix R12 satisfies the Yang–Baxter equation (3.1.2),
then the matrix R′12 = R21 also satisfies the Yang–Baxter equation

R21R31R32 = R32R31R21
1↔3⇐⇒ R23R13R12 = R12R13R23. (3.1.9)

In what follows, we introduce matrices

R̂a := R̂a,a+1 = I⊗(a−1) ⊗ R̂⊗ I⊗(M−a), (a = 1, . . . ,M), (3.1.10)

which act in the space V ⊗(M+1) and, according to Yang–Baxter equations (3.1.6), we have braid
relations

R̂a R̂a+1 R̂a = R̂a+1 R̂a R̂a+1 (a = 1, . . . ,M). (3.1.11)

In view of these relations and locality relations

[R̂a, R̂b] = 0 (for |a− b| > 1), (3.1.12)

the invertible matrices R̂a define a representation of generators of the braid group BM+1 (see
definition in Subsection 4.1). The name “braid group” is justified since relation (3.1.11) admits
the graphic visualization

23
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R̂a+1 · R̂a · R̂a+1 =

@@

��	@@R

��

?

• • •a a + 1 a + 2

• • •
@@

��	@@R

��

?• • •
@@

��	@@R

��

?• • •

=

a a + 1 a + 2• • •
@@

��	@@R

��

?• • •
@@

��	@@R

��

?• • •

• • •
@@

��	@@R

��

?

= R̂a · R̂a+1 · R̂a , (3.1.13)

that is an identity of two braids with three strands (the third Reidemeister move). Here we
make use of the graphic representation

R̂a =

• • . . . • • . . . •1 2 a a + 1 M + 1

1 2 a a + 1 M + 1

@@

��	 @@R

��

? ? ?• • . . . • • . . . •
.

(3.1.14)

We discuss in detail the braid group BM+1, its group algebra C[BM+1] and finite dimensional
quotients of C[BM+1] in Section 4 below.

Let X(R̂a) be a formal series in R̂±1a . The direct consequences of (3.1.11) are equations

X(R̂a) R̂a+1 R̂a = R̂a+1 R̂aX(R̂a+1), R̂a R̂a+1X(R̂a) = X(R̂a+1) R̂a R̂a+1, (3.1.15)

which make it possible to carry functions X(R̂a), X(R̂a+1) through the operators R̂a+1R̂a and
R̂aR̂a+1.

Definition 8. The matrix R ∈ End(V ⊗2) is called skew-invertible if there exists matrix Ψ ∈
End(V ⊗2) such that (cf. (3.1.3))

Rmk
jnΨ

in
ml = δijδ

k
l = Ψni

lmR
km
nj. (3.1.16)

The index-free forms of these relations are4

Rt1
12Ψ

t1
12 = I12, Ψt1

12R
t1
12 = I12, (3.1.17)

Tr2(R̂12 Ψ̂23) = P13 = Tr2

(
Ψ̂12 R̂23

)
, (3.1.18)

where Ψ̂ = P Ψ. We say that the invertible and skew-invertible R-matrix is completely invertible
if the inverse matrix R−1 is also skew-invertible, i.e., there exists a matrix Φ ∈ End(V ⊗2) such
that

Φt2
12 (R

−1)t212 = I12 = (R−1)t212Φ
t2
12 ⇔ Φi1i2

k2j1
(R−1)k2i3j3i2

= δi1j3 δ
i3
j1
= (R−1)i1i2k2j1

Φk2i3
j3i2

⇒

Tr2

(
Φ̂12 R̂

−1
23

)
= P13 = Tr2(R̂

−1
12 Φ̂23), (3.1.19)

where R̂−1 = R−1 P and Φ̂ = ΦP .

The skew-invertible R-matrices were considered in [67], where operator Ψ12 was denoted as
((Rt1

12)
−1)t1 (cf. (3.1.17)).

4The form (3.1.18) is very convenient for calculations (see below) and was proposed in [97]. Equations
(3.1.17) are equivalently written as Ψt2

12R
t2
12 = I12 = Rt2

12 Ψ
t2
12.
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3.1.2. Quantum traces

Now we define four matrices

D1 = Tr2(Ψ̂12), Q2 = Tr1(Ψ̂12), (3.1.20)

D1 = Tr2(Φ̂12), Q2 = Tr1(Φ̂12), (3.1.21)

which are important for our consideration below.

Proposition 3.3. Let the Yang–Baxter matrix R be invertible and skew-invertible, then the
following identities hold:

Tr2(R̂12D2) = I1, Tr1(Q1 R̂12) = I2, (3.1.22)

Tr2(R̂
−1
12 D2) = I1, Tr1(Q1 R̂

−1
12 ) = I2, (3.1.23)

D0 P02 = Tr3D3R̂
−1
23 R̂03, D0 P02 = Tr3D3R̂23 R̂

−1
03 , (3.1.24)

Q0 P02 = Tr1Q1R̂
−1
12 R̂10, Q0 P02 = Tr1Q1R̂12 R̂

−1
10 , (3.1.25)

D2 R̂
−1
12 = Ψ̂21D1, R̂−112 D2 = D1 Ψ̂21, (3.1.26)

Q1 R̂
−1
12 = Ψ̂21Q2, R̂−112 Q1 = Q2 Ψ̂21, (3.1.27)

where the matrices D and Q commute and satisfy

D2Q2 = Q2D2 = Tr3(D3 R̂
−1
2 ) = Tr1(Q1 R̂

−1
1 ). (3.1.28)

If the matrix R is completely invertible, then

R̂12D2 = D1 Φ̂21, D2 R̂12 = Φ̂21D1. (3.1.29)

R̂12Q1 = Q2 Φ̂21, Q1 R̂12 = Φ̂21Q2, (3.1.30)

and the matrices D and Q are invertible such that

D−1 = Q, Q−1 = D. (3.1.31)

Conversely, if the matrix D (or Q) is invertible, then the matrix R is completely invertible. For
invertible matrices D and Q one has the relations

Tr1(D
−1
1 R̂−112 ) = I2 = Tr3(Q

−1
3 R̂−123 ). (3.1.32)

Proof. Identities (3.1.22) and (3.1.23) follow from (3.1.18) and (3.1.19). To obtain (3.1.24)
and (3.1.25), we multiply both sides of Eqs. (3.1.15) (for a = 1) from the left by Ψ̂01 and from
the right by Ψ̂34 and take the trace Tr13 (≡ Tr1Tr3). Using (3.1.18), we obtain

Tr1Ψ̂01X(R̂1)P24R̂1 = Tr3R̂2 P02X(R̂2) Ψ̂34, (3.1.33)

Tr1Ψ̂01R̂1 P24X(R̂1) = Tr3X(R̂2)P02 R̂2 Ψ̂34, (3.1.34)

where R̂a ≡ R̂a a+1 (see (3.1.10)). We put X(R̂) = R̂−1 in (3.1.33), (3.1.34) and take the traces
Tr4 or Tr0. Using (3.1.18) and (3.1.20), we obtain four identities (dependent on different choices
of ±)

D0 I2 = Tr3D3R̂
∓1
2 P02 R̂

±1
2 , Q0 I2 = Tr1Q1R̂

±1
1 P02 R̂

∓1
1 , (3.1.35)
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which can be easily written as (3.1.24) and (3.1.25). Applying to both sides of the first relation
in (3.1.24) the operation Tr0(Ψ̂10 . . .) and to both sides of the second relation in (3.1.24) the
operation Tr2(Ψ̂12 . . .), we obtain identities

Tr0(Ψ̂10D0P02) = Tr03(Ψ̂10D3R̂
−1
23 R̂03), Tr2(D0Ψ̂12P02) = Tr23(Ψ̂12D3R̂23R̂

−1
03 ),

which, by means of (3.1.18), give (3.1.26). Similarly, applying to both sides of the first relation
in (3.1.25) the operation Tr0(. . . Ψ̂03) and to both sides of the second relation in (3.1.25) the
operation Tr2(. . . Ψ̂23), we obtain (3.1.27). Taking the traces Tr2(. . . ) and Tr1(. . . ) of (3.1.26)
and (3.1.27), respectively, we deduce (3.1.28).

If the matrix R is completely invertible, then acting to the first relation (3.1.24) by
Tr2(Φ̂12 . . .) and to the second relation (3.1.24) by Tr0(Φ̂10 . . .), we obtain (3.1.29). Analo-
gously, acting to the first relation (3.1.25) by Tr2(. . . Φ̂23) and to the second relation (3.1.25)
by Tr0(. . . Φ̂03), we find (3.1.30). Equations (3.1.31) are obtained by taking traces Tr2(. . . ) and
Tr1(. . . ) of (3.1.29) and (3.1.30), respectively, and applying (3.1.21), (3.1.22). Thus, for the
completely invertible R the matrices D and Q are invertible.

Conversely, if the matrix D is invertible, then D1R̂21D
−1
2 (cf. (3.1.29)) is the skew-inverse

matrix for R̂−1. Indeed,

Tr2

(
R̂−112 D2 R̂32D

−1
3

)
= Tr2

(
R̂−112 D2 R̂32

)
D−13 =

= D1Tr2

(
Ψ̂21 R̂32

)
D−13 = D1 P13D

−1
3 = P13,

where in the second equality we apply the second relation in (3.1.26). Thus, the R-matrix is
completely invertible. For the invertible matrix Q the proof of the fact that the Yang–Baxter
R-matrix is completely invertible is similar. For invertible matrices D and Q we have (3.1.31)
and one can rewrite relations (3.1.23) as (3.1.32).

Corollary 1. Let R̂ be skew-invertible and the matrix A12 be one of the matrices {R̂12, R̂
−1
12 ,

Ψ̂12}. Then from (3.1.26) and (3.1.27) we obtain

[A12, D1D2] = 0 = [A12, Q1Q2], (3.1.36)

A12 (DQ)1 = (DQ)2A12. (3.1.37)

If R̂ is completely invertible, then matrices Ψ̂12, Φ̂12 are invertible

Ψ̂−112 = D−11 R̂21D2 = Q−12 R̂21Q1, Φ̂−112 = D2R̂
−1
21 D

−1
1 = Q1R̂

−1
21 Q

−1
2 .

In this case, by using (3.1.29) and (3.1.30), we prove Eqs. (3.1.36), (3.1.37) for A12 = Φ̂12 and
deduce the relation on the matrices Φ̂ and Ψ̂:

Φ̂−112 = D2
2 Ψ̂12D

−2
1 = Q2

1 Ψ̂12Q
−2
2 .

Corollary 2. For any quantum (N ×N) matrix E (with noncommutative entries Ei
j) one can

find the following identities:

Tr(DE) I1 = Tr2

(
D2R̂

∓1
1 E1 R̂

±1
1

)
, Tr(QE) I2 = Tr1

(
Q1R̂

±1
1 E2 R̂

∓1
1

)
(3.1.38)
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that demonstrate the invariance properties of the quantum traces

Tr(DE) =: TrD(E), Tr(QE) =: TrQ(E). (3.1.39)

To prove identities (3.1.38), we multiply Eqs. (3.1.35) by the matrix E0 and take the trace
Tr0(. . . ). Note that in view of (3.1.36), the multiple quantum traces satisfy cyclic property

TrD(1...m)

(
X(R̂) · Y

)
= TrD(1...m)

(
Y ·X(R̂)

)
,

TrQ(1...m)

(
X(R̂) · Y

)
= TrQ(1...m)

(
Y ·X(R̂)

)
,

(3.1.40)

where X(R̂) ∈ End(V ⊗m) denotes arbitrary element of the group algebra of the braid group
Bm in R-matrix representation (3.1.11), (3.1.12) and Y ∈ End(V ⊗m) are arbitrary (quantum)
operators.

Corollary 3. Let R be completely invertible matrix. We multiply the first and the second
Yang–Baxter equations in (3.1.7), respectively, from the right and the left by the matrix D3:

R̂2 R̂
−1
1 R̂−12 D3 = R̂−11 R̂−12 R̂1D3, D3 R̂1 R̂

−1
2 R̂−11 = D3 R̂

−1
2 R̂−11 R̂2,

and use relations (3.1.26). As a result, we deduce

R̂23 Ψ̂21 Ψ̂32 = Ψ̂21 Ψ̂32 R̂12, R̂12 Ψ̂32 Ψ̂21 = Ψ̂32 Ψ̂21 R̂23. (3.1.41)

Analogously, if we multiply Yang–Baxter equations (3.1.15) (for X(R̂a) = R̂−1a and a = 1) from
the left and the right by the matrix Q1 and use relations (3.1.30), we respectively deduce

Φ̂21 Φ̂32 R̂12 = R̂23 Φ̂21 Φ̂32, Φ̂32 Φ̂21 R̂23 = R̂12 Φ̂32 Φ̂21. (3.1.42)

Corollary 4. The trace Tr04(. . . ) of Eq. (3.1.33) (or (3.1.34)) gives

Tr1Q1X(R̂1) = Tr3D3X(R̂2) ≡ Y2(X), (3.1.43)

where we redefined the arbitrary function X: X(R̂)R̂ → X(R̂). In particular, for X = 1 we
obtain Tr(D) = Tr(Q). Equation (3.1.43) leads to the following identity:

Tr12

(
Q1Q2X(R̂1)

)
= Tr23

(
D3Q2X(R̂2)

)
= Tr34

(
D3D4X(R̂3)

)
. (3.1.44)

Proposition 3.4. For any polynomial X ∈ C[R̂1, R̂
−1
1 ] the matrix Y (X) defined in (3.1.43)

satisfies [D, Y ] = 0 = [Y, Q] and

Y2(X) R̂±11 = R̂±11 Y1(X). (3.1.45)

Matrices
Y

(n)
2 := Y (R̂n) = Tr3

(
D3 R̂

n
2

)
= Tr1

(
Q1 R̂

n
1

)
, ∀ n ∈ Z, (3.1.46)

generate a commutative set.
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Proof. From (3.1.43) and (3.1.36) we have

D2 Y2 = Tr3
(
D2D3X(R̂2)

)
= Tr3

(
X(R̂2)D2D3

)
= Y2D2,

Q2 Y2 = Tr1
(
Q1Q2X(R̂1)

)
= Tr3

(
X(R̂1)Q1Q2

)
= Y2Q2.

The left-hand side of (3.1.45) is transformed as follows:

Y2(X) R̂±11 = Tr3
(
D3X(R̂2)R̂

±1
1 R̂±12 R̂∓12

)
= R̂±11 Tr3

(
D3R̂

±1
2 X(R̂1)R̂

∓1
2

)
=

= R̂±11 Tr2
(
D2X(R̂1)

)
= R̂±11 Y1(X),

where we used (3.1.15) and the first relation in (3.1.38).
The commutativity of the matrices Y (n)

2 follows from (3.1.45), since for even and odd n we
have, respectively

Y2(X)Y
(2k)
2 = Tr3

(
D3 Y2 R̂

2k
2

)
= Tr3

(
D3 R̂

2k
2 Y2

)
= Y

(2k)
2 Y2(X),

Y2(X)Y
(2k+1)
2 = Tr1

(
Q1 Y2 R̂

2k+1
1

)
= Tr1

(
Q1 R̂

2k+1
1 Y1

)
= Tr1

(
Y1Q1 R̂

2k+1
1

)
=

= Tr1

(
Q1 Y1 R̂

2k+1
1

)
= Tr1

(
Q1 R̂

2k+1
1 Y2

)
= Y

(2k+1)
2 Y2(X).

For X(R̂) = R̂m (m ∈ Z) we obtain commutativity of matrices (3.1.46).

Proposition 3.5. The identity (3.1.44) is generalized as

Tr1...n(Q1 · · ·QkDk+1 · · ·DnX1→n) = Tr1...n(D1 · · ·DnX1→n) (∀n ⩾ 2, k = 1, . . . , n), (3.1.47)

where X1→n := X(R̂1, . . . , R̂n−1) ∈ C[R̂±11 , . . . , R̂±1n−1] is an element of the group algebra of the
braid group Bn in the R-matrix representation5 (3.1.11), (3.1.12).

Proof. Indeed, from (3.1.11), (3.1.12) we have R̂1 · · · R̂nX1→n = X2→n+1 R̂1 · · · R̂n. Multiply-
ing both sides of this equation by the matrices Q1 and Dn+1 from the left and the right and
taking the trace Tr1Trn+1 (. . . ), we deduce (by means of (3.1.22))

Tr1

(
Q1 R̂1 · · · R̂n−1X1→n

)
= Trn+1

(
Dn+1X2→n+1 R̂2 · · · R̂n

)
,

which is written, after the redefinition X1→n → (R̂1 · · · R̂n−1)
−1X1→n, in the form

Tr1 (Q1X1→n) = Trn+1

(
Dn+1 (R̂2 · · · R̂n)

−1X2→n+1 R̂2 · · · R̂n

)
. (3.1.48)

Then, applying the trace Tr2(Q2 . . . ) to (3.1.48) (and again using (3.1.48)), we obtain

Tr12 (Q1Q2X1→n) = Trn+1Dn+1Tr2

(
Q2 (R̂2 · · · R̂n)

−1X2→n+1 R̂2 · · · R̂n

)
=

= Trn+1,n+2

(
Dn+1Dn+2 (R̂3 · · · R̂n+1)

−2X3→n+2 (R̂3 · · · R̂n+1)
2
)
.

(3.1.49)

5In view of the graphical representation (3.1.14), any monomial in X1→n is interpreted as a braid with n
strands.
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Applying the trace Tr3(Q3 . . . ) to (3.1.49), etc., we obtain

Tr1...k (Q1 · · ·QkX1→n) =

= Trn+1...n+k

(
Dn+1 · · ·Dn+k (R̂k+1 · · · R̂n+k−1)

−kXk+1→n+k (R̂k+1 · · · R̂n+k−1)
k
)
,

(3.1.50)

and finally multiplying both sides of (3.1.50) by Dk+1 · · ·Dn from the left and taking the trace
Trk+1...n (applying Trk+1...n(Dk+1 · · ·Dn . . . ) to both sides of (3.1.50)), we deduce (3.1.47)

Tr1...n (Q1 · · ·QkDk+1 · · ·DnX1→n) =

= Trk+1...n+k

(
Dk+1 · · ·Dn+k (R̂k+1 · · · R̂n+k−1)

−kXk+1→n+k (R̂k+1 · · · R̂n+k−1)
k
)
=

= Trk+1...n+k (Dk+1 · · ·Dn+kXk+1→n+k) ,

(3.1.51)

where we have used the cyclic property (3.1.40).
Remark 1. A numerical R-matrix which is the image (T ⊗ T )R of the universal R-matrix
(2.5.9) for the quasitriangular Hopf algebra is obliged to be skew-invertible. Indeed, relations
(2.5.10) are written in the matrix form

δijδ
k
ℓ = T i

j (αµαν) T
k
ℓ (βνS(βµ)) = Rmk

j n T i
m(αµ)T

n
ℓ (S(βµ)),

δkℓ δ
i
j = T k

ℓ (αµαν) T
i
j (S(βν)βµ) = T n

ℓ (αν)T
i
m(S(βν)) Rkm

nj ,

and, thus, relations (2.5.10) are the algebraic counterparts of (3.1.16), where the matrix Ψ is
given by the equation

Ψin
ml = T i

m(αµ)T
n
l (S(βµ)) = Ψ̂ni

ml. (3.1.52)

Moreover, in view of (2.3.6), the transposed matrix Ψt2 of (3.1.52) is interpreted as the image
(T⊗T )R, where T denotes a contragredient representation to T , i.e., T (a) = T t(S(a)) (∀a ∈ A).
Then the second equation in (3.1.41) is nothing but the image of the universal Yang–Baxter
equation (2.3.12) in the representation (T ⊗ T ⊗ T ).

The image (T ⊗ T )R−1 = R−1 is also skew-invertible. The matrix Φ12 in (3.1.19) is given
by

Φin
ml = T i

m(S(γµ))T
n
l (δµ) = Φ̂in

lm (3.1.53)

and the algebraic counterpart of (3.1.19) is (2.5.11). The second equation in (3.1.42) is the
image of the universal equation R23R−112 R−113 = R−113 R−112 R23 (see (2.3.12)) in the representation
(T ⊗ T ⊗ T ). From Eqs. (3.1.52), (3.1.53) we also have the universal formulas for matrices
(3.1.20), (3.1.21) of quantum traces

D = T (S(βµ)αµ) = T (u), D = T (S(γµ)δµ) = T (u2),

Q = T (αµS(βµ)) = T (S(u3)) = T (u−14 ), Q = T (δµS(γµ)) = T (S(u4)) = T (u−13 ),
(3.1.54)

where elements u1 = u, u2, u3, u4 were introduced in (2.5.15) in Subsection 2.5. Then, in
view of Proposition 2.2, all matrices (3.1.54) commute with each other and the products DQ,
DQ = I, DQ = I, and DQ = (DQ)−1 are images of central elements (uiu

−1
j ) ∈ A in the

representation T .
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3.1.3. R-matrix formulation of link and knot invariants

The R-matrix formulation of link and knot invariants was developed in [58, 59, 67] (see
also references therein). Taking into account the fact that R-matrices satisfy (by definition)
the third Reidemeister move (3.1.13), we see that Propositions 3.3 and 3.5 are important for
constructing of link and knot invariants. Indeed, using graphic representation (3.1.14), one can
visualize relations (3.1.22) and (3.1.32) from Proposition 3.3 as the first Reidemeister moves:

Tr2

(
R̂12D2

)
=

@
@
@@R

��

��	

�
	6D =

?

I1 , Tr2

(
R̂−112 Q

−1
2

)
=

@@

�
�	 @@R

�
�

�
	6Q−1 =

?

I1 ,

(3.1.55)

Tr1

(
Q1R̂12

)
=

@
@
@@R

��

��	

�

6Q =

?

I2 , Tr2

(
D−11 R̂−112

)
=

@@

�
�	 @@R

�
�

�

6D−1 =

?

I2 .

(3.1.56)

These pictures show that the elementary braids R̂ and R̂−1 are closed by matrices D, Q−1 = D

on the right, and by matrices D−1, Q = D
−1 on the left, to obtain trivial braids. We note

that in general D ̸= Q−1. We stress, however, that for many explicit numerical R-matrices
we have6 Q−1 ∼ D, and therefore, after the special normalization of R-matrices, we deal with
the standard first Reidemeister moves. Finally, for the case of the skew-invertible R-matrices,
Proposition 3.5 demonstrates the equivalence of the complete closuring of braids7 X1→n from
the left and from the right by means of the quantum traces respectively with matrices Q and
D. Thus, for any braid X1→n with n strands (X1→n is a monomial constructed as a product of
any number of R-matrices {R̂1, . . . , R̂n−1}) the characteristic (3.1.47)

Q(X1→n) := Tr1...n(Q1 · · ·QnX1→n) ≡ Tr1...n(D1 · · ·DnX1→n), (3.1.57)

gives (by closing of the braid X1→n) the invariant for link/knot.

Remark 2. Let T be the representation of the quasitriangular Hopf algebra A in the space V .
Consider a special matrix representation of the universal R-matrix

R(k,m) =
∑
µ

T⊗k(αµ)⊗ T⊗m(βµ) ≡ (T⊗k ⊗ T⊗m)R, (3.1.58)

where T⊗k acts to the first factor in R, T⊗m acts to the second factor in R and we have used
the notation (2.5.9). Then applying (2.3.9), we deduce

R(k,m) = R1→k;k+m · · ·R1→k;k+2 ·R1→k;k+1 = (P1→k;k+m · · ·P1→k;k+1) R̂(k,m), (3.1.59)

R̂(k,m) = R̂(m→k+m−1) · · · R̂(2→k+1) R̂(1→k), (3.1.60)

where
R1→k;k+ℓ := R1,k+ℓR2,k+ℓ · · ·Rk,k+ℓ = P1→k;k+ℓ · R̂(1→k−1)R̂k,k+ℓ,

P1→k;k+ℓ := P1,k+ℓ P2,k+ℓ · · ·Pk,k+ℓ, R̂(k→ℓ) := R̂k R̂k+1 · · · R̂ℓ,

6For R = (T ⊗ T )R the matrix DQ = T (u1u
−1
4 ) is the image of central element and for irreducible repre-

sentation T we have DQ ∼ I; see also Examples 1 and 2 below.
7Here the braids X1→n are elements of the braid group Bn in the R-matrix representations.
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Rij := ((T ⊗ T )R)ij and the braid R̂(k,m) is obtained from matrix R(k,m) by substitution
Rij = Pij R̂ij and shifting all permutation matrices Pij to the left. The braid R̂(k,m) defined
in (3.1.60) can be visualized, by means of (3.1.14), as the intersection of two cables (or two
ribbons) with m and k strands:

R̂(k,m) =

• ••HH
HHH

HHH
HHHHj

. . . . . .

. . .
. . .

. . .• •
1 m m+1 m+k

�� ��
���

��

���
�����

����

HH
HHH

HHH
HHHHj

HH
HHH

HHH
HHHHj• •. . . • ••. . . . . . (3.1.61)

This pictorial presentation demonstrates the fact that in general the R-matrix approach could
describe invariants not only for ordinary links and knots, but also for ribbon (cable) links and
knots. In this case, the right (or left) closuring for braids with matrices D1 · · ·Dn ∼ Q−11 · · ·Q−1n

(or Q⊗n ∼ (D−1)⊗n) is also different for the cable (ribbon) braids R̂(n,n) and R̂−1(n,n) (cf. (3.1.55),
(3.1.56)). For example, for the right closuring it follows from the visualization of the moves
which are shown in the pictures:

?

6

(Q−1)⊗n = ≡ D ,

?

6

D⊗n = ≡ D = D−1 ,

(3.1.62)

where we pull the ribbons along the arrows on the left-hand side (l. h. s.) of the equalities
and obtain two differently twisted ribbons (as spirals) in the right-hand side (r. h. s.) of the
equalities. Thus, for ribbon (cable) links/knots, to obtain the first Reidemeister moves, we
need to insert matrices D and D in the closuring of braids D⊗n · D and (Q−1)⊗n · D (here the
“ribbon” matrices D and D are defined in (3.1.62)):

?

6

D

(Q−1)⊗n

= ,

?

6

D

D⊗n

= .

(3.1.63)

Thus, in the right-hand side of the relations (3.1.63), we obtain the unit operators in V ⊗n.

3.1.4. Spectral decomposition of R-matrices and examples of knot/link invariants

We now assume that the invertible Yang–Baxter R̂-matrix obeys the characteristic equation

(R̂− µ1)(R̂− µ2) · · · (R̂− µM) = 0, (3.1.64)

where µi ∈ C, µi ̸= µj if i ̸= j and µi ̸= 0 ∀i. This equation can be represented in the form

R̂M − σ1(µ) R̂
M−1 + · · ·+ (−1)M−1 σM−1(µ) R̂ + (−1)M σM(µ) 1 = 0, (3.1.65)

where 1 is a unit matrix in V ⊗2 and

σk(µ) =
∑

i1<i2<···<ik

µi1 . . . µik
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are elementary symmetric polynomials of µi (i = 1, . . . ,M). For R-matrices satisfying (3.1.64),
one can introduce a complete set of M projectors:

Pk =
∏
j ̸=k

(R̂− µj)

(µk − µj)
,

∑
k

Pk = 1, (3.1.66)

which project the R̂-matrix to its eigenvalues Pk R̂ = R̂Pk = µk Pk and can be used for the
spectral decomposition of an arbitrary function X of R:

X(R̂) =
M∑
k=1

X(µk)Pk. (3.1.67)

In particular, for X = 1 we obtain the completeness condition (see the second equation in
(3.1.66)). The derivation of formulas (3.1.66) can be found, for example, in [139, 180].

In the calculations of the knot/link invariants (3.1.57), the characteristic equations (3.1.65)
play the role of the skein relations. We also note that for many known explicit examples of com-
pletely invertible Yang–Baxter R̂-matrices, which satisfy the characteristic equation (3.1.64),
all matrices Y (X), defined in (3.1.43), are proportional to the identity matrix (see Proposition 4
in [47]).

Examples. Here we consider two special casesM = 2, 3 for the characteristic equation (3.1.64).
By renormalizing the matrix R̂, it is always possible to fix first two eigenvalues in (3.1.64) so
that µ1 = q ̸= 0 and µ2 = −q−1 ̸= 0, where q ∈ C.
1. For M = 2, Eqs. (3.1.64) and (3.1.65) are represented in the form of the Hecke condition

(R̂− q)(R̂ + q−1) = 0 ⇒ R̂2 = λ R̂ + 1 ⇒

R̂− λ1− R̂−1 = 0, λ := (q − q−1).
(3.1.68)

In this case, for all n ∈ Z we obtain

R̂n = αnR̂ + αn−11, αn :=
qn − (−q)−n

q + q−1
, (3.1.69)

and according to (3.1.22), all matrices Y (R̂n) ≡ Y (n) in (3.1.46) are proportional to the identity
matrix

Tr2(D2R̂
n
12) = (αn + αn−1Tr(D)) I1. (3.1.70)

In particular, one can immediately find (see (3.1.22), (3.1.28))

Tr(Q) = Tr(D), Y1(R̂
−1) = Q1D1 = Tr2(D2R̂

−1
1 ) = (1− λTr(D)) I1 = q−2d I1, (3.1.71)

where we introduce useful parametrization q−2d = (1−λTr(D)). Equation (3.1.71) means that
for the skew-invertible Hecke R-matrix, in the case λTr(D) ̸= 1, the matrices D and Q are
always invertible and Q−1 = q2dD.
2. For M = 3, Eqs. (3.1.64) and (3.1.65) are the Birman–Murakami–Wenzl cubic relations
(cf. Eq. (3.10.4) below)

(R̂− q)(R̂ + q−1)(R̂− ν) = 0 ⇒ R̂3 − (λ+ ν) R̂2 + (λν − 1)R̂ + ν1 = 0 ⇒

K̂R̂ = R̂K̂ = νK̂, K̂ := 1
λν
(q − R̂)(q−1 + R̂) = 1

λν

(
1+ λR̂− R̂2

)
,

(3.1.72)
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where λ = (q − q−1). In this case, we have

K̂2 = µ K̂, µ :=
1

λ
(ν−1 + λ− ν), (3.1.73)

and for all n ∈ Z we obtain
R̂n = αnR̂ + αn−11+ βnK̂, (3.1.74)

αn :=
qn − (−q)−n

q + q−1
, βn :=

λν

q + q−1

(
(νn − (−q)−n)

(ν + q−1)
− (νn − qn)

(ν − q)

)
.

Let the matrix K̂ be a one-dimensional projector in V ⊗2, i.e., K̂i1i2
k1k2

= C̄i1i2Ck1k2 . In this
case, one can define the quantum trace (3.1.43) as follows (see Eq. (3.10.39) in Subsection 3.10
below):

K̂23X(R̂12) K̂23 = ν−1Tr2
(
X(R̂12)D2

)
K̂23, Di

j := ν C̄ikCjk,

and we deduce

K̂23 R̂12 K̂23 = ν−1K̂23, K̂23 K̂12 K̂23 = K̂23,

K̂23 1 K̂23 =
1
λ
(ν−1 + λ− ν) K̂23 = ν−1Tr(D)K̂23 ⇒ Tr(D) = (q−ν)(q−1+ν)

λ
.

Using these relations and (3.1.74), we obtain

Tr2(R̂
n
12D2) =

(
αn +

(q − ν)(q−1 + ν)

λ
αn−1 + νβn

)
I1, (3.1.75)

where αn and βn were introduced in (3.1.74). Thus, for the cubic characteristic equation (3.1.72)
all matrices Y (R̂n) (3.1.46) are also proportional to the identity matrix and for n = −1 we find
Q−1 = ν−2D.
Remark 3. Equations (3.1.70) and (3.1.75) are visualized in Figure 1A and give (for the cases
M = 2, 3) invariants of links and knots (3.1.57):

M = 2 : Q(R̂n
12) = Tr12(R̂

n
12D1D2) =

(
αn + αn−1Tr(D)

)
Tr(D),

M = 3 : Q(R̂n
12) = Tr12(R̂

n
12D1D2) =

(
αn +

(q−ν)(q−1+ν)
λ

αn−1 + νβn

)
(q−ν)(q−1+ν)

λ
,

which are presented in Figure 1B:
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Figure 1. Closure of the braid R̂n (the right picture B) gives toroidal knots for odd n and links for
even n.

The explicit examples of R-matrices subject to (3.1.68) and (3.1.72) with fixed values Tr(D)
and ν are given in Subsections 3.4, 3.7 and 3.10.1, 3.11.2, 3.11.3 below.
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3.2. Quantum matrix algebras

3.2.1. RTT algebras

We consider an algebra A∗ of functions on a quasitriangular Hopf algebra A and assume
that generators of A∗ are the identity element 1 and elements of N × N matrix T = ||T i

j ||
(i, j = 1, . . . , N), which define N -dimensional matrix representation of A. We will use the
following notation: f(a) = ⟨a, f⟩ for the functions f ∈ A∗ of elements a ∈ A. For the image
R12 = ⟨R, T1 ⊗ T2⟩ of the universal matrix R ∈ A ⊗ A we deduce ∀a ∈ A the identity (by
using (2.1.11) and (2.2.8))

R12 ⟨a, T1 T2⟩ = R12 ⟨a(1), T1⟩ ⟨a(2), T2⟩ = ⟨R∆(a), T1 ⊗ T2 ⟩ =

= ⟨∆op(a)R, T1 ⊗ T2 ⟩ = ⟨∆op(a), T1 ⊗ T2 ⟩R12 = ⟨a, T2 T1⟩R12.

Since the element a ∈ A is not fixed here, one can conclude (for the nondegenerate pairing)
that the elements T i

j satisfy the following quadratic relations (RTT relations):

Ri1i2
j1j2

T j1
k1
T j2
k2

= T i2
j2
T i1
j1
Rj1j2

k1k2
⇔ R12T1T2 = T2T1R12 ⇔ R̂ T1 T2 = T1 T2 R̂, (3.2.1)

where the indices 1 and 2 label the matrix spaces and the matrix R12 satisfies Yang–Baxter
equations (3.1.2), (3.1.5).

In the case of nontrivial R-matrices satisfying (3.1.2), the relations (3.2.1) define a noncom-
mutative quadratic algebra (as the algebra of functions with the generators {1, T i

j}), which
is called the RTT algebra. We stress that one can consider the RTT algebra (3.2.1) with
the Yang–Baxter R-matrix which is not in general the image of any universal R-matrix. The
Yang–Baxter equation for R is necessary to ensure that on monomials of the third degree in T
no relations additional to (3.2.1) arise. We shall assume that R12 is a skew-invertible matrix.
In this case, matrices D and Q (3.1.20) define 1-dimensional representations ρD(T i

j ) = Di
j and

ρQ(T
i
j ) = Qi

j for the RTT algebra (3.2.1) (see (3.1.36)). In some cases below, we also assume
that R12 is a lower triangular block matrix and its elements depend on the numerical parameter
q = exp(h), which is called the deformation parameter.

Suppose that the RTT algebra can be extended in such a way that it also contains all
elements (T−1)ij:

(T−1)ik T
k
j = T i

k (T
−1)kj = δij · 1. (3.2.2)

Then this algebra becomes a Hopf algebra with structure mappings

∆(T i
k) = T i

j ⊗ T j
k , ϵ(T i

j ) = δij, S(T i
j ) = (T−1)ij, (3.2.3)

which, as is readily verified, satisfy the standard axioms (see Subsections 2.2 and 2.3):

(id⊗∆)∆(T i
j ) = (∆⊗ id)∆(T i

j ),
(ϵ⊗ id)∆(T i

j ) = (id⊗ ϵ)∆(T i
j ) = T i

j ,
m(S ⊗ id)∆(T i

j ) = m(id⊗ S)∆(T i
j ) = ϵ(T i

j )1.
(3.2.4)

The antipode S is not an involution, since instead of S2 = id, we have an equation

S2(T i
j )D

j
l = Di

k T
k
l , (3.2.5)

which can be rewritten in the form

Dj
l T

l
kS(T

i
j ) = Di

k, (3.2.6)
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and the matrix D has been defined in (3.1.20). The relations (3.2.5) and (3.2.6) can be in-
terpreted as the rules of permutation of the operations of taking the inverse matrix and the
transposition (t):

Dt(T−1)t = (T t)−1Dt. (3.2.7)

To prove (3.2.5), we note that RTT relations (3.2.1) can be represented in the form

T−11 R̂12 T1 = T2 R̂12 T
−1
2 .

We multiply this relation by Ψ̂01 from the left and by Ψ̂23 from the right and take the traces
Tr12(. . . ). Then, taking into account Eqs. (3.1.18), we arrive at the relation

Tr1

(
Ψ̂01 T

−1
1 P13 T1

)
= Tr2

(
T2 P02 T

−1
2 Ψ̂23

)
.

Acting to this relation by Tr3(. . . ) and Tr0(. . . ), we obtain, respectively,

D0 = Tr2T2 P02 T
−1
2 D2, Tr1Q1 T

−1
1 P13 T1 = Q3. (3.2.8)

The first equation in (3.2.8) is identical to (3.2.5) and (3.2.6), while the second one gives

S(T j
i )T

k
l Q

l
j = Qk

i . (3.2.9)

As it was shown in Subsection 3.1.2, the matricesDi
j andQi

j (3.1.20), entering the conditions
(3.2.8), define the quantum traces [42, 67]. To explain the features of the quantum trace, we
consider the N2-dimensional adjoint A∗-comodule E (in what follows, we continue to use the
concise notation A∗ for the RTT algebra). We represent its basis elements in the form of an
N ×N matrix E = ||Ei

j||, i, j = 1, . . . , N . The adjoint coaction is

Ei
j → T i

i′
S(T j

′

j )⊗ Ei
′

j′
=: (TET−1)ij, (3.2.10)

where in the right-hand side of (3.2.10), we have introduced abbreviations that we shall use
in what follows (we omit the sign of the tensor product and should only remember that the
elements Ei

j commute with the elements T k
m). We stress that there is a different form of the

adjoint coaction:
Ei

j → Ei
′

j′
⊗ S(T i

i′
)T j

′

j =: (T−1ET )ij. (3.2.11)

One can check that in (3.2.10) and (3.2.11), the elements Ei
j form, respectively, left and right

comodules. The matrix ||T i
j || is interpreted now as the matrix of linear noncommutative adjoint

transformations. Both left and right comodules E are reducible, and irreducible subspaces in
E can be distinguished by means of the quantum traces. For the case (3.2.10), the quantum
trace has the form (cf. (3.1.39))

TrDE := Tr(DE) ≡
N∑

i,j=1

Di
jE

j
i (3.2.12)

and satisfies the following invariance property, which follows from Eqs. (3.2.5), (3.2.6) and the
first relation in (3.2.8):

TrD(TET
−1) = TrD(E). (3.2.13)

35



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

For the case (3.2.11), the definition of the quantum trace must be changed to

TrQE := Tr(QE) ≡
N∑

i,j=1

Qi
j E

j
i , TrQ(T

−1ET ) = TrQ(E), (3.2.14)

this follows from the second relation in (3.2.8). Thus, TrD(E) and TrQ(E) are, respectively,
the scalar parts of the comodules E (3.2.10) and (3.2.11), whereas the q-traceless part of
E generates (N2 − 1)-dimensional (reducible in the general case and irreducible in the case
of linear quantum groups) A∗-adjoint comodules. Note that, if the matrix D is invertible,
one can substitute Q → const · D−1 in (3.2.14), since Eq. (3.2.6) is rewritten in the form
(D−1)ki = S(T j

i )T
k
l (D−1)lj (cf. (3.2.9)). We also note that formulas (3.2.13) and (3.2.14) of the

adjoint invariancy of the quantum traces can be considered as universal analogs of (3.1.38).
An important consequence of the definition of the quantum trace (3.1.39), (3.2.13), (3.2.14)

and RTT relations (3.2.1) is the fact that

T−11 X(R̂)T1 = T2X(R̂)T−12 ⇒

T−11 TrD(2)(X(R̂))T1 = TrD(2)(X(R̂)), T2TrQ(1)(X(R̂))T−12 = TrQ(1)(X(R̂)),
(3.2.15)

where X(.) is an arbitrary function, while TrQ(1) and TrD(2) are the quantum traces over
the first and second space, respectively. Equation (3.2.15) indicates that the matrices Y2 =
TrD(3)(X(R̂2)) = TrQ(1)(X(R̂1)) (see (3.1.43)) must be proportional to the identity matrix if T i

j

are functions which define an irreducible representation of the quantum group A. In particular,
we must have

TrD(3)(R̂
k
23) = TrQ(1)(R̂

k
12) = ckI2, (3.2.16)

where ck are certain constants, e.g., c1 = 1 (3.1.22), (3.1.23), and Ik is the identity matrix in
the kth space. Note that a direct consequence of (3.1.28) is

TrD(2)(R̂
−1
12 ) = c−1 · I1 = D1Q1, (3.2.17)

and for c−1 ̸= 0 matrices D, Q are invertible. As we will see below, for the quantum groups
of the classical series the fact (3.2.16) does indeed hold. In what follows, we shall attempt to
restrict consideration to either left or right adjoint comodules with quantum traces (3.2.12) or
(3.2.14). The analogous relations for right (or left) comodules can be considered exactly in the
same way.

3.2.2. Faddeev–Reshetikhin–Takhtajan L± algebras

It can be seen from comparison of the relations (3.2.1) and (3.1.2), (3.1.5) that for the
generators T i

j it is possible to choose the following finite-dimensional matrix representations:

(T i
j )

k
l = Rik

jl , (T i
j )

k
l = (R−1)kilj . (3.2.18)

In these representations, the images of invariance relations (3.2.13), (3.2.14) coincide with
(3.1.38). Since the R-matrix satisfies the Yang–Baxter equation, there exist linear functionals
(L±)ij ∈ A that realize the homomorphisms (3.2.18), i.e., we have

⟨L+
2 , T1⟩ = R12 := R

(+)
12 , ⟨L−2 , T1⟩ = R−121 := R

(−)
12 . (3.2.19)
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For the case R12 = ⟨R, T1 ⊗ T2⟩ we immediately construct the mapping from A∗ to A (see, for
example, [67, 91])

⟨R, id⊗ T i
j ⟩ = (L+)ij, ⟨R, S(T i

j )⊗ id⟩ = (L−)ij,

⟨R, T i
j ⊗ id⟩ = S((L−)ij).

(3.2.20)

Equations (3.2.19) are generalized in the following form:

⟨L±f , T1 T2 . . . Tk⟩ = R
(±)
1f R

(±)
2f . . . R

(±)
kf .

The Yang–Baxter equation (3.1.5) can now be reproduced from RTT relations (3.2.1) by aver-
aging them with the L± operators.

From the requirement that elements (L±)ij ∈ A generate the algebra that is the dual to
the algebra A∗ (the definition of the dual algebra is given in Definition 6, Subsection 2.3), we
obtain the following commutation relations for the generators L(±):

R̂12 L
±
2 L

±
1 = L±2 L

±
1 R̂12, (3.2.21)

R̂12 L
+
2 L

−
1 = L−2 L

+
1 R̂12. (3.2.22)

The same equations are obtained from the universal Yang–Baxter equation (2.3.12) by the
averaging it with (T1 ⊗ T2 ⊗ id), (id⊗ T1 ⊗ T2), (T1 ⊗ id⊗ T2) and using (3.2.20). The algebra
(3.2.21), (3.2.22) is obviously a Hopf algebra with comultiplication, antipode, and coidentity:

△(L±)ij = (L±)ik ⊗ (L±)kj , S(L±) = (L±)−1, (3.2.23)

ϵ((L±)ij) = ⟨(L±)ij, 1⟩ = δij, (3.2.24)

where we have assumed that the matrices L± are invertible.
We call the Hopf algebras with generators {(L±)ij}, defining relations (3.2.21), (3.2.22) and

structure mappings (3.2.23), (3.2.24) as Faddeev–Reshetikhin–Takhtajan (FRT) algebras. As
was shown in [42], for the R-matrices of the quantum groups of the classical series An, Bn, Cn,
Dn (respectively, SLq(n + 1), SOq(2n + 1), Spq(2n), SOq(2n)), the relations (3.2.21), (3.2.22)
define quantum universal enveloping Lie algebras Uq(sl(n + 1)), Uq(so(2n + 1)), Uq(sp(2n)),
Uq(so(2n)) in which the elements (L±)ij play the role of the quantum analog of the Cartan–
Weyl generators. We will investigate the case of Uq(sl(n)) below in Subsection 3.4.

One can construct (see, e.g., [69]) the FRT algebra (3.2.21) – (3.2.24) as a Drinfeld double
of two dual Hopf subalgebras B+ and B− with generators (L+)ij and (L−)ij, defining relations
(3.2.21) and structure mappings (3.2.24), and (cf. (3.2.23))

△(L+)ij = (L+)ik ⊗ (L+)kj , △op (L
−)ij = (L−)kj ⊗ (L−)ik,

S(L+) = (L+)−1, S−1op (L
−) = (L−)−1.

(3.2.25)

In this case, the Hopf algebras B+ and B− are dual to each other with respect to the pairing [69]:

⟨⟨L−1 , L+
2 ⟩⟩ = R−112 . (3.2.26)

We denote by B−O the Hopf algebra with generators (L−)ij, and with comultiplication and
antipode (3.2.23) opposite to that of (3.2.25). The algebras B+ and B−O are antidual with

37



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

respect to the pairing (3.2.26). As it was shown in Subsection 2.4, from the antidual Hopf
algebras B+ and B−O it is possible to construct a Drinfeld quantum double B+ ⋊⋉ B−O, for
which the cross-commutation relations have the form (3.2.22). Thus, for the algebras B± in
(3.2.21) one can propose a special cross-product (quantum Drinfeld double), given by (3.2.22),
which is again a Hopf algebra (with structure mappings (3.2.23), (3.2.24)), and which was used
in [42] for the R-matrix formulation of quantum deformations of the universal enveloping Lie
algebras.

Note that the FRT algebra (3.2.21), (3.2.22) is a covariant algebra (comodule algebra) with
respect to the left and right cotransformations

(L±)ij → (T−1)kj ⊗ (L±)ik ≡ (L± T−1)ij,

(L±)ij → (L±)kj ⊗ (T−1)ik ≡ (T−1 L±)ij

(3.2.27)

(we forget here for a moment that the matrices T and L± could have the different triangular
properties). Thus, the matrices

Li
j = (S(L−)L+)ij, L̄i

j = (L+S(L−))ij (3.2.28)

realize, respectively, the left and right adjoint comodules (3.2.10) and (3.2.11). It is clear that
any powers LM and L̄M are also the left and right adjoint comodules (3.2.10) and (3.2.11) and
one can define the coinvariants

pM = TrD
(
LM
)
, pM = TrQ

(
L̄M
)
. (3.2.29)

Proposition 3.6 (see also [42]). The coinvariants (3.2.29) are central elements for the FRT
algebra (3.2.21), (3.2.22) and pM = pM for the realizations (3.2.28).

Proof. Indeed, one can obtain from (3.2.21), (3.2.22) the relations

LM
2 L±1 = L±1 R̂

±1 LM
1 R̂∓1, L∓2 L̄

M
1 = R̂±1 L̄M

2 R̂∓1 L∓2 , (3.2.30)

where R̂ := R̂12. Then, by taking the traces TrD(2) and TrQ(1), respectively, of the first and
second relations (3.2.30) and using (3.1.38), we prove [pM , L

±] = 0 = [p̄M , L
±], and therefore

we demonstrate the centrality of the elements (3.2.29) for the algebra (3.2.21), (3.2.22).
The equality pM = pM for the elements (3.2.29) (where L and L are composed from L±

(3.2.28)) is deduced as follows:

TrD
(
LM
)
= TrD(2)

(
S(L−2 ) L̄

M
2 L−2

)
= TrQ(1)TrD(2)

(
S(L−2 ) R̂ L̄

M
2 L−2

)
=

= TrQ(1)TrD(2)

(
L̄M
1 S(L−2 ) R̂ L

−
2

)
= TrQ(1)TrD(2)

(
L̄M
1 L−1 R̂ S(L

−
1 )
)
= TrQ

(
L̄M
)
,

where we have used Eqs. (3.1.22), (3.1.23), (3.2.21), (3.2.22), (3.2.30).

3.2.3. Reflection equation algebras

Note also that the generators Li
j and Li

j (3.2.28) satisfy the equations

R̂12 L1 R̂12 L1 = L1 R̂12 L1 R̂12, (3.2.31)

R̂12 L2 R̂12 L2 = L2 R̂12 L2 R̂12. (3.2.32)
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In Subsection 5.2 below, we will see that (3.2.31) and (3.2.32) are the special limits of the re-
flection equations with spectral parameters. In view of this, algebras with generators Li

j and Li

j

and defining relations (3.2.31), (3.2.32) are called the left and right reflection equation algebras,
since (3.2.31) and (3.2.32) are covariant under the left and right coactions (cotransformations)
(3.2.10), (3.2.11). A set (which is incomplete in general; see below) of central elements for
these algebras is represented by the same formulas as in (3.2.29). Indeed, one can deduce from
(3.2.31), (3.2.32) the relations

L1 R̂12 L
M
1 R̂−112 = R̂−112 L

M
1 R̂12 L1, L2 R̂12 L

M

2 R̂−112 = R̂−112 L
M

2 R̂12 L2. (3.2.33)

Then, taking the quantum traces TrD(2)(. . . ) and TrQ(1)(. . . ) of the first and second relations
and using (3.1.38), we prove the centrality of the elements (3.2.29) for the algebras (3.2.31),
(3.2.32)

[Li
j, TrD

(
LM
)
] = 0, [L̄i

j, TrQ
(
L̄M
)
] = 0. (3.2.34)

The algebra (3.2.31) (and similarly the second algebra (3.2.32)) decomposes into the direct
sum of two subalgebras, namely, into the Abelian algebra with generator p1 := Tr

D
(L) and the

algebra with (N2 − 1) traceless generators L̃i
j (we assume that Tr

D
(I) ̸= 0):

Li
j = p′1 δ

i
j + λ L̃i

j ⇒ L̃i
j =

1

λ

(
Li
j − p′1 δ

i
j

)
, p′1 :=

p1
Tr

D
(I)

, (3.2.35)

where the factor λ := q − q−1 is introduced to ensure that the operators L̃ have the correct
classical limit for q → 1. For the latest algebra, it is easy to obtain the commutation relations

R̂12 L̃1 R̂12 L̃1 − L̃1 R̂12 L̃1 R̂12 =
p′1
λ
(L̃1 R̂

2
12 − R̂2

12 L̃1), (3.2.36)

which after normalization L̃1 → −p′1 L̃1 (for p′1 ̸= 0) gives

R̂12 L̃1 R̂12 L̃1 − L̃1 R̂12 L̃1 R̂12 =
1

λ
(R̂2

12 L̃1 − L̃1 R̂
2
12). (3.2.37)

These relations can be regarded (for an arbitrary Yang–Baxter R-matrix) as a deformation of
the commutation relations for Lie algebras. For the Hecke-type R-matrix (3.1.68) the relations
(3.2.37) are equivalent to

R̂12 L̃1 R̂12 L̃1 − L̃1 R̂12 L̃1 R̂12 = R̂12 L̃1 − L̃1 R̂12, (3.2.38)

and corresponding algebra has a projector-type representation ϱ: (L̃i
j)

α
β = AiαBjβ, where nu-

merical rectangular matrices A and B are such that Trϱ(L̃i
j) = BjαA

iα = Qi
j (for any matrix Q

that satisfies Tr1Q1R̂12 = I2; see (3.1.22)).
The relations (3.2.31), (3.2.32), (3.2.37), and (3.2.38) are extremely important and arise, for

example, in the construction of a differential calculus on quantum groups as the commutation
relations for invariant vector fields (see [70–91] and references therein; see also Subsection 3.5.3
below).

Note that, instead of (3.2.20), one can use a somewhat different linear mapping from A∗
to A [51, 67, 91, 95, 96] (which is completely determined by (3.2.20)):

⟨σ(R)R, id⊗ a⟩ = α (a ∈ A∗, α ∈ A), (3.2.39)
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where σ(a⊗ b) = (b⊗ a), ∀a, b ∈ A. The explicit calculations give

⟨σ(R)R, id⊗ T i
j ⟩ = Li

j, (3.2.40)

⟨σ(R)R, id⊗ T1 T2⟩ = S(L−1 )L2 L
+
1 = L1 R̂1 L1 R̂

−1
1 ,

⟨σ(R)R, id⊗ T1 T2 T3⟩ = S(L−1 )S(L
−
2 )L3 L

+
2 L

+
1 = L1 L2 L3 ≡ L3 L2 L1,

. . . . . . . . . . . . ,
⟨σ(R)R, id⊗ T1 . . . Tk⟩ = L1 L2 . . . Lk ≡ Lk . . . L2 L1,

(3.2.41)

where
Lk+1 = R̂k Lk R̂

−1
k , Lk+1 = R̂−1k Lk R̂k, L1 = L1 = L1, (3.2.42)

and we have used Eqs. (2.3.9), (3.2.20), and (3.2.30). If we confine ourselves to the fairly
general case of quasitriangular Hopf algebras A, for which the mapping (3.2.39) is invertible
(such Hopf algebras are called factorizable [95]), one can map the identities for the RTT algebra
into the identities for the reflection equation algebra and vice versa. For this we need to use
relations (3.2.39) (for more details see [96]).

In view of (3.2.41), one can represent the reflection equation algebra (3.2.31) in the “univer-
sal” form

R32 (R31R13)R23 (R21R12) = (R21R12)R32 (R31R13)R23,

where the notation Rij has been introduced in (2.3.11). The pairing of this relation with
(id ⊗ T ⊗ T ) gives (3.2.31). The algebra (3.2.32) has an analogous representation if we start
with

⟨σ(R)R, T i
j ⊗ id⟩ = L

i

j. (3.2.43)

We note that the identity (which has been obtained in (3.2.41))

L1 L2 . . . Lk = Lk . . . L2 L1 (3.2.44)

is valid in more general case of any reflection equation algebra (3.2.31) (even not realized in the
form (3.2.28)). Below we also use the following identity (which can be proved by induction):

Lk+1 Lk+2 . . . Lk+n = U(k,n) L1 L2 . . . Ln U
−1
(k,n), (3.2.45)

where the operator U(k,n) is represented as a product of k or n factors (cf. (3.1.60)):

U(k,n) = R̂(k→n+k−1) . . . R̂(2→n+1) R̂(1→n) ≡ R̂(k←1) R̂(k+1←2) . . . R̂(n+k−1←n), (3.2.46)

R̂(k←m) := R̂k R̂k−1 · · · R̂m, R̂(m→k) := R̂m R̂m+1 · · · R̂k. (3.2.47)

3.2.4. Central and commuting subalgebras for reflection equation and RTT algebras

As we prove in the previous subsection, the elements (3.2.29) are central for the RLRL
(reflection equation) algebras (3.2.31), (3.2.32). Now the description of a more general set of
central elements for reflection equation algebra is in order.

Proposition 3.7. Let X(1→m) be an arbitrary element of the group algebra of the braid group
Bm generated by skew-invertible R-matrices R̂a (a = 1, . . . ,m − 1) with defining relations
(3.1.11), (3.1.10), (3.1.12). Then the elements

zm(X) = TrD(1...m)

(
X(1→m) L1 L2 . . . Lm

)
(m = 1, 2, . . . ) (3.2.48)

belong to the center Z(L) of the reflection equation algebra (3.2.31), where we recall R̂12 ≡ R̂1.
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Proof. First of all, we note that zm(X) (3.2.48) satisfies

zm(X) I1 = TrD(2...m+1)

(
X(2→m+1) L2 L3 . . . Lm+1

)
=

= TrD(2...m+1)

(
X(2→m+1) Lm+1 . . . L3 L2

)
,

(3.2.49)

where X(2→m+1) ∈ Bm+1 is obtained from X(1→m) by the shift Ra → Ra+1 (∀a). The first
equality follows from the chain of relations

TrD(2...m+1)

(
X(2→m+1) L2 . . . Lm+1

)
=

= TrD(2...m+1)

(
X(2→m+1) R̂1 · · · R̂m L1 . . . Lm R̂

−1
m · · · R̂−11

)
=

= TrD(2...m+1)

(
R̂1 · · · R̂m (X(1→m) L1 . . . Lm) R̂

−1
m · · · R̂−11

)
=

= TrD(2...m)

(
R̂1 · · · R̂m−1 [TrD(m)(X(1→m) L1 . . . Lm)] R̂

−1
m−1 · · · R̂−11

)
=

= · · · = I1TrD(1...m)

(
X(1→m) L1 L2 . . . Lm

)
,

where we have applied (3.1.38) many times. The second equality in (3.2.49) is proved in the
same way, or by using the generalization of the identity (3.2.44)

Lm Lm+1 . . . Lk = Lk . . . Lm+1 Lm (m < k).

Then the proof of the commutativity of the arbitrary generator of the reflection equation (RE)
algebra (3.2.31) with elements zm(X) is straightforward:

L1 zm(X) = TrD(2...m+1)

(
X(2→m+1) L1L2 L3 . . . Lm+1

)
=

= TrD(2...m+1)

(
X(2→m+1) Lm+1 . . . L2 L1

)
= zm(X)L1.

Remark 1. If, in the definition of central generators (3.2.48), we take the set of elements
X = Xα, α = 1, 2, . . . , which are all primitive idempotents for any finite-dimensional quotient
B′m of the group algebra of Bm, then the set of central elements zm(Xα) forms a basis in the
subspace of Z(L) generated by elements (3.2.48) for any matrices X ∈ B′m.

Remark 2. The “power sums” (3.2.29) belong to the space Z(L). Indeed, the substitution
of X = R̂(m−1←1) := R̂m−1 . . . R̂1 in (3.2.48) gives

zm(X) = TrD(1...m)

(
L1 . . . Lm−1 (R̂(m−1←1)L1R̂

−1
(m−1←1)) R̂(m−1←1)

)
=

= TrD(1...m)

(
L1 . . . Lm−2 (R̂(m−2←1)L1R̂

−1
(m−2←1))R̂m−1R̂(m−2←1)L1

)
= (3.2.50)

= TrD(1...m−1)

(
L1 . . . Lm−2 R̂(m−2←1)L

2
1

)
= · · · = TrD(1)(L

m
1 ) = pm,

where in the first line we used the cyclic property of the quantum trace (3.1.40) and in the
second line we applied (3.1.22).

Now we discuss the set of commuting elements in the RTT algebra (3.2.1). For this algebra
one can construct [94] the following elements:

Qk = TrY (1...k)(R̂(k−1←1) T1 T2 · · ·Tk) = TrY (1...k)(R̂(1→k−1) T1 T2 · · ·Tk), (3.2.51)

where
TrY (1...k)(X1...k) := Tr1 . . .Trk(Y1 . . . YkX1...k),
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and the matrices Y are such that Y1Y2R̂1 = R̂1Y1Y2 (e.g., Y = D or Y = Q, see (3.1.36)). The
second equality in (3.2.51) is obtained as follows:

TrY (1...k)(R̂1 · · · R̂k−1 T1 · · ·Tk) = TrY (1...k)(R̂k−1 T1 · · ·Tk R̂1 · · · R̂k−2) =

= TrY (1...k)(R̂1 · · · R̂k−3 R̂k−1 R̂k−2 T1 · · ·Tk ) =
= TrY (1...k)(R̂k−1 R̂k−2 T1 · · ·Tk R̂1 · · · R̂k−3) =

= · · · = TrY (1...k)(R̂k−1 R̂k−2 · · · R̂1 T1 · · ·Tk).

(3.2.52)

Note that by means of (3.2.39) we map the elements Qk (3.2.51) (for Y = D) to the central
elements pk (3.2.29) of the reflection equation algebra.

Proposition 3.8. The elements (3.2.51) generate a commutative subalgebra in the RTT al-
gebra (3.2.1).

Proof. Our proof of the commutativity of the elements Qk is based (see [97]) on the fact that
there exists the operator U(k,n) (3.2.46) which satisfies

U(k,n) R̂i U
−1
(k,n) = R̂i+k, i = 1, . . . , n− 1, U(k,n) R̂n+j U

−1
(k,n) = R̂j, j = 1, . . . , k − 1.

Using the operator U(k,n), we obtain the commutativity of Qk:

QkQn = TrY (1...k)(R̂(1→k−1) T1 · · ·Tk) TrY (1...n)(R̂(1→n−1) T1 · · ·Tn) =

= TrY (1...k+n)(R̂(1→k−1) R̂(k+1→k+n−1) T1 · · ·Tk+n) =

= TrY (1...k+n)(U(k,n) R̂(n+1→n+k−1) R̂(1→n−1) U
−1
(k,n) T1 · · ·Tk+n) =

= TrY (1...k+n)(R̂(1→n−1) R̂(n+1→n+k−1) U
−1
(k,n) T1 · · ·Tk+n U(k,n)) = QnQk.

(3.2.53)

In fact, applying the same method as in (3.2.53), one can prove [97] that the set of commuting
elements in the RTT algebra is wider then the set (3.2.51) and consists of all elements of the
form

Qk(X) = TrY (1...k)

(
X(R̂1, . . . R̂k−1)T1 T2 · · ·Tk

)
, (3.2.54)

where X(. . . ) run over basis elements of the braid group algebra with generators {R̂i} (i =
1, . . . , k − 1).

Our conjecture is that, for the Hecke-type R-matrices (3.1.68), the set of elements (3.2.51)

Qk := Qk(R̂1→k−1) ≡ Qk(R̂k−1←1)

is complete and all Qk(X) (for any braid X with k strands) are expressed as polynomials of
the commuting variables {Q1, . . . , Qk} and deformation parameter q. These polynomials, if
we add some extra constraints dictated by Markov (Reidemeister) moves for the braids X (see
Section 1 in [201]), could be related to link polynomials. On the other hand, Eq. (3.2.54) defines
q-analogs of characters for representations of the algebra A (3.2.21)–(3.2.24) and for the RTT
algebra A∗. These representations are characterized by special choices of the elements X(. . . )
being central idempotents in the Hecke algebra generated by matrices {R̂i} (i = 1, . . . , k − 1).
We will discuss these ideas in detail in Subsection 4.3.6 below.
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3.2.5. Heisenberg double for the RTT and reflection equation algebras

Since the RTT algebra A∗ (3.2.1), (3.2.3) and the quantum algebra A (3.2.21)–(3.2.24)
are Hopf dual to each other (with respect to the pairing (3.2.19)), one can define the left
and right Heisenberg doubles (HD) of these algebras (about HD see Subsection 2.4). Their
cross-multiplication rules (2.4.1), (2.4.2) are written for the left HD in the form

L+
1 T2 = T2R21L

+
1 , L−1 T2 = T2R

−1
12 L

−
1 , (3.2.55)

and for the right one we have

T1L
+
2 = L+

2 R12T1, T1L
−
2 = L−2 R

−1
21 T1. (3.2.56)

The corresponding cross products of the RTT algebra and the reflection equation algebras
(3.2.28), (3.2.31), (3.2.32) are described by the cross-multiplication rules

L1 T2 = T2R̂12L2R̂12, T1L2 = R̂12L1R̂12T1 (3.2.57)

in the case of the left (3.2.55) and right (3.2.56) HD, respectively. A remarkable property [98]
of these cross products is the existence of automorphisms of the HD algebras

{T, L} mn→ {T Ln
, L}, {T, L} mn→ {Ln T, L}, (3.2.58)

i.e., we have (the same is valid for the automorphisms mn)

R̂12 (L
n T )1 (L

n T )2 = (Ln T )1 (L
n T )2 R̂12, (Ln T )1 L2 = R̂12 L1 R̂12 (L

n T )1 ⇒ (3.2.59)

(Ln T )1 L
k
2 = (R̂12 L1 R̂12)

k (Ln T )1, ∀n, k ∈ Z⩾0.

One can check these properties by induction using Eqs. (3.2.1), (3.2.31), (3.2.32), and (3.2.57).
The maps mn,mn define discrete time evolutions on the RTT algebra. For the Hecke-type
R-matrices (3.1.68) the automorphisms (3.2.58) can be generalized in the form

{T, L} m′
n→

{
T

(
n∑

m=0

x̄mL
m

)
, L

}
, {T, L} m′

n→

{(
n∑

m=0

xmL
m

)
T, L

}
, (3.2.60)

for any parameters xm, x̄m ∈ C. This generalization follows from the fact that any symmetric
function of two variables L1 and R̂1L1R̂1 commutes with R̂1.

For the left and right Heisenberg doubles (3.2.55)–(3.2.57) one can define new reflection
equation algebras, generated by the elements of matrices L and L transformed by the adjoint
action of the RTT algebra

Y = T L
−1
T−1, Y = T−1 L−1 T,

for which we have [84] (cf. (3.2.31), (3.2.32), (3.2.57)):

R̂12 Y 1 R̂12 Y 1 = Y 1 R̂12 Y 1 R̂12, R̂12 Y2 R̂12 Y2 = Y2 R̂12 Y2 R̂12,

T1 Y 2 = R̂12 Y 1 R̂12 T1, Y1 T2 = T2 R̂12 Y2 R̂12.

The elements of these matrices satisfy: [Y 2, L1] = 0 = [Y1, L2]. In the differential calculus on
quantum groups, matrices L and M := Y −1 are interpreted (see [84] and [129]) as invariant
vector fields on the RTT algebras (see Proposition 3.9 below).
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The cross-multiplication rules (3.2.57) for the HD of the RTT and reflection equation alge-
bras were extensively exploited in the context of the R-matrix approach to the differential calcu-
lus on quantum groups [71–91] (see also Subsection 3.5.3 below). Another cross-multiplications
(of the RTT and reflection equation matrix algebras), which are characterized by the relations

L1 T2 = T2R̂12L2R̂
−1
12 , T1L2 = R̂12L1R̂

−1
12 T1, (3.2.61)

were also considered in various investigations [84, 87, 88] of a noncommutative differential
geometry on quantum groups.

Proposition 3.9. 1. For cross-multiplication of the RTT and reflection equation algebras
(REA) with generators T i

j and Li
j subject to defining relations (see (3.2.1), (3.2.31), and

(3.2.61))

R̂12 T1T2 = T1T2 R̂12, R̂12L1 R̂12L1 = L1 R̂12L1 R̂12, T1L2 = R̂12L1R̂
−1
12 T1, (3.2.62)

we have the following equations [88]:

R̂12 (LT )1 (LT )2 = (LT )1 (LT )2 R̂12 (3.2.63)

(we, however, stress that it is impossible to define the whole discrete evolution (3.2.59) for the
double algebra (3.2.62)).
2. Let Li

j, L̃i
j be generators of the REA (3.2.31) and L̃i

j subject to the following cross-commutation
relations [88] with generators of (3.2.62)

T1L̃2 = R̂12L̃1R̂
−1
12 T1, R̂−112 L̃1 R̂12L1 = L1 R̂

−1
12 L̃1 R̂12. (3.2.64)

Then we have [52, 88]

R̂12 (L̃ T )1 L2 = R̂12L1 R̂
−1
12 (L̃ T )1, R̂12 (L̃ T )1 (L̃ T )2 = (L̃ T )1 (L̃ T )2 R̂12,

R̂12(L L̃)1 R̂12(L L̃)1 = (L L̃)1 R̂12(L L̃)1 R̂12.
(3.2.65)

3.2.6. Quantum matrix algebras in general setting

Now we present a definition of a more general quantum matrix algebra M(R̂, F̂ ) generated
by (N ×N) matrix components M i

j subject to the relation

R̂12M1 F̂12M1 F̂12 =M1 F̂12M1 F̂12 R̂12, (3.2.66)

where the pair of Yang–Baxter operators {R̂, F̂} ∈ End(V ⊗2N ) satisfies the conditions

R̂12 F̂23 F̂12 = F̂23 F̂12 R̂23, R̂23 F̂12 F̂23 = F̂12 F̂23 R̂12. (3.2.67)

The algebra M(R̂, F̂ ) is a quantum matrix algebra M(σ(R)F), since we can reproduce (3.2.66)
(for details see [99]) by means of identifications

M i
j := ⟨σ(R)F , id⊗ T i

j ⟩, F̂12 := P12⟨F , T1 ⊗ T2⟩,

where F is a twisting matrix (2.5.4), (2.5.7) and P12 is the permutation matrix (3.1.8). Note
that Eqs. (3.2.67) are the images of Eqs. (2.5.8). It means that, for the pair the Yang–Baxter
operators {R̂, F̂} (3.2.67), the matrix

R̂F
21 = F̂12R̂12F̂

−1
12 = ⟨RF , T1 ⊗ T2⟩P12 (3.2.68)
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is the Yang–Baxter matrix as well. Specializing to F̂ = P or F̂ = R̂, one reproduces from
(3.2.66) the RTT or reflection equation algebras, respectively. The algebras M(R̂, F̂ ) (3.2.66)
and their modifications were discussed in [97, 99, 100, 130].

At the end of this subsection, we introduce a notion of a coideal subalgebra of the quantum
algebra (3.2.21), (3.2.22). Let R12 be a Yang–Baxter R-matrix and there are numerical matrices
Gi

j, G
i

j which satisfy the conditions

R12G2R
t2
12G1 = G1R

t1
21G2R

t1t2
21 ,

R12G1R
t1
12G2 = G2R

t2
21G1R

t1t2
21 .

(3.2.69)

Using relations (3.2.21), (3.2.22) and conditions (3.2.69), it can be shown directly that the
elements of quantum matrices

K = L−G (L+)t, K = S(L+)G (S(L−))t

obey the following commutation relations:

R12K2R
t2
12K1 = K1R

t1
21K2R

t1t2
21 ,

R12K1R
t1
12K2 = K2R

t2
21K1R

t1t2
21 ,

(3.2.70)

which we consider as the defining relations for a new type of quantum matrix algebras K(R̂, G)
and K(R̂, G). The defining relations (3.2.70) are covariant8 under the left and right A-coactions:

Ki
j −→ (L−)ik (L

+)jn ⊗Kk
n, K

i

j −→ K
k

n ⊗ S(L+)ik S(L
−)jn. (3.2.71)

Thus, the unital algebras K and K (with generators Ki
j and Ki

j, respectively) are left and right
A-comodule algebras and these algebras are called coideal subalgebras of A.

One can consider two more such algebras with generators K ′ = L+G′(L−)t and K
′
=

S(L−)G
′
S(L+)t which obey the following defining relations:

R−112 K
′
1 (R

−1
12 )

t1 K ′2 = K ′2 (R
−1
21 )

t2 K ′1 (R
−1
21 )

t1t2 ,

R−112 K
′
2 (R

−1
12 )

t2 K
′
1 = K

′
1 (R

−1
21 )

t1 K
′
2 (R

−1
21 )

t1t2 .

Note that these relations can be obtained from (3.2.70) by the substitution R12 → R−112 .
For the special case of GLq(N) R-matrices (see Subsection 3.4) the algebras (3.2.70) have

been considered in [101, 106] (see also references therein). In this case, the coideal sub-
algebras coincide with quantized enveloping algebras introduced earlier by A. Gavrilik and
A. Klimyk [105].

Representation theory for compact quantum groups has been considered in [116]. In [117],
a universal solution to the reflection equation has been introduced and general problems of
the representation theory for the reflection equation algebra were discussed (representations
and characters for some special reflection equation algebras were considered in [24, 118, 119]).
A classification of commutative solutions of the graded reflection equations associated with the
vector representations of the quantum supergroup of GL-type was given in [120].

8Here the notion covariant is equivalent to the statement that (3.2.71) are homomorphisms for the algebras
defined by (3.2.70).
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3.3. The semiclassical limit (Sklyanin brackets and Lie bialgebras)

We assume that the R-matrix introduced in (3.2.1) has the following expansion in the limit
h→ 0 (q = eh → 1):

R12 = 1 + h r12 +O(h2). (3.3.1)

Here 1 = I ⊗ I denotes the (N2 × N2) unit matrix. One says that such R-matrices have
semiclassical behavior, and r12 is called a classical r-matrix. It is readily found from the
quantum Yang–Baxter equation (3.1.11) that r12 satisfies the so-called classical Yang–Baxter
equation

[r12, r13 + r23] + [r13, r23] = 0. (3.3.2)

Substituting the expansion (3.3.1) in the RTT relations (3.2.1), we obtain

[T1, T2] = h[T1T2, r12] +O(h2). (3.3.3)

This equation demonstrates the fact that the RTT relations (3.2.1) can be interpreted as a
quantization (deformation) of the classical Poisson bracket (Sklyanin bracket [43]):

{T1, T2} = [T1T2, r12] (3.3.4)

(here the elements T i
j are commutative coordinates of some Poisson manifold). The classi-

cal Yang–Baxter equation (3.3.2) guarantees fulfillment of the Jacobi identity for the brack-
et (3.3.4). From the requirement of antisymmetry of the Poisson bracket (3.3.4), we obtain

{T1, T2} = [T1T2,−r21]. (3.3.5)

Thus, the classical r-matrix r(−)12 = −r21 corresponding to the representation R(−) (3.2.18) must
also be a solution of Eq. (3.3.2), as is readily shown by making the substitution 3 ↔ 1 in (3.3.2).
On the other hand, comparing (3.3.4) and (3.3.5), we obtain

T1T2(r12 + r21) = (r12 + r21)T1T2. (3.3.6)

Thus,

t12 =
1

2
(r12 + r21) (3.3.7)

is an invariant with respect to the adjoint action of the matrix T1T2 (it is an ad-invariant). We
introduce the new classical r-matrix

r̃12 =
1

2
(r12 − r21). (3.3.8)

Then the Sklyanin bracket can be represented in the manifestly antisymmetric form

{T1, T2} = [T1T2, r̃12], (3.3.9)

and the matrix r̃ (3.3.8) satisfies the modified classical Yang–Baxter equation

[r̃12, r̃13 + r̃23] + [r̃13, r̃23] =
1

4
[r23 + r32, r13 + r31] = [t23, t13]. (3.3.10)

Note that the reflection equation algebras (3.2.31), (3.2.32) can also be regarded as the
result of quantization of a certain Poisson structure. For example, for these algebras, after
substitution of (3.3.1), we have [121] (see also [88])

{L2, L1} = [L1, [L2, r̃12]] + L1t12L2 − L2t12L1,
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{L2, L1} = −[L1, [L2, r̃12]] + L1t12L2 − L2t12L1,

where again we must assume that [L1L2, t12] = 0 = [L1L2, t12] (cf. (3.3.6)). On the other hand,
the relations (3.2.37) in the zeroth order in h give the equations

[L̃1, L̃2] = [t12, L̃1],
(
[t12, L̃1 + L̃2] = 0

)
,

and this enables us to regard (3.2.37) as a deformation of the defining relations of a Lie algebra.
Now we consider the universal enveloping U(g) of a Lie algebra g with defining relations

(2.2.4) as a bialgebra (2.2.5) and assume that the cocommutative comultiplication ∆ (2.2.5) is
quantized ∆ → ∆h in such a way that ∆h is noncocommutative. The semiclassical expansion
of ∆h is9

∆h(Jα) = J1
α + J2

α + hµβγ
α J1

β J
2
γ + h2

(
µβ1β2,γ
α J1

β1
J1
β2
J2
γ + µβ,γ1γ2

α J1
β J

2
γ1
J2
γ2

)
+ h3 . . . (3.3.11)

where J1
α = Jα ⊗ 1, J2

α = 1 ⊗ Jα, the term of zeroth order in h in (3.3.11) is the classical
comultiplication (2.2.5) and µβγ

α , µ
β1β2,γ
α , . . . are some constants. The comultiplication map

(3.3.11) (as well as the opposite comultiplication ∆op
h ; see (2.2.2)) should be a homomorphic

map for the Lie algebra (2.2.4):

[∆h(Jα), ∆h(Jβ)] = tγαβ ∆h(Jγ), [∆op
h (Jα), ∆

op
h (Jβ)] = tγαβ ∆

op
h (Jγ). (3.3.12)

Then the subtraction of the second relation of (3.3.12) from the first one gives the following
equation:

[∆−h (Jα), ∆
+
h (Jβ)] + [∆+

h (Jα), ∆
−
h (Jβ)] = tγαβ ∆

−
h (Jγ)

(here we define ∆−h := ∆h −∆op
h and ∆+

h := 1
2
(∆h +∆op

h )) which is rewritten (in the first order
of h) as

[δ(Jα), J
1
β + J2

β ] + [J1
α + J2

α, δ(Jβ)] = tγαβ δ(Jγ), (3.3.13)

where the map δ: g → g ∧ g is

δ(Jα) = δβγα Jβ ⊗ Jγ, δβγα := µβγ
α − µγβ

α . (3.3.14)

Equation (3.3.13) is nothing but the cocycle condition for δβγα :(
δρµα tκβρ − δρκα tµβρ

)
−
(
δρµβ tκαρ − δρκβ tµαρ

)
= tγαβ δ

µκ
γ .

On the other hand, the structure constants (∆−)ijk = ∆ij
k −∆ji

k satisfy the co-Jacobi identity

(∆−)jki (∆−)nmj + (∆−)jni (∆−)mk
j + (∆−)jmi (∆−)knj = 0,

as it is evident from the coassociativity condition (2.1.8). This identity for the comultiplication
(3.3.11) in the order h2 reduces to the co-Jacoby identity for the structure constants δβγα (3.3.14):

δβγα δρξβ + (cycle γ, ρ, ξ) = 0. (3.3.15)

Thus, we have arrived to the following definition [10].

9The terms hϕβγα J1
βJ

1
γ and hϕβγα J2

βJ
2
γ are gauged out by triviality transformation from this expansion (see,

e.g., [68]).
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Definition 9. The vector space g with the basis {Jα} equipped with a linear map δ: g → g ∧ g
(3.3.14) satisfying the co-Jacobi identity (3.3.15) is called a Lie coalgebra. A Lie bialgebra is
a Lie algebra (2.2.4) which is at the same time a Lie coalgebra with the map δ: g → g ∧ g
(3.3.14), (3.3.15) satisfying the cocycle condition (3.3.13).

Let g be a Lie bialgebra. If there exists an element r ∈ g ⊗ g such that the map δ has the
form

δ(J) = [J ⊗ 1 + 1⊗ J, r] ∀J ∈ g,

then the Lie bialgebra g is called a coboundary or r-matrix bialgebra.

3.4. The quantum groups GLq(N), SLq(N) and their quantum algebras and hyperplanes

3.4.1. GLq(N) quantum hyperplanes and R-matrices

In this subsection, we discuss the simplest nontrivial quantum groups, which are the quan-
tizations (deformations) of the linear Lie groups GL(N) and SL(N). We begin with the defini-
tion of a quantum hyperplane. We recall that the Lie group GL(N) is the set of nondegenerate
N × N matrices T i

j that act on an N -dimensional vector space, whose coordinates we denote
by xi (i = 1, . . . N). Thus, we have the transformations

xi → x̃i = T i
jx

j, (3.4.1)

which we can regard from a different point of view. Namely, let {T i
j} and {xi} (i, j = 1, . . . , N)

be the generators of two Abelian (commuting) algebras

[xi, xj] = [T i
j , T

k
l ] = [T i

j , x
k] = 0. (3.4.2)

Then the transformation (3.4.1) can be regarded as an action (more precisely, it is a coaction)
of the algebra {T} on the algebra {x}:

xi → δT (x
i) ≡ x̃i = T i

j ⊗ xj (3.4.3)

that preserves the Abelian structure of the latter, i.e., we have [x̃i, x̃j] = 0. We introduce a
deformed N -dimensional “vector space” whose coordinates {xi} commute as follows:

xixj = qxjxi, i < j, (3.4.4)

where q is some number (the deformation parameter). In other words, we now have a noncom-
mutative associative algebra with N generators {xi}. In accordance with (3.4.4), any element
of this algebra, which is a monomial of arbitrary degree

xi1xi2 · · · xiK , (3.4.5)

can be uniquely ordered lexicographically, i.e., in such a way that i1 ⩽ i2 ⩽ . . . ⩽ iK . Of such
algebras, one says that they possess the Poincare–Birkhoff–Witt (PBW) property. An algebra
with N generators satisfying (3.4.4) is called an N -dimensional quantum hyperplane [73, 74].
The relations (3.4.4) can be written in the matrix form

Ri1i2
j1j2

xj1xj2 = qxi2xi1 ⇔ R12x1x2 = qx2x1 ⇔ R̂ x1 x2 = q x1 x2. (3.4.6)
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Here the indices 1 and 2 label the vector spaces on which the R-matrix, realized in the tensor
square Mat(N) ⊗ Mat(N) =: Mat(N)1 Mat(N)2, acts. Thus, the indices 1 and 2 of the R-
matrix show how the R-matrix acts on the direct product of the first and second vector spaces.
We emphasize that the R-matrix depends on the parameter q and, generally speaking, its
explicit form is recovered nonuniquely from the relations (3.4.4). However, if we require that
the R-matrix (3.4.6) be constructed by means of two GL(N)-invariant tensors 112 and P12,
i.e.,10

Ri1i2
j1j2

= (δi1j1δ
i2
j2
) · ai1i2 + (δi1j2δ

i2
j1
) · bi1i2 , (3.4.7)

and also satisfy the Yang–Baxter equation (3.1.2) and have lower-triangular block form (Ri1i2
j1j2

=
0, i1 < j1), then we obtain the explicit expression [42, 113]

R12 = q
∑
i

eii ⊗ eii +
∑
i ̸=j

eii ⊗ ejj + λ
∑
i>j

eij ⊗ eji, (3.4.8)

R̂12 = P12R12 = q
∑
i

eii ⊗ eii +
∑
i ̸=j

eij ⊗ eji + λ
∑
i>j

ejj ⊗ eii, (3.4.9)

where eij|i,j=1,...,N
are matrix units: (eij)kl = δikδjl , P12 :=

∑
k,ℓ ekℓ⊗eℓk is a permutation matrix

and here and below we often use notation λ := q − q−1 . Equation (3.4.8) is represented in
the components in the form

Ri1i2
j1j2

= δi1j1δ
i2
j2
(1 + (q − 1)δi1i2) + λδi1j2δ

i2
j1
Θi1i2 ,

R̂i1i2
j1j2

= δi1j2δ
i2
j1
qδi1i2 + λδi1j1δ

i2
j2
Θi2i1 ,

Θij = {1 if i > j, 0 if i ⩽ j}.

(3.4.10)

It can be verified (by using, e.g., the diagrammatic technique of Subsection 3.6) that this
R-matrix satisfies the Hecke relation (3.1.68) (a special case of (3.1.64)):

R12 − λP12 −R−121 = 0 ⇒ R̂− λI − R̂−1 = 0 ⇔ R̂2 = λR̂ + I = 0, (3.4.11)

where I i1i2j1j2
= δi1j1δ

i2
j2

is a unit operator. The following helpful relations also follow from the
explicit form (3.4.8), (3.4.10) for the GLq(N) R-matrix:

R12[
1

q
] = R−112 [q] ⇔ R̂12[

1

q
] = R̂−121 [q], (3.4.12)

Rt1t2
12 = R21, Rt1

12R12 = R12R
t1
12. (3.4.13)

The R-matrix (3.4.7) (where without loss of generality one can fix bii = 0) is skew-invertible
iff aij ̸= 0 (∀i, j) and det(||bij + aiiδij||) ̸= 0. Then the skew-inverse matrix Ψ12 (3.1.18) is
represented in the form

Ψ̂i1i2
j1j2

=
1

a
i2i1

δi1j2δ
i2
j1
− di2i1 δ

i1
j1
δi2j2 , (3.4.14)

where coefficients dij are defined by the matrix equation

d = A−1B (A+B)−1, Aij := aiiδij, B = ||bij||.

10The form of R-matrix (3.4.7) proves to be very fruitful for the construction of solutions for dynamical
Yang–Baxter equations; see [109, 110] and references therein (see also Subsection 3.8 below).
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For the given R-matrix (3.4.10), the matrix Ψ̂12 (3.4.14) is calculated in the form [68]

Ψ̂i1i2
j1j2

= q−δi1i2δi1j2δ
i2
j1
− λΘi2i1q

2(i1−i2)δi1j1δ
i2
j2
,

Ψ̂12 = q−1
∑

i eii ⊗ eii +
∑

i ̸=j eij ⊗ eji − λ
∑

i<j q
2(i−j)eii ⊗ ejj.

(3.4.15)

Then the quantum trace matrices D, Q (3.1.20) and the related quantum traces (3.2.12) are

D1 ≡ Tr2

(
Ψ̂12

)
= diag{q−2N+1, q−2N+3, . . . , q−1}, Di

j = q2(i−N)−1δij,

Q2 ≡ Tr1

(
Ψ̂12

)
= diag{q−1, . . . , q−2N+3, q−2N+1}, Qi

j = q1−2iδij,
(3.4.16)

TrDA := Tr(DA) ≡
N∑
i=1

q2(i−N)−1Ai
i, TrQA := Tr(QA) ≡

N∑
i=1

q1−2iAi
i.

We also note the useful relations (cf. (3.1.22), (3.2.17))

TrD(I) = Tr(D) = q−N [N ]q = Tr(Q) = TrQ(I),

qN TrD(3)R̂
±1
23 = q±N · I(2) = qN TrQ(1)R̂

±1,
(3.4.17)

where [N ]q =
qN−q−N

q−q−1 . One can readily prove the cyclic property of the quantum traces

TrD(12)(R̂E12) = Tr12(D1D2R̂E12) = Tr12(R̂D1D2E12) = TrD(12)(E12R̂), (3.4.18)

where E12 ∈ Mat(N)⊗Mat(N) is a matrix with noncommutative entries. In (3.4.18), we have
used the fact that the matrix D, by definition, obeys Eq. [R̂, D1D2] = 0 (3.1.36) (note that for
R-matrices of the type (3.4.7) all diagonal matrices D satisfy this equation). The same cyclic
property TrQ(12)(R̂E12) = TrQ(12)(E12R̂) is also valid for the traces TrQ.

In semiclassical limit (3.3.1), relation (3.4.11) can be written in the form

r12 + r21 = 2P12. (3.4.19)

Thus, for the Lie–Poisson structure on the group GL(N) the transposition matrix P12 is taken
as the ad-invariant tensor t12. For the r̃-matrix (3.3.8) determining the Sklyanin bracket, we
obtain from (3.4.10) the expression

r̃12 =
∑
i>j

[eij ⊗ eji − eji ⊗ eij] ∈ gl(N) ∧ gl(N). (3.4.20)

In accordance with (3.1.68), (3.1.66), and (3.1.67), for q2 ̸= −1 the matrix R̂ has the spectral
decomposition

R̂ = qP+ − q−1P−, (3.4.21)
with projectors

P± = (q + q−1)−1{q∓11± R̂}, (3.4.22)
which are the quantum analogs of the symmetrizer (P+) and antisymmetrizer (P−), as can
be seen by setting q = 1 in (3.4.22). Using the projector P−, we can represent the definition
(3.4.4) of the quantum hyperplane in the form

P− x1 x2 = 0. (3.4.23)

Note that the relations

P+ x1 x2 = 0 ⇔ (xi)2 = 0, xixj = −q−1xjxi (i < j) (3.4.24)

define a fermionic N -dimensional quantum hyperplane that is a deformation of the algebra of
N fermions: xixj = −xjxi.
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3.4.2. Quantum groups Fun(GLq(N)), Fun(SLq(N)) and q-determinants

A natural question now is about the properties of the N × N matrix elements T i
j that

determine the transformations (3.4.3) of the quantum bosonic (3.4.4), (3.4.23) and fermionic
(3.4.24) hyperplanes. These properties should be such that the transformed coordinates x̃i form
the same quantum algebras (q-hyperplanes) (3.4.23) and (3.4.24). It is readily seen that the
elements of the N ×N matrix T i

j must satisfy the both conditions

P+ T1 T2 P− = 0, P− T1 T2 P+ = 0. (3.4.25)

Indeed, we have for bosonic x− and fermionic x+ hyperplanes (we omit the symbol ⊗ in (3.4.3))

0 = P± x̃±1 x̃
±
2 = P± T1 T2 x±1 x

±
2 =

= P± T1 T2 (P+ + P−)x±1 x
±
2 = P± T1 T2 P∓ x±1 x

±
2 ,

and we deduce (3.4.25) (otherwise new quadratic relations on the coordinates x± should be
imposed). Equations (3.4.25) are equivalent to the RTT relations (3.2.1) for the elements of
the N ×N quantum matrix ||T i

j ||:

R̂ T1 T2 − T1 T2 R̂ = (q + q−1)
(
P+ T1 T2 P− − P− T1 T2 P+

)
= 0. (3.4.26)

We note that one can define the quantum matrix algebra when only one of two relations in
(3.4.25) is fulfilled. In this case, the quantum matrix algebras, generated by T i

j , are called
half-quantum or Manin matrix algebras [107, 108].

For the R-matrix (3.4.10) the RTT relations (3.2.1) and (3.4.26) can be written in the
component form

T i
k T

j
k = q T j

k T
i
k, T k

i T
k
j = q T k

j T
k
i , (i < j, k = 1, . . . , N),

[T i1
j1
, T i2

j2
] = (q − q−1)T i1

j2
T i2
j1
, [T i1

j2
, T i2

j1
] = 0, (i1 < i2, j1 < j2).

(3.4.27)

The RTT algebra with defining relations (3.4.27) is a bialgebra with the structure mappings
∆, ϵ presented in (3.2.3). The simplest special case (N = 2) of this algebra is defined by

T 1
k T

2
k = q T 2

k T
1
k, T k

1 T
k
2 = q T k

2 T
k
1, (k = 1, 2),

[T 1
1, T

2
2] = (q − q−1)T 1

2 T
2
1, [T 1

2, T
2
1] = 0.

(3.4.28)

One can directly check that detq(T ) := T 1
1 T

2
2−qT 1

2 T
2
1 ≡ T 2

2 T
1
1−q−1T 1

2 T
2
1 is a central element

for the algebra (3.4.28). This element is called quantum determinant for (2×2) quantum matrix
||T i

j ||, since for q = 1 the element detq(T ) coincides with the usual determinant. Let detq(T )
be invertible element. Then the inverse matrix T−1 is

T−1 =

(
T 2

2 −q−1T 1
2

−qT 2
1 T 1

1

)
1

detq(T )
⇒ detq−1(T−1) = det−1q (T ).

Now we generalize the definition of the quantum determinant for the case of (N ×N) quan-
tum matrices ||T i

j ||. We introduce the quantum determinant detq(T ), which is a deformation of
the ordinary determinant and also is a central element for the RTT algebra (3.4.27). For this
aim we introduce the q-deformed antisymmetric tensors Ej1j2...jN and E j1j2...jN (∀jk = 1, . . . , N)
as follows:

N∑
j1...jN=1

Ej1j2...jN E j1j2...jN = E⟨12...NE12...N⟩ = 1,
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E⟨12...NP+
k,k+1 = E⟨12...N(R̂k,k+1 + q−1) = 0, 1 ⩽ k < N,

P+
k,k+1E12...N⟩ = (R̂k,k+1 + q−1)E12...N⟩ = 0, 1 ⩽ k < N,

(3.4.29)

where we have used concise matrix notations. Namely, we denoted by 12 . . . N⟩ and ⟨12 . . . N
the sets of incoming and outgoing indices, where 1, 2, . . . N are numbers of the N -dimensional
vector spaces VN , and P+

k,k+1 = I⊗(k−1) ⊗P+ ⊗ I⊗(N−k−1) are the symmetrizers (3.4.21) acting
in the vector spaces VN labeled by numbers k and k + 1. Note that, in view of the RTT
relations (3.2.1), (3.4.27), the tensors E⟨12...N(T1T2 · · ·TN) and (T1T2 · · ·TN)E12...N⟩ possess the
same symmetry11 (3.4.29) as the tensors E⟨12...N and E12...N⟩, respectively. Supposing that the
E-tensors are unique (up to a normalization), one can write

detq(T ) Ej1j2...jN = Ei1i2...iNT
i1
j1
· T i2

j2
· · ·T iN

jN
,

E i1i2...iN detq(T ) = T i1
j1
· T i2

j2
· · ·T iN

jN
E j1j2...jN ,

(3.4.30)

or in concise matrix notations, we have

detq(T ) E⟨12...N = E⟨12...N T1 · T2 · · ·TN , E12...N⟩ detq(T ) = T1 · T2 · · ·TN E12...N⟩, (3.4.31)

where Tm := I⊗(m−1) ⊗ T ⊗ I⊗(N−m). The scalar coefficient detq(T ):

detq(T ) = E⟨12...N (T1T2 · · ·TN) E12...N⟩ = Tr12...N(A1→N T1T2 · · ·TN), (3.4.32)

is called the quantum determinant for the (N × N) quantum matrix ||T i
j ||. In (3.4.32), we

introduced the rank-1 projector

A1→N := E12...N⟩E⟨12...N , A1→N A1→N = A1→N ,

A1→N P+
k,k+1 = P+

k,k+1A1→N = 0, 1 ⩽ k < N,
(3.4.33)

which acts as a q-antisymmetrizer in the tensor product V ⊗NN of N copies of vector spaces VN .
It is worth noting that the q-antisymmetrizers A1→2 := P−1,2 (3.4.22) and A1→N are two special
representatives of the set of antisymmetrizers {A1→m} (m = 2, 3, . . . , N) which act in the tensor
product of m vector spaces VN and satisfy

A1→mA1→m = A1→m,

A1→m P+
k,k+1 = P+

k,k+1A1→m = 0, 1 ⩽ k < m.
(3.4.34)

All of them can be explicitly constructed in terms of the R-matrices (3.4.8), (3.4.10) (see,
e.g., [111, 113] and Subsection 3.5 below).

The fact that detq(T ) is indeed a central element in the RTT algebra (3.4.27) can be
obtained as follows:

E⟨12...N detq(T )TN+1 = E⟨12...N T1 T2 · · ·TN TN+1 = (3.4.35)

= E⟨12...N (R1,N+1 · · ·RN,N+1)
−1TN+1 T1 T2 · · ·TN (R1,N+1 · · ·RN,N+1) =

= q−1 TN+1E⟨12...N T1 T2 · · ·TN (R1,N+1 · · ·RN,N+1) = TN+1 detq(T ) E⟨12...N ,

11It is not true for the half-matrix algebras (see definition after Eq. (3.4.26)).
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where we have used the definition (3.4.31), the RTT relations presented in the form TmTm+1 =
R−1m,m+1Tm+1TmRm,m+1, and the equations

qIN+1 E⟨12...N = E⟨12...N R1,N+1 ·R2,N+1 · · ·RN,N+1

q−1IN+1 E⟨12...N = E⟨12...N R−1N+1,1 ·R
−1
N+1,2 · · ·R

−1
N+1,N .

(3.4.36)

In fact, we have only used the first equation in (3.4.36). The second one is needed if we apply
the RTT relations in different manner: TmTm+1 = Rm+1,mTm+1TmR

−1
m+1,m.

The relations (3.4.36) are deduced from the expressions (3.4.32) for quantum determinants.
Indeed, we have

detq(R
(±)
N+1) = E⟨12...N R(±)

1,N+1 · · ·R
(±)
N,N+1E

12...N⟩ = q±1 IN+1, (3.4.37)

where matrices R(±) are representations for elements T i
j which were defined in (3.2.18), (3.2.19).

The last equality in (3.4.37) follows from the fact that R(+) and R(−) are, respectively, upper
and lower triangular block matrices with diagonal blocks of the form

(R(±)i
i)
k
l = δkl q

±δik .

Assume that the quantum determinant (3.4.32) is invertible central element. Consider an
extension of the RTT algebra (3.4.27) by the central element det−1q (T ) which is inverse element
for the quantum determinant (3.4.32). Then one can use the E-tensor (3.4.29), the identity
Ejj2...jN E ij2...jN = qN

[N ]q
Di

j (see Eq. (3.5.7) below; matrix D is defined in (3.4.16)), and the
inverse element det−1q (T ) to find an explicit form for the inverse matrix T−1:

(T−1)ij =M i
k (D

−1)kj det
−1
q (T ) ⇒ T ℓ

i (T−1)ij = δℓj , (3.4.38)

where M i1
j1

:= q−N [N ]q Ej1j2...jN T
j2
i2
· · ·T jN

iN
E i1i2...iN are quantum minors of the elements T i1

j1
. So,

the existence of the inverse matrix ||(T−1)ij|| for the RTT algebra with R-matrix (3.4.10) is
equivalent to the invertibility of the central element detq(T ). We note that Eq. (3.4.31) can be
written as

E⟨12...N T−1N · · ·T−11 = det−1q (T ) E⟨12...N , T−1N · · ·T−11 E12...N⟩ = E12...N⟩det−1q (T ). (3.4.39)

Definition 10. A Hopf algebra generated by unit element 1, N2 elements T i
j (i, j = 1, . . . , N)

which satisfy relations (3.2.1) with R-matrix (3.4.10) and element det−1q (T ) is called the algebra
of functions on the linear quantum group GLq(N) and is denoted by Fun(GLq(N)).

The structure mappings for the algebra Fun(GLq(N)) are presented in (3.2.3), where elements
(T−1)ij are defined in (3.4.38).

The algebra Fun(SLq(N)) can be obtained from the algebra Fun(GLq(N)) by imposing the
additional condition detq(T ) = 1 and, in accordance with (3.4.37), the matrix representations
(3.2.19) for T i

j ∈ Fun(SLq(N)) are given by formulas

⟨L+
2 , T1⟩ =

1

q1/N
R12, ⟨L−2 , T1⟩ = q1/NR−121 . (3.4.40)

Conversely, formulas (3.2.19), (3.4.40) can be interpreted as matrix representations of elements
(L±)ij which are generators (see Subsection 3.4.3 below) of the universal enveloping algebras
Uq(gℓ(N)), Uq(sℓ(N)).
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Remark 1. The complexification of the linear quantum groups can be introduced as follows.
We first consider the case of the group GLq(N) and assume that q is a real number. We have
to define an involution ∗-operation, or simply ∗-involution (which is the antihomomorphism)
on the algebra Fun(GLq(N)) or, in other words, we must introduce the conjugated algebra
Fun(G̃Lq(N)) with generators12

T̃ = (T †)−1, T † := (T ∗)t ⇔ (T †)ij := (T j
i )
∗, (3.4.41)

and defining relations identical to (3.2.1):

R12 T̃1 T̃2 = T̃2 T̃1R12 ⇒ R̂12 T̃1 T̃2 = T̃1 T̃2 R̂12. (3.4.42)

Then we introduce the extended algebra with generators {T i
j , T̃

k
l } that is the cross (smash)

product of the algebras (3.2.1) and (3.4.42) with additional cross-commutation relations (see,
for example, [24–26] and [42])

R̂ T1 T̃2 = T̃1 T2 R̂. (3.4.43)

It is natural to relate this extended double algebra to Fun(GLq(N,C)).
The case of SLq(N,C) can be obtained from GLq(N,C) by imposing two subsidiary condi-

tions on the central elements:

detq(T ) = 1, detq(T̃ ) = 1. (3.4.44)

The real form Uq(N) is extracted from GLq(N,C) if we require

T = T̃ = (T †)−1 (3.4.45)

and if, in addition to this, we impose the conditions (3.4.44), then the group SUq(N) is distin-
guished.

In the case |q| = 1, the definition of ∗-involutions on the linear quantum groups GLq(N) and
SLq(N) is a nontrivial problem that can be solved only after an imbedding of these quantum
groups into the algebra of functions on their cotangent bundles (see Remark 2 in the next
subsection).
3.4.3. Quantum algebras Uq(gl(N)) and Uq(sl(N)). Universal R-matrix for Uq(g)

The quantum universal enveloping algebras Uq(gl(N)) and Uq(sl(N)) appear in the R-
matrix approach [42] as the algebras with defining relations (3.2.21), (3.2.22). To show this, we
consider the upper and lower triangular matrices L+, L− in the form (cf. [42, 112])

L+ =


qH1 0 . . . 0
0 qH2 . . . 0
...

... . . . ...
0 0 . . . qHN




1 λf1 λf13 . . . ∗
0 1 λf2 . . . . . .
... . . . . . . . . . ...
0 . . . 0 1 λfN−1
0 0 . . . 0 1

 , (3.4.46)

L− =


1 0 . . . . . . 0

−λe1 1 0 . . . 0
−λe31 −λe2 1 . . . 0

...
... . . . . . . ...

∗ . . . . . . −λeN−1 1




q−H̃1 0 . . . 0

0 q−H̃2 . . . 0
...

... . . . ...
0 0 . . . q−H̃N

 , (3.4.47)

12We recall that (T−1)t ̸= (T t)−1 in the case of the quantum matrices (see (3.2.7)).
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where eα and fα denote, respectively, positive and negative root generators of Uq(sl(N)). Here
we took into account definitions (3.2.20) of matrices L± and the convention that the universal
R-matrix has the form Rop ∼

∑
α rα(Hi)(fα ⊗ eα) that is in agreement with the low-triangular

expression (3.4.8) of the GLq(N) R-matrix. In particular, from (3.4.46) and (3.4.47), we have

(L+)ii = qHi , (L−)ii = q−H̃i , (L+)ii+1 = λ qHi fi, (L−)i+1
i = −λ ei q−H̃i . (3.4.48)

For R-matrices (3.4.8), (3.4.10) the relations (3.2.21), (3.2.22) are represented in the component
form as

(L±)ik (L
±)jk = q (L±)jk (L

±)ik, (L±)ki (L
±)kj = q (L±)kj (L

±)ki , (i > j), (3.4.49)

[(L±)i1j1 , (L
±)i2j2 ] = λ (L±)i1j2 (L

±)i2j1 , [(L±)i1j2 , (L
±)i2j1 ] = 0, (i1 > i2, j1 > j2), (3.4.50)

(L+)ik (L
−)jk = q (L−)jk (L

+)ik, (L−)ki (L
+)kj = q (L+)kj (L

−)ki , (i < j), (3.4.51)

[(L∓)i1j1 , (L
±)i2j2 ] = 0, (i1 > i2, j1 > j2), [(L+)ii, (L

−)ii] = 0, (3.4.52)

[(L−)i1j1 , (L
+)i2j2 ] = λ

(
(L+)i1j2 (L

−)i2j1 − (L−)i1j2 (L
+)i2j1

)
, (i1 > i2, j1 < j2) (3.4.53)

(there is no summation over repeated indices). We have written only the terms and relations
which survive under the condition that (L+)ij = 0 = (L−)ji, i > j.

The substitution of (3.4.48) into Eqs. (3.4.49)–(3.4.53) gives the Drinfeld–Jimbo [113] for-
mulation of Uq(gl(N)). Indeed, from Eqs. (3.4.49), (3.4.51), and (3.4.52) one can obtain that
qHi−H̃i are the central elements. Thus, the matrices L± can be renormalized (by multiply-
ing them with diagonal matrices) in such a way that elements qHi−H̃i are fixed as units, i.e.,
Hi = H̃i. Then from Eq. (3.4.51) we find

fiq
Hj = qδj,i−δj,i+1 qHjfi, eiq

Hj = qδj,i+1−δj,i qHjei. (3.4.54)

The first equation in (3.4.52) gives eifj = fjei for i ̸= j and, taking into account (3.4.53), we
derive

eifj − fjei = δi,j
qHi−Hi+1 − qHi+1−Hi

λ
. (3.4.55)

The first equation in (3.4.50) yields a part of Serre relations

eiej = ejei, fifj = fjfi, (|i− j| ⩾ 2) (3.4.56)

and gives the expressions of the composite roots via the simple roots {ei, fj}:

fi−1,i+1 = (fifi−1 − q−1fi−1fi) = λ−1 q−Hi−1 (L+)i−1i+1,

ei+1,i−1 = (ei−1ei − qeiei−1) = −λ−1 (L−)i+1
i−1 q

Hi−1 .
(3.4.57)

Using these definitions and Eqs. (3.4.49), we deduce another part of Serre relations

e2i ei±1 − (q + q−1)eiei±1ei + ei±1e
2
i = 0 (1 ⩽ i, i± 1 ⩽ N),

f 2
i fi±1 − (q + q−1)fifi±1fi + fi±1f

2
i = 0 (1 ⩽ i, i± 1 ⩽ N).

(3.4.58)

So, we see that Eqs. (3.2.21) and (3.2.22) (with the form of L± given in (3.4.46), (3.4.47)) not
only yield the commutation relations (3.4.54), (3.4.55) for the elements of the Chevalley basis,
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but also present Serre relations (3.4.56), (3.4.58) and define the composite root elements (3.4.57)
as the q-commutators of the simple root elements. In this sense, the generators (L±)ij (3.4.46),
(3.4.47) play the role of a quantum analog of elements of the Cartan–Weyl basis for Uq(gl(N)),
where qHk , (L+)ij and (L−)ji (i < j) are, respectively, analogs of Cartan elements, negative
and positive root generators. The quantum Casimir operators are given by Eqs. (3.2.28) and
(3.2.29). The comultiplication, antipode and coidentity in terms of the generators {Hi, ei, fi}
can be deduced from (3.2.23), (3.2.24)

∆(qHi) = qHi ⊗ qHi , ∆(fi) = 1⊗ fi + fi ⊗ qHi+1−Hi , ∆(ei) = ei ⊗ 1 + qHi−Hi+1 ⊗ ei,

S(Hi) = −Hi, S(ei) = −qHi+1−Hiei, S(fi) = −fiqHi−Hi+1 , ε(Hi, ei, fi) = 0.

Note that
∑

iHi is a central element in the algebra Uq(gl(N)) and the condition
∑

iHi = 0
reduces Uq(gl(N)) to the algebra Uq(sl(N)) with generators {hi := Hi −Hi+1, ei, fi} subject
to the relations

[qhi , qhj ] = 0, qhj fi = q−aij fi q
hj , qhj ei = qaij ei q

hj , (3.4.59)

eifj − fjei = δij
qdihi − q−dihi

qdi − q−di
(3.4.60)

and Serre relations
1−aij∑
k=0

(−1)k
[
1− aij
k

]
qdi

(ei)
kej(ei)

1−aij−k = 0, (ei → fi), (3.4.61)

where[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
, [k]q =

qk − q−k

q − q−1
, [k]q! := [1]q[2]q · · · [k]q, [0]q! := 1, (3.4.62)

aij = 2δij − δji+1 − δij+1 is Cartan matrix for sl(N), di are smallest positive integers (from the
set 1,2,3) such that diaij ≡ asymij is symmetric Cartan matrix (for sl(N) case di = 1). For the
quantum algebra (3.4.59)–(3.4.61) the structure mappings are

∆(qhi) = qhi ⊗ qhi , ∆(fi) = 1⊗ fi + fi ⊗ q−dihi , ∆(ei) = ei ⊗ 1 + qdihi ⊗ ei,

S(hi) = −hi, S(ei) = −q−dihiei, S(fi) = −fiqdihi , ε(hi, ei, fi) = 0.
(3.4.63)

Remark 1. By making use of the statements of Proposition 3.6, we construct the central
elements (3.2.29) for the algebras Uq(sl(N)) as

C(M) = TrD
(
LM
)
≡ TrQ

(
L̄M
)
, (3.4.64)

where L = S(L−)L+, L̄ = L+S(L−) and the quantum trace matrices D and Q are defined in
(3.4.16). The elements (3.4.64) are quantum analogs of the Casimir operators for the algebras
Uq(sl(N)).

Remark 2. The relations (3.4.59)–(3.4.61) are used for the Drinfeld–Jimbo [10, 114] formu-
lation of the quantum universal enveloping algebra Uq(g) for any simple Lie algebra g (the
elements ei, fi, qhi are related to the simple root αi|i=1,...,r of the Lie algebra g of the rank r).
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By using this formulation of the quasitriangular Hopf algebra Uq(g), one can explicitly construct
the corresponding universal R-matrix (the definition via canonical element is given in (2.4.9)).
In the case of algebra Uq(slN), the explicit multiplicative formula for the universal R-matrix has
been invented in [122]. This result was generalized in [123] for the case of Uq(g), where g is any
semisimple Lie algebra. For the case of quantum Lie superalgebras the universal R-matrix has
been found in [163]. Finite-dimensional representations for the quantum simple Lie algebras
Uq(g) (3.4.59)–(3.4.61) were considered, e.g., in [115].

Here we give (without proof) the explicit multiplicative formula for the Uq(g) universal
R-matrix, where g is a simple Lie algebra. We give this formula in the form proposed by
S. Khoroshkin and V. Tolstoy [163] (see also [123, 165]). For this we need the notion of the
normal ordering [163] of the system ∆+ of positive roots of Lie algebra g. We say that the
system ∆+ is in the normal ordering ∆

(n)
+ , if each composite root α+β ∈ ∆+, where α, β ∈ ∆+,

has to be placed in the ordering between α and β. It is clear that there is an arbitrariness in
such a normal ordering ∆

(n)
+ of positive roots.

Proposition 3.10. For any quantized Lie algebra Uq(g) with defining relations (3.4.59)–
(3.4.61) and for any normal ordering ∆

(n)
+ of the positive root system ∆+ of g, the universal

R-matrix such that R−1∆R = ∆op, where ∆ is the comultiplication (3.4.63), is given by the
formula

R = K ·
−−−→∏
β∈∆(n)

+

expqβ

(
(q − q−1)(eβ ⊗ fβ)

)
, (3.4.65)

K := q
∑

ij dijhi⊗hj , expq

(
x
)
:=
∑
n⩾0

xn/(n)q!, (n)q := (qn − 1)/(q − 1),

where qβ = q(β,β), dij is an inverse matrix for the symmetrized Cartan matrix asymij = diaij (see
definition of di after (3.4.62)) and the ordered product runs over the normal ordering ∆

(n)
+ of

the positive roots.

For the case of Uq(sℓ(2)) algebra

[e, f ] =
qh − q−h

q − q−1
, qh f = q−2 f qh, qh e = q2 e qh,

the formula (3.4.65) is simplified

R = q
1
2
h⊗h · expq2

(
(q − q−1)(e⊗ f)

)
.

Finally, we note that in the paper [163], the authors used another comultiplication ∆′ for Uq(g):

∆′(qhi) = qhi ⊗ qhi , ∆′(fi) = 1⊗ fi + fi ⊗ qdihi , ∆′(ei) = ei ⊗ 1 + q−dihi ⊗ ei, (3.4.66)

which is related to the comultiplication (3.4.63) by twisting ∆′ = K−1 P12∆P12K ≡ K−1∆opK.
This explains why our formula (3.4.65) differs by twisting from the formula for R given in [163].

Remark 3. The ∗-involution on the algebra Uq(sl(N)) (3.4.59)–(3.4.61) for real q is defined
if we note that the algebra with generators T, T̃ (3.4.1), (3.4.42), (3.4.43) coincides with the
L± algebra (3.2.21), (3.2.22) after an identification: L− = T−1, L+ = T̃−1. Then, according to
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(3.4.41), we require (L+)† = (L−)−1. In terms of the Chevalley generators (3.4.46), (3.4.47), it
means that

h∗i = hi, f ∗i = q q−hi ei, e∗i = q−1 fi q
−hi . (3.4.67)

One can directly check that Eqs. (3.4.59)–(3.4.61) respect the antihomomorphism (3.4.67).
In the case |q| = 1, the definition of ∗-involutions on the linear quantum groups and algebras

is a nontrivial problem that can be solved [124] only after extension of the algebra of functions
on the quantum groups to the algebra of functions on their cotangent bundles, i.e., to the
algebra which is a Heisenberg double of Fun(GLq(N)) and Uq(gl(N)) with cross-multiplication
rules (3.2.55)–(3.2.57).

3.5. Hecke-type R-matrices. Related quantum matrix algebras

The material in this subsection is based in part on the results of papers [47, 111], [232].

3.5.1. Definitions. (Anti)symmetrizers for Hecke-type R-matrices

Definition 11. Yang–Baxter R-matrices which obey (3.1.6) and the Hecke condition (3.1.68),
(3.4.11) are called Hecke-type R-matrices.

First of all, we note that the GLq(N) matrices (3.4.8), (3.4.10) are examples of Hecke-type
R-matrices, since they satisfy the Hecke condition (3.1.68), (3.4.11). We also note that if R̂[q]
satisfies the Hecke condition (3.4.11), then R̂[−q−1] and −R̂[q−1] also satisfy (3.4.11). In this
subsection, we present some general facts about Hecke-type R-matrices and related quantum
algebras.

The antisymmetrizers A1→m (3.4.34) can be explicitly constructed in terms of Hecke-type
R-matrices by using the following inductive procedure [113] (the same procedure was used
in [111]; see also Subsection 4.3.1 below):

A1→k = A2→k

(
R̂1(q

k−1)

[k]q

)
A2→k = A1→k−1

(
R̂k−1(q

k−1)

[k]q

)
A1→k−1 = (3.5.1)

=
1

[k]q!
A1→k−1 R̂k−1

(
qk−1

)
R̂k−2

(
qk−2

)
. . . R̂2

(
q2
)
R̂1 (q) , (k = 2, 3, . . . N),

where A1→1 = 1, R̂(x) = (x−1R̂−xR̂−1)/λ — Baxterized R-matrix (see Subsection 3.8 below),
R̂ is a Hecke-type R-matrix, [k]q = (qk − q−k)/λ and as usual

R̂k = I⊗(k−1) ⊗ R̂⊗ I⊗(N−k) ∈ Mat(N)⊗(N+1). (3.5.2)

Definition 12. We say that the Hecke-type R-matrix is of the height N , if A1→M = 0 ∀M > N
and rank(A1→N) = 1.

Note that for the GLq(N)-type R-matrix (3.4.8), (3.4.10) the operator A1→N+1 = 0, and A1→N

is the highest q-antisymmetrizer in the sequence of the antisymmetrizers (3.5.1). Moreover,
we have rank(A1→N) = 1 in this case. The latter can easily be understood by considering the
fermionic quantum hyperplane (3.4.24). Since the operators A1→k (3.5.1) satisfy (cf. (3.4.29))

R̂j A1→k = A1→k R̂j = −q−1A1→k (j = 1, . . . , k − 1), (3.5.3)

they are symmetry operators for the kth order monomials xi1 . . . xik in the q-fermionic algebra
(3.4.24). In view of the explicit relations (3.4.24), one can conclude that there is only one
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independent monomial of the order N and all monomials xi1 . . . xik , for k > N , are equal to
zero. This statement is equivalent to the conditions rank(A1→N) = 1 and A1→N+1 = 0.

In view of the definition (3.5.1), the condition A1→N+1 = 0 leads to (for the arbitrary Hecke
R̂-matrix):

A1→N R̂
±1
N A1→N =

q±N

[N ]q
A1→N IN+1, A2→N+1 R̂

±1
1 A2→N+1 =

q±N

[N ]q
A2→N+1 I1 . (3.5.4)

In the case of skew-invertible Hecke R̂-matrices, by applying (3.1.18) to Eqs. (3.5.4), we obtain

A1→N PN N+1
A1→N =

qN

[N ]q
A1→N QN+1

, A2→N+1 P1 2 A2→N+1 =
qN

[N ]q
D1A2→N+1, (3.5.5)

and for completely invertible R̂-matrices we have in addition Q = q2N Q, D = q2N D. Acting,
respectively, by Tr

N+1
and Tr1 to the first and second equation in (3.5.5), we deduce (cf.

(3.4.17)):
Tr(Q) = Tr(D) = q−N [N ]q ⇒ Tr(Q) = Tr(D) = qN [N ]q, (3.5.6)

while applying Tr(1...N) and Tr(2...N+1) to the same equations, we obtain [47]:

Tr(1...N−1)A1→N =
rank(A1→N)

Tr(Q)
QN , Tr(2...N)A1→N =

rank(A1→N)

Tr(D)
D1. (3.5.7)

On the other hand, applying quantum traces TrD(N−k+1...N) and TrQ(1...k) to the antisym-
metrizers A1...N , we deduce [47] (0 ⩽ k ⩽ N):[

N
k

]
q

TrD(k+1...N) (A1...N) = q(k−N)N A1...k, A1...k|k=0 := 1, (3.5.8)

[
N
k

]
q

TrQ(1...k) (A1...N) = q−kN Ak+1...N , Ak+1...N |k=N := 1, (3.5.9)

where q-binomial coefficients are defined in (3.4.62) and we have used Eqs. (3.5.1) and identities

Tr
D(k+1)

R̂k(x) = Tr
Q(k−1)

R̂k−1(x) =

(
x−1 − x

λ
+ xTr(D)

)
Ik =

x−1 − xq−2N

λ
Ik, (3.5.10)

which follow from (3.1.22), (3.5.6). In view of Eqs. (3.1.36), matricesD andQ can be considered
as one-dimensional representations of the RTT algebra (3.2.1): ρD(T i

j ) = Di
j, ρQ(T i

j ) = Qi
j.

Thus, we have

A1...ND1D2 . . . DN = detq(D)A1...N , A1...NQ1Q2 . . . QN = detq(Q)A1...N , (3.5.11)

and taking k = 0 in (3.5.8) and k = N in (3.5.9), we obtain

detq(D) = q−N
2

, detq(Q) = q−N
2

. (3.5.12)

For the Hecke-type R-matrix one can construct (in addition to the q-antisymmetrizer A1→k

(3.5.1)) the q-symmetrizer S1→k:

S1→k = S2→k

(
R̂1(q

1−k)

[k]q

)
S2→k = S1→k−1

(
R̂k−1(q

1−k)

[k]q

)
S1→k−1 (3.5.13)
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(see also Section 4 below). Using identities (3.5.1), (3.5.13), and (3.5.10), one can calculate
q-ranks for the projectors A1→k and S1→k:

rankq(A1→k) := TrD(1...k)A1→k =
(qk−1Tr(D)− [k − 1]q)

[k]q
TrD(1...k−1)A1→k−1 = · · · =

=
1

[k]q!

k∏
m=1

(
qm−1Tr(D)− [m− 1]q

)
, (3.5.14)

and analogously

rankq(S1→k) := TrD(1...k)S1→k =
1

[k]q!

k∏
m=1

(
q1−mTr(D) + [m− 1]q

)
. (3.5.15)

By substituting (3.5.6) into (3.5.14), (3.5.15), we deduce for the Hecke-type R-matrix (of
the height N) the following “q-dimensions” of the antisymmetrizer and symmetrizer:

TrD(1...k)A1→k = q−kN
[
N
k

]
q

(k ⩽ N), TrD(1...k)A1→k = 0 (k > N),

TrD(1...k)S1→k = q−kN
[
N + k − 1

k

]
q

.

The general formula for q-dimensions of any Young q-symmetrizer (related to any Young
diagram), which is rational function of the Hecke-type R-matrices13, is known and can be found
in [203, 208, 209] (see Subsection 4.3.6 below).

Sometimes it is convenient to have Eqs. (3.4.36) not only for GLq(N)-type R-matrices, but
in a more general form which is valid for any Hecke R-matrix such that A1→N+1 = 0. For this
we consider identity (see, e.g., [232]):

A2→N+1 R̂
±1
1 · R̂±12 · · · R̂±1N = (−1)N−1 q±1 [N ]q A2→N+1A1→N (3.5.16)

(we demonstrate a connection of (3.4.36) with (3.5.16) below). The mirror counterpart of the
relations (3.5.16) is also valid

R̂±1N · · · R̂±12 · R̂±11 A2→N+1 = (−1)N−1 q±1 [N ]q A1→N A2→N+1. (3.5.17)

Equations (3.5.16) and (3.5.17) can be readily deduced from the equation

A2→N+1 R̂
±1
1 . . . R̂±1N = R̂±11 . . . R̂±1N A1→N , (3.5.18)

which is obtained from the fact that antisymmetrizers are expressed in terms of R-matrices
(3.5.1) and by using identities

R̂k (R̂
±1
1 . . . R̂±1N ) = (R̂±11 . . . R̂±1N ) R̂k−1, ∀ k = 2, . . . , N,

followed from the braid relations (3.1.11), (3.1.15). Acting on (3.5.18) by A1→N from the
left and making use of Eqs. (3.5.3), (3.5.4) and again Eq. (3.5.18), we deduce (3.5.17). Equa-

13These symmetrizers are images of the idempotents of the Hecke algebra; see Subsections 4.3.3 and 4.3.4
below.
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tion (3.5.16) can be proved in the same way. Multiplying identities (3.5.16) and (3.5.17) by
A2→N , respectively, from the right and left, we find

A1→N A2→N A1→N = [N ]−2q A1→N , A2→N A1→N A2→N = [N ]−2q A2→N , (3.5.19)

and then multiplying (3.5.17) by (3.5.16) from the left and (3.5.16) by (3.5.17) from the right,
we obtain equations

A1→N(R̂N . . . R̂2R̂
2
1R̂2 . . . R̂N − q2) = 0, A2→N+1(R̂1R̂2 . . . R̂

2
N . . . R̂2R̂1 − q2) = 0,

which followed from (3.5.4) and are equivalent to A1→N+1 = 0 (see (4.3.11) below).
The identity (3.5.16) is valid for any Hecke R-matrix of the height N and can be transformed

into Eq. (3.4.36). Indeed, for the case when rank(A1→N) = 1 and, thus, A1→N is given by the
first equation in (3.4.33), one can act on (3.5.16) by E⟨2...N+1 from the left and, as a result, the
counterpart of (3.4.36) is obtained

E⟨23...N+1 R̂
±1
1 · R̂±12 · · · R̂±1N = q±1 N

1⟩
⟨N+1 E⟨12...N . (3.5.20)

Here we have introduced the matrix

N
1⟩
⟨N+1 := (−1)N−1 [N ]q E⟨2...N+1 E1...N⟩, (3.5.21)

which, for the case ofGLq(N) R-matrix (3.4.8), is equal to the unit matrix Ni
j = δij (cf. (3.4.36)).

Analogously, by acting of E2...N+1⟩ on (3.5.17) from the right, we deduce

R̂±1N · · · R̂±12 · R̂±11 E23...N+1⟩ = q±1 E12...N⟩ (N−1)
N+1⟩
⟨1 , (3.5.22)

where matrix
(N−1)

N+1⟩
⟨1 := (−1)N−1 [N ]q E⟨1...N E2...N+1⟩ (3.5.23)

is inverse to the matrix (3.5.21) in view of (3.5.19).

3.5.2. Quantum determinants for RTT and RLRL algebras

For the RTT algebra defined by the Hecke R-matrix of the height N (Definition 12), one can
introduce a generalization of the GLq(N) q-determinant by using the same formulas (3.4.30),
(3.4.32):

detq(T ) E⟨12...N = E⟨12...N T1 · T2 · · ·TN , E12...N⟩ detq(T ) = T1 · T2 · · ·TN E12...N⟩,

detq(T ) = E⟨12...N (T1T2 · · ·TN) E12...N⟩ = Tr12...N(A1→N T1T2 · · ·TN).
(3.5.24)

In the case when matrix Ni
j is not proportional to the unit matrix, the chain of relations (3.4.35)

gives [111, 232]:

E⟨1...N detq(T )TN+1 = E⟨1...N T1 . . . TN TN+1 =

= E⟨1...N R̂−1N . . . R̂−11 T1 . . . TN TN+1 R̂1 . . . R̂N =

= q−1(N−1)
N+1⟩
⟨1 T1 E⟨2...N+1 T2 . . . TN+1 R̂1 . . . R̂N =

= q−1(N−1)
N+1⟩
⟨1 T1 detq(T ) E⟨2...N+1 R̂1 . . . R̂N = (N−1 TN)N+1 detq(T )E⟨1...N ,

(3.5.25)

where an explicit form of N−1 can be extracted from (3.5.23). It means that for RTT algebras
defined by general Hecke-type R-matrix of the limited height, the element detq(T ) is not nec-
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essary central. However, let the noncentral element detq(T ) be invertible. In this case, one can
also define the inverse matrix T−1 (cf. (3.4.38); see also Eq. (6.16) in [232]):

(T−1)
1⟩
⟨N+1 =

(−1)N−1

[N ]q
N−11 det−1q (T ) E⟨2...N+1 T2 · · ·TN E1...N⟩ ⇒ (T−1)

1⟩
⟨N+1 TN+1 = I

1⟩
⟨N+1,

where the matrices N and N−1 are given in (3.5.21) and (3.5.22).

In the case of the Hecke-type R-matrix of the height N , the structures (3.2.57) and (3.2.61)
of the cross-products (doubles) for the RTT and reflection equation algebras

R̂12T1T2 = T1T2R̂12, T1L2 = R̂12L1R̂
±1
12 T1, R̂12L1R̂12L2 = L1R̂12L1R̂12, (3.5.26)

R̂12T1T2 = T1T2R̂12, L1 T2 = T2R̂12L2R̂
±1
12 , R̂12L2 R̂12L2 = L2R̂12L2R̂12 (3.5.27)

help us [47, 84, 91] to introduce the notion of the quantum determinants Detq(L), Detq(L) for
the corresponding reflection equation algebras (3.2.31) and (3.2.32) with generators L and L.
It can be done by using the definition (3.5.24) of detq(T ) for the RTT algebras with the Hecke-
type R-matrix of the height N . In view of the automorphism (3.2.58), the quantum matrix
(LT ) satisfies the same RTT relation (3.2.1) and, thus, one can consider the same quantum
determinant detq(.) for the quantum matrix (LT ) as for the matrix T . This determinant is
divisible from the right by detq(T ) and the quotient depends on the matrix L only. This quotient
is called the quantum determinant for the reflection equation algebra (3.2.31). We consider only
the case of the double with structure (3.2.57) with upper signs in (3.5.26), (3.5.27) (the case
with lower signs is considered in the same way; see (3.2.63)):

Detq(L) := detq(LT )
1

detq(T )
= E⟨1...N(L1T1 L2T2 . . . LNTN)E1...N⟩ 1

detq(T )
=

= E⟨1...N(L1̃ L2̃ . . . LÑ)T1 . . . TN E1...N⟩ 1

detq(T )
= E⟨1...N(L1̃ L2̃ . . . LÑ) E

1...N⟩ =

= E⟨1...N(LÑ . . . L2̃ L1̃)E1...N⟩ = Tr1...N
(
A1...N L1̃ L2̃ . . . LÑ

)
,

(3.5.28)

where
L
k̃+1

= R̂kLk̃R̂k, L1̃ := L1 (3.5.29)
are operators that form a commutative set [Lk̃, Lℓ̃] = 0. The definition (3.5.28) is generalized
as follows:

L1̃ L2̃ . . . LÑ A1...N = A1...N Detq(L). (3.5.30)
For the second type algebra (3.2.32), (3.2.57) (the algebra (3.5.27) with upper sign) the

definition is analogous:

Detq(L) = det−1q (T ) detq(TL) = det−1q (T ) E⟨1...NT1 . . . TN (L1̃ L2̃ . . . LÑ)E1...N⟩ =

= E⟨1...N(LÑ . . . L2̃ L1̃)E1...N⟩ = Tr1...N
(
A1...N L1̃ L2̃ . . . LÑ

)
,

where Lk̃ = R̂k Lk̃+1
R̂k , LÑ := LN and [Lk̃, Lℓ̃] = 0.

Below, we restrict ourselves to considering only the case of the left reflection equation algebra
(3.2.31) (and the double (3.5.26) with upper sign), since the case of the right algebra (3.2.32)
is investigated analogously. An interesting property of the determinant Detq(L) (followed from
discrete evolutions (3.2.58), (3.2.59)) is of its multiplicativity [47]:

Det′q(L
n+1) := detq(L

n+1 T )
1

detq(T )
= detq(L

n+1 T )
1

detq(LT )
detq(LT )

1

detq(T )
=

=
(
E⟨1...N(L1̃)

n (L2̃)
n . . . (LÑ)

n E1...N⟩) Detq(L) = Det′q(L
n)Detq(L) = (Detq(L))

n ,

(3.5.31)
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where, for n = 1 we have Det′q(L
n) = Detq(L).

In view of the automorphism (3.2.60) for n = 1, such that T → (L + x)T , one can define
(in the same way as in (3.5.28)) a quantum determinant Detq(L;x) [84]:

Detq(L;x) := detq((L+ x)T )
1

detq(T )
= Tr1...N

(
A1...N(L1̃ + x) . . . (LÑ + x)

)
, (3.5.32)

where x ∈ C is a parameter and Lk̃ are given in (3.5.29). Thus, we introduce the characteristic
polynomial for the quantum matrix L. Here we prefer to use the notation Detq(L;x) instead of
Detq(L+x), since the dependence on (L+x) seems to be broken in view of the last expression of
(3.5.32). Taking into account (3.4.31), the determinant (3.5.32) can be also derived as follows:

E1...N⟩Detq(L;x) = (L1 + x)T1 (L2 + x)T2 . . . (LN + x)TN E1...N⟩ 1

detq(T )
=

=
(
(L1̃ + x) (L2̃ + x) . . . (LÑ + x)

)
E1...N⟩. (3.5.33)

The expansion of (3.5.32) over the parameter x gives

Detq(L;x) =
N∑
k=0

xk aN−k(L). (3.5.34)

Here a0(L) = 1, aN(L) = Detq(L),

am(L) = Tr1...N

(
A1...N

∑
1⩽k1<···<km⩽N

Lk̃1
Lk̃2

. . . Lk̃m

)
= α

(m)
N Tr1...N (A1...NL1̃ L2̃ · · ·Lm̃) , (3.5.35)

where in the second equality we applied identities (for all k1 < · · · < km)

Tr1...N

(
A1...NLk̃1

Lk̃2
. . . Lk̃m

)
= q−2(k1+k2+...km)+m(m+1)Tr1...N (A1...NL1̃ L2̃ · · ·Lm̃) ,

and [47]
α
(m)
N = qm(m+1)

∑
1⩽k1<···<km⩽N

q−2(k1+k2+...km) = qm(m−N)
[
N
m

]
q

(3.5.36)

(q-binomial coefficients
[
N
m

]
q

were introduced in (3.4.62)). The sums in (3.5.36) are readily

calculated by means of their generating function

α(t) =
N∑

m=0

tN−mq−m(m+1)α
(m)
N =

N∏
m=1

(t+ q−2m),

which leads to the equation α
(m)
N+1 = α

(m)
N + q2(m−N−1)α

(m−1)
N solved by (3.5.36). We note that

by using (3.5.11), (3.5.12) and then evaluating the trace TrD(m+1...N) by means of (3.5.8), the
elements am(L) can also be written in the form [47]

am(L) =
α
(m)
N

detq(D)
TrD(1...N) (A1...NL1̃ · · ·Lm̃) = qm

2

TrD(1...m) (A1...mL1̃ · · ·Lm̃) . (3.5.37)
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Then we have

L1̃L2̃ · · ·Lm̃ = [L1(R̂1L1)(R̂2R̂1L1) . . . (R̂m−1 . . . R̂1L1)]R̂(1→m−1) . . . R̂(1→2)R̂1 =

= L1L2 · · ·Lm(R̂1 . . . R̂(m−1←1))(R̂(1→m−1) . . . R̂1) = L1L2 · · ·Lm y2 y3 . . . ym,
(3.5.38)

and analogously
L1̃L2̃ · · ·Lm̃ = Lm̃ · · ·L2̃L1̃ = y2 y3 . . . ym Lm . . . L2L1, (3.5.39)

where we used notation R̂(1→m) and R̂(m←1) given in (3.2.47), matrices y1 = 1, y2 = R̂2
1, . . .,

yk+1 = R̂kykR̂k define a commutative set [yk, yℓ] = 0 and the elements

Lk+1 = R̂kLkR̂
−1
k , Lk+1 = R̂−1k LkR̂k

were introduced in (3.2.42). According to the identities (3.5.38), (3.5.39) and taking into
account (3.2.44), one can write (3.5.37) as

am(L) = qm TrD(1...m) (A1→mL1L2 · · ·Lm) = qm TrD(1...m) (A1→mLm · · ·L2L1) . (3.5.40)

The elements am(L) (3.5.35), (3.5.37), (3.5.40) are central elements for the reflection equa-
tion algebra (3.2.31). Indeed, these elements are obtained from the general center elements
(3.2.48) by substitution X = A1...m.

3.5.3. Differential calculus on the RTT algebras. Quantum group covariant connections and
curvatures

a. Bicovariant differential algebras and quantum BRST operator
For the Hecke-type R-matrix (3.1.68), (3.4.11) one can define [72–88] (see also references
therein) the bicovariant differential complex on the RTT algebra:

R̂ T1 T2 = T1 T2 R̂, R̂ dT1 T2 = T1 dT2 R̂
−1, R̂ dT1 dT2 = −dT1 dT2 R̂−1, (3.5.41)

where R̂ := R̂12 and generators dT i
j (i, j = 1, . . . , N) are interpreted as differentials of the

elements T i
j . The algebra (3.5.41) is a graded (exterior) Hopf algebra [81] with structure

mappings [82, 88]:

∆(T ) = T ⊗ T, ϵ(T ) = I, S(T ) = T−1,

∆(dT i
j) = dT i

k ⊗ T k
j + T i

k ⊗ dT k
j, ϵ(dT i

j) = 0, S(dT i
j) = −(T−1 dT T−1)i j,

where in the first line we use the index-free matrix notation, the grading is gr(T i
k) = 0,

gr(dT i
k) = 1 and ⊗ is the graded tensor product. We extend the graded algebra (3.5.41)

by adding [79, 80, 84–86] new generators ∂ij := ∂/∂T j
i (quantum derivatives) and iij (quantum

inner derivatives) with commutation relations (cf. (3.5.41)):

R̂ ∂2 ∂1 = ∂2 ∂1 R̂, R̂ i2 ∂1 = ∂2 i1 R̂
−1, R̂ i2 i1 = −i2 i1 R̂

−1 . (3.5.42)

Assume that the matrix ∂ is formally invertible. Then the algebra (3.5.42) is a graded Hopf
algebra with structure mappings [84]:

∆(∂) = ∂ ⊗ ∂, ϵ(∂) = I, S(∂) = ∂−1,

∆(i) = i⊗ ∂ + ∂ ⊗ i, ϵ(i) = 0, S(i) = −∂−1 i ∂−1,
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where gr(∂ik) = 0, gr(iik) = 1 and ⊗ is the graded tensor product. Now we define the cross-
product (Heisenberg double) of the algebras (3.5.41) and (3.5.42) with cross-commutation re-
lations

∂1 R̂ dT1 = dT2 R̂
−1 ∂2, T2 R̂ i2 = i1 R̂

−1 T1, (3.5.43)

∂1 R̂
ϵ̄ T1 = T2 R̂

−ϵ̄ ∂2 + I1I2, i1 R̂
ϵ dT1 + dT2 R̂

ϵ i2 = I1I2, (3.5.44)

where ϵ = ∓1 and ϵ̄ = ±1. These relations are postulated in such a way that they are bi-
covariant with respect to the left and right coaction of the RTT algebra:

T → TL ⊗ T ⊗ TR, dT → TL ⊗ dT ⊗ TR, ∂ → T−1R ⊗ ∂ ⊗ T−1L , i → T−1R ⊗ i⊗ T−1L .

Here elements of matrices TL and TR generate two RTT algebras (the first relation in (3.5.41)).
We note that the bicovariance does not fix uniquely the relations (3.5.43), (3.5.44). Actually we
have four graded bicovariant algebras Aϵ,ϵ̄ with generators {T, dT, ∂, i} and with different choice
of signs ϵ and ϵ̄ in (3.5.44). It was shown in [84, 86], that there are explicit inner automorphisms
in Aϵ,ϵ̄ which relates all these algebras.

Now we introduce the left L and the right L invariant vector fields in the algebra Aϵ,ϵ̄, cor-
responding left Ω ∈ Aϵ,ϵ̄ and the right Ω ∈ Aϵ,ϵ̄ invariant differential 1-forms, inner derivatives
I, I ∈ Aϵ,ϵ̄, and special invariant operators W , W ∈ Aϵ,ϵ̄:

L := I − ϵ̄λ ∂ T, L := I − ϵ̄λ T ∂ ≡ T LT−1,

Ω := T−1 dT, I := iT, Ω := dT T−1 ≡ T ΩT−1, I := T i,

W := 1− ϵλ i dT = 1− ϵλ I Ω, W := 1− ϵλ dT i = 1− ϵλ Ω I,
(3.5.45)

where as usual λ = q − q−1. Last relations in (3.5.41), (3.5.42), and (3.5.43) lead to (see [84]):

W1 dT2 = dT2 R̂
ϵW2 R̂

ϵ, dT1W2 = R̂ϵW1 R̂
ϵ dT1, (3.5.46)

i2W1 = R̂ϵW2 R̂
ϵ i2, W2 i1 = i1 R̂

ϵW1 R̂
ϵ, (3.5.47)

and from these identities we immediately obtain [84]:

W1W2 = W2W1, W2 R̂
ϵW2 R̂

ϵ = R̂ϵW2 R̂
ϵW2, W1 R̂

ϵW1 R̂
ϵ = R̂ϵW1 R̂

ϵW1. (3.5.48)

Operators (3.5.45) also obey (see, e.g., [79, 84, 86]) the following relations (cf. (3.2.31), (3.2.32),
(3.2.57)): {

L1 T2 = T2R̂
−ϵ̄L2R̂

−ϵ̄, T1L2 = R̂ϵ̄L1R̂
ϵ̄T1,

∂2 L1 = R̂−ϵ̄ L2 R̂
−ϵ̄ ∂2, L2 ∂1 = ∂1 R̂

ϵ̄ L1 R̂
ϵ̄,

⇒

L1 L2 = L2 L1, R̂−ϵ̄ L2 R̂
−ϵ̄ L2 = L2 R̂

−ϵ̄ L2 R̂
−ϵ̄, R̂ϵ̄ L1 R̂

ϵ̄ L1 = L1 R̂
ϵ̄ L1 R̂

ϵ̄,

(3.5.49)

and in addition we have{
L1 dT2 = dT2R̂

−1L2R̂, dT1L2 = R̂−1L1R̂dT1,

i2 L1 = R̂−1 L2 R̂ i2, L2 i1 = i1 R̂
−1 L1 R̂,

⇒

R̂−1 L2 R̂W 2 = W 2 R̂
−1 L2 R̂, W1 R̂

−1 L1 R̂ = R̂−1 L1 R̂W1,

R̂−1 L2 R̂ I2 = I2 R̂
−ϵ̄ L2 R̂

−ϵ̄, W1 R̂
−1 L1 R̂ = R̂−1 L1 R̂W1.

(3.5.50)
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Proposition 3.11 (See [84]). The defining relations (3.5.41), (3.5.42) and (3.5.43), (3.5.44)
are in agreement with the formulas

R̂T1(x)T2(x) = T1(x)T2(x)R̂, R̂dT1(y)T2(x) = T1(x)dT2(y)R̂
−1,

R̂dT1(y) dT2(y) = −dT1(y) dT2(y)R̂−1 ⇔ R̂ϵdT1(y) dT2(y) = −dT1(y) dT2(y)R̂−ϵ,
(3.5.51)

where x, y are parameters, R̂ := R̂12 and

T (x) =
1

x+ T∂
T ≡ 1

T−1 x+ ∂
, dT (y) =

1

y + dT i
dT ≡ dT

1

y + i dT
.

Proof. We write the first relation in (3.5.51) as

(T−12 x+ ∂2)(T
−1
1 x+ ∂1) R̂ = R̂ (T−12 x+ ∂2)(T

−1
1 x+ ∂1).

The terms of order x2 and x0 give, respectively, first relations in (3.5.41) and (3.5.42). The
terms of order x1 yield relation compatible to the first relation in (3.5.44). For the second
relation in (3.5.51) we obtain

(y + dT2i2)(T
−1
1 x+ ∂1) R̂ dT1 = dT2 R̂

−1 (T−12 x+ ∂2)(y + i1dT1),

and in the orders (xy)0, x1, (xy)1, y1 we, respectively, deduce second relations in (3.5.42),
(3.5.43), (3.5.41) and first relation in (3.5.43). Finally, the third relation in (3.5.51) is repre-
sented as

(y + dT1 i1)R̂dT1
1

(y + i1 dT1)
dT2 = −dT1

1

(y + dT2i2)
dT2R̂

−1(y + i2dT2),

and, after the change of parameter y → y−1
ϵλ

, introducing operators W,W (3.5.45) and applying
Eqs. (3.5.46), we write it in the form

(y + R̂ϵW1R̂
ϵ)(y +W1)R̂

ϵdT1 dT2 = −dT1 dT2R̂−ϵ(y +W 2)(y + R̂ϵW 2R̂
ϵ).

The terms of order y2 give the last relation in (3.5.41). The terms of order y0 and y1 are
identities in view of the relations (3.5.46) and (3.5.48) which encode last relations in (3.5.42)
and (3.5.44).

Corollary. The formulas (3.5.51) (incorporating the whole differential algebra (3.5.41), (3.5.42),
and (3.5.43)) have the structure of Eqs. (3.5.41) for which one can easily establish the Poincaré–
Birkhoff–Witt (PBW) property. This indicates that the whole differential algebra (3.5.41),
(3.5.42) and (3.5.43), (3.5.44) is also of the PBW type (the flat deformation of the differential
algebra obtained in the classical limit q → 1, R̂ → P ). We also note that the signs of powers of
R̂-matrices are flashing R̂ϵ̄ → R̂−ϵ̄ in the first relation in (3.5.44) and not flashing R̂ϵ → R̂ϵ in
the second relation in (3.5.44). This is important, otherwise relations (3.5.51) are not fulfilled.

Here we present additional commutation relations for the invariant operators (3.5.45). These
relations are useful from a technical point of view.

Ω1 T2 = T2 R̂
−1Ω2 R̂

−1, T1Ω2 = R̂12Ω1 R̂12 T1,

W 1 T2 = T2 R̂W 2 R̂
−1, T1 W2 = R̂W1R̂

−1 T1,

I1 T2 = R̂ T2 R̂ I2, T1 I2 = R̂−1 I1R̂
−1 T1,

L1 dT2 = dT2 R̂
−1
12 L2 R̂12, dT1 L2 = R̂−112 L1 R̂12 dT1,

R̂−1Ω2 R̂
−1Ω2 = −Ω2 R̂

−1Ω2 R̂, R̂12Ω1 R̂Ω1 = −Ω1 R̂Ω1 R̂
−1,

R̂−ϵ̄ L2 R̂
−ϵ̄ Ω2 = Ω2 R̂

−1 L2 R̂, Ω1 R̂
ϵ̄ L1 R̂

ϵ̄ = R̂−1 L1 R̂Ω1.

(3.5.52)
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R̂12 I2 R̂12 I2 = −I2 R̂12 I2 R̂
−1
12 , R̂−112 I1 R̂

−1
12 I1 = −I1 R̂

−1
12 I1 R̂12,

R̂12I2 R̂
ϵ
12Ω2 + Ω2 R̂

ϵ
12 I2 R̂12 = R̂12, I1 R̂

ϵ
12Ω1 R̂12 + R̂12Ω1 R̂

ϵ
12 I1 = R̂12,

Ω2 R̂
ϵ
12W 2 R̂

ϵ
12 = R̂12W 2 R̂

−1
12 Ω2 , R̂ϵ

12W1 R̂
ϵ
12Ω1 = Ω1 R̂12W1 R̂

−1
12 ,

R̂ϵ
12W 2 R̂

ϵ
12 I2 = I2 R̂12W 2 R̂

−1
12 , I1 R̂

ϵ
12W1 R̂

ϵ
12 = R̂12W1 R̂

−1
12 I1,

(3.5.53)

where we denote I = iT and I = T i.
Now instead of the left L and the right L invariant vector fields, we introduce new left and

right invariant operators [84]:

L := W L = (1− ϵλ i dT )(1− ϵ̄λ ∂ T ), L := W L = (1− ϵλ dT i)(1− ϵ̄λ T ∂).

As we mentioned above, all algebras Aϵ,ϵ̄ are equivalent for different choice of the signs ϵ, ϵ̄. For
simplicity, further we consider only the left invariant operators and fix ϵ = 1 and ϵ̄ = −1. In
accordance with the formulas (3.5.52), (3.5.53) for ϵ = 1 and ϵ̄ = −1, we have the following
statement.

Proposition 3.12. The complete set of commutation relations for the exterior differential
algebra Γ∧ ⊂ Aϵ,ϵ̄|ϵ=−ϵ̄=1 with generators T , L, I, Ω is [79, 84, 90, 91]:

R̂T1T2 = T1T2R̂, Ω1 T2 = T2 R̂
−1Ω2 R̂

−1, R̂−1Ω2 R̂
−1Ω2 = −Ω2 R̂

−1Ω2 R̂, (3.5.54)

L2R̂L2R̂ = R̂L2R̂L2, Ω2R̂L2R̂ = R̂L2R̂Ω2, I2R̂L2R̂ = R̂L2R̂I2,

L1T2 = T2R̂L2R̂, I1 T2 = R̂ T2 R̂ I2, R̂12 I2 R̂12 I2 = −I2 R̂12 I2 R̂
−1
12 ,

(3.5.55)

R̂12I2 R̂12Ω2 + Ω2 R̂12 I2 R̂12 = R̂12, (3.5.56)

where R̂ := R̂12 is the Hecke-type R-matrix.

We note that, for the Hecke-type R̂-matrix, the differential algebra (3.5.54)–(3.5.56) is identical
to the differential algebra Γ∧, proposed in the papers [79, 90, 91], up to the relation (3.5.56)
which is written in those papers as R̂12I2 R̂12Ω2 +Ω2 R̂12 I2 R̂12 = −R̂12. The change of the sign
in the right-hand side of the relation (3.5.56) can be achieved by the transformation I → −I.

By using the general construction [89] of the BRST charge for an arbitrary quantum Lie
algebra, we have constructed in [90] a BRST operator Q for the differential algebra (3.5.55) in
the following form14:

Q = TrQ

(
Ω
(L − 1)

λ
+ ΩL Ω I

(1− λΩ I)

)
= −1

λ
TrQ(Ω) +

1

λ
TrQ (Θ) , (3.5.57)

where Θ := ΩL (1−λΩ I)−1 and TrQ(X) := q2d Tr(QX) is the second quantum trace in (3.1.39).
The normalization factor q2d is introduced to have TrQ1(R̂

−1) = I2 (see (3.1.28), (3.1.71)). We
note that the left invariant operator W̃ := (1 − λΩ I), appeared in (3.5.57), differs from the
operator W = (1− λI Ω) defined in (3.5.45). For the operator W̃ we have

W̃2 R̂L2 R̂ = R̂L2 R̂ W̃2, W̃2 R̂Ω2 R̂
−1 = R̂−1Ω2 R̂

−1 W̃2,

W̃2 R̂ I2R̂
−1 = R̂ Ĩ2R̂ W̃2, W̃2 R̂ W̃2 R̂ = R̂ W̃2 R̂ W̃2, Θ2R̂

−1W̃2R̂ = R̂W̃2R̂Θ2.
(3.5.58)

14In all formulas in [90], we should make the change of notation: ω → Ω, J → −I, L→ L.
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In the definition (3.5.57), the differential 1-forms Ωi

k and the inner derivatives I i

k play the role
of the ghost and antighost variables. One can check directly [90] that the BRST operator Q
given by (3.5.57) satisfies

Q2 = 0, [Q, L] = 0, (3.5.59)

[Q, T ] = T Ω ≡ d T, [Q, Ω]+ = −Ω
2 ≡ dΩ, (3.5.60)

[Q, I]+ =
1

λ
(L − 1). (3.5.61)

The (anti)commutator with Q (relations (3.5.60)) defines the exterior differential operator over
the differential algebra (3.5.41); it provides the structure of the de Rham complex on the
subalgebra with generators T i

j and Ω
i

j (the de Rham complex over the quantum group GLq(N)
has been firstly considered by Yu. Manin, G. Maltsiniotis, and B. Tsygan [75–77]).

To obtain relations (3.5.59)–(3.5.61), one has to use the invariance property (3.1.38) of the
quantum trace TrQ and the relations

R̂Θ2 R̂
−1Ω2 = −Ω2 R̂

−1Θ2 R̂, R̂Θ2 R̂
−1Θ2 = −Θ2 R̂

−1Θ2 R̂
−1, (3.5.62)

R̂−1Θ2 R̂L2 = L2 R̂Θ2 R̂
−1, Θ1 T2 = T2 R̂

−1Θ2 R̂, (3.5.63)

I2 R̂Θ2 R̂
−1 + R̂−1Θ2 R̂ I2 = L2 W̃

−1
2 R̂−1 W̃2, (3.5.64)

which follow from (3.5.54)–(3.5.56) and (3.5.58). In particular, the condition Q2 = 0 follows
from the last equation in (3.5.54) and equations (3.5.62) which lead to identities(

TrQ(Ω)
)2

= 0 ,
(
TrQ(Θ)

)2
= 0 , [TrQ(Θ), TrQ(Ω)]+ = 0 . (3.5.65)

Here we take into account that TrQ(Θ2) = 0 = TrQ(Ω
2
) (see Section 4 in [84]). Finally, we note

(for details see [90]) that the operator Q given by (3.5.57) has the correct classical limit for
q → 1, λ = q − q−1 → 0, R̂12 → P12 and L → 1 + λX, where elements X i

k are interpreted as
Lie algebra generators.

b. Quantum group covariant connections and curvatures
To proceed further we introduce the Z2-graded algebra (denoted by E) of quantum hyperplane
with generators {ei, (de)i} (i = 1, 2, . . . N) satisfying commutation relations

R12e1⟩e2⟩ = ce2⟩e1⟩, (±)cR12(de)1⟩e2⟩ = e2⟩(de)1⟩, R12(de)1⟩(de)2⟩ = −1
c
(de)2⟩(de)1⟩.

(3.5.66)
One can recognize in these relations (for (±) = +1) the Wess–Zumino formulas of the covariant
differential calculus on the bosonic (c = q) and fermionic (c = −1/q) quantum hyperplanes [42,
73, 74, 78, 79], where ei are the coordinates of the quantum hyperplanes and (de)i are the
associated differentials (differential 1-forms). The Z2-graded algebra E =

∑
k⩾0Ω

k(E) is the
sum of subspaces Ωk(E) of differential k-forms.

The left-coaction ∆l of the Z2-graded Hopf algebra (3.5.41) to the generators of the algebra
E is given by the following homomorphism:

ei
∆l−→ ẽi = Tij ⊗ ej, (de)i

∆l−→ (d̃e)i = (dT )ij ⊗ ej + Tij ⊗ (de)j. (3.5.67)

The algebra E with generators {e, de} becomes now a left-comodule algebra with respect to the
coaction (3.5.67), since all the axioms for the comodule algebras are fulfilled [82].
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Now we assume that the algebra E can be extended to Ē by adding new elements Aij|i,j=1,...,N .
We also assume that the differential d can be extended onto the whole algebra Ē and hence again
this algebra is decomposed as Ē =

∑
k⩾0Ω

k(Ē). Then we postulate, first, that the elements Aij

belong to the subspace Ω1(Ē) and, second, that the elements (∇e)i ∈ Ω1(Ē) defined as

(∇e)i = (de)i − Aijej (3.5.68)

are transformed homogeneously under (3.5.67) as the left-comodule

(∇e)i
∆l−→ Tij ⊗ (∇e)j = Tij ⊗ ((de)j − Ajkek) . (3.5.69)

According to the classical case, we interpret the operator Aij satisfying (3.5.69) as a quantum
deformation of a gauge potential 1-form and the operator ∇ as the quantum version of the
covariant derivative. The second action of ∇ on both sides of (3.5.68) gives

(∇(∇e))i = −
(
d(A)− A2

)
ij
ej = −Fij ej, (3.5.70)

where we define the noncommutative analog of the field strength (curvature) 2-form F . The
next action of the covariant derivative to the formula (3.5.70) yields the Bianchi identity which
is written in the standard form d(F ) = [A, F ]. Using (3.5.67), (3.5.69), and (3.5.70), one
can deduce the noncommutative analog of the gauge transformation for the noncommutative
connection 1-form and curvature 2-form as

Aik
∆l−→ Ãik = TijT

−1
lk ⊗ Ajl + dTijT

−1
jk ⊗ 1, Fij

∆l−→F̃ij =
(
TikT

−1
lj

)
⊗ Fkl. (3.5.71)

As it was argued in [82, 83], the possible choice of the covariant algebra of the connection
1-form A and curvature 2-form F is given by the defining relations

F1R̂12A1R̂12 = R̂12A1R̂12F1, F1R̂12F1R̂12 = R̂12F1R̂12F1, (3.5.72)

R̂12A1R̂12A1 + A1R̂12A1R̂
−1
12 = λ g (R̂12F1 + F1R̂

−1
12 ), (3.5.73)

where λ = q − q−1 and g is an arbitrary parameter. In particular, to check the commutation
relations (3.5.73) for the elementsAij, we remark that there is a representation for the generators
Aij, namely A = dTT−1 ⊗ 1, which is related to the flat connection Fij = 0. Using this
representation and formulas (3.5.41), we conclude that the generators Aij have to satisfy relation
(3.5.73) with the r.h.s. equal to zero. In what follows, we consider only the case g = 0. Note
that the algebra (3.5.72), (3.5.73) (for g = 0) is covariant not only under coaction (3.5.71) of
the RTT algebra, but also is a braided comodule algebra with respect to the braided coaction
of the RLRL algebra [88].

Let R̂ be a skew-invertible R-matrix for which we define the quantum traces (3.1.39) with
properties (3.1.38) (see also (3.2.12), (3.2.13), and (3.2.14)). By analogy with the classical case,
we can consider the noncommutative version of the invariant Chern characters [82, 83, 88]:

C(k) = Trq(F
k) = Tr(DF k) = DijFjj1Fj1j2 . . . Fjk−1i, (3.5.74)

where we have used the quantum trace (3.2.12), with matrix D. Chern characters (3.5.74) are
central elements for the algebra (3.5.72) (the proof is the same as proof of (3.2.34)). Applying
(3.2.13), we immediately obtain that 2k-forms C(k) (3.5.74) are coinvariants under the adjoint
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cotransformation of F given in (3.5.71). Moreover, C(k) are the closed 2k-forms. Indeed, from
the Bianchi identities dF = [A,F ] we deduce

dC(k) = Trq(AF
k − F k A) = 0, (3.5.75)

where we have taken into account (see Eqs. (3.1.22), (3.1.36), (3.5.72)):

Trq(AF
k) = Trq1Trq2(R̂

−1
12 R̂12A1 R̂12 F

k
1 ) = Trq1Trq2(R̂

−1
12 F

k
1 R̂12A1 R̂12) =

= Trq1Trq2(F
k
1 R̂12A1) = Trq(F

k A).
(3.5.76)

We note that Trq(A
2k) = 0 for the algebra (3.5.73), when g = 0 (see Proposition 4 in [84]). In

view of this, the natural conjecture is that C(k) have to be presented, for g = 0, as the exact
form C(k) = dL

(k)
CS, where the noncommutative Chern–Simons (2k − 1)-forms L(k)

CS are

L
(k)
CS = Trq

(
A(dA)k−1 +

1

h
(k)
1

A3(dA)k−2 + · · ·+ 1

h
(k)
k−1

A2k−1
)
, (3.5.77)

and unknown coefficients h(k)j depend on the choice of the Hecke matrix R̂ (in the classical case
R̂12 = P12 and q = 1, all these coefficients are known [92]). We checked this conjecture in the
case k = 2, for GLq(N) R-matrix (3.4.8) and the special algebra (3.5.73), when g = 0. In this
case, we obtained [82, 83] a noncommutative analog of the three-dimensional Chern–Simons
term in the form

L
(2)
CS = Trq

(
AdA+

1

h
(2)
1

A3
)
, h

(2)
1 = − q2 + 1 + q−2

q2 + q−2
. (3.5.78)

Remark. The elements of the differential calculus on the RLRL (reflection equation) algebra
were considered in papers [23–25, 88], [93] (see also references therein).

3.5.4. α-Deformation of the Heisenberg double of RTT and RLRL algebras. Quantum Cayley–
Hamilton–Newton identities

Now for the right HD (3.2.57) (the algebra (3.5.26) with upper sign) we calculate the
commutation relations of the elements am(L) with generators T i

j of the RTT algebra defined
by the Hecke-type R-matrix. Note that in the case of the Heisenberg double of Fun(SLq(N))

and Uq(sl(N)), we need to renormalize the Hecke R-matrix: R̂ → q−1/N R̂ according to (3.4.40).
This leads to the following generalization of the cross-multiplication rules (3.2.57) (we consider
only the right HD):

T1L2 = α R̂12L1R̂12T1, (3.5.79)

where R̂ is a Hecke R-matrix (3.4.11) of the height N and for the special case of the SLq(N)-
type HD we have to fix α = q−2/N (but generally the constant α ̸= 0 is arbitrary). So, the
commutation relations (3.5.79) define the one-parameter deformation of the Heisenberg double
of RTT and RLRL algebras for the Hecke-type R-matrix. Note that the automorphism (3.2.60)
is only correct for the choice α = 1 in (3.5.79). For example, in view of (3.5.79), the quantum
matrices (L+ x)T start to obey the modified RTT relations

R̂1 (L1 + x)T1 (α
−1L2 + x)T2 = (L1 + x)T1 (α

−1L2 + x)T2 R̂1. (3.5.80)
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However, for the general choice of α in (3.5.79), the definition of the characteristic polynomial
(3.5.34) is not changed, since instead of (3.5.33), we can take

(L1 + x)T1 (α
−1L2 + x)T2 . . . (α

1−NLN + x)TN E1...N⟩ det−1q (T ) =

=
(
(L1̃ + x) (L2̃ + x) . . . (LÑ + x)

)
E1...N⟩ = E1...N⟩Detq(L;x)

(3.5.81)

(according to (3.5.80), we modify the first line in (3.5.33) but it does not affect the final
expressions for Detq(L;x) and coefficients am(L)). To calculate the commutation relations of
am(L) with T i

j , we find (by using (3.5.81), (3.5.80), (3.5.22), and (3.5.25))

(L1 + x)T1Detq(L;αx) E2...N+1⟩ =

= (L1 + x)T1 (α
−1L2 + x)T2 . . . (α

−NLN+1 + x)TN+1 E2...N+1⟩ αN

detq(T )
=

= R̂1 . . . R̂N(L1 + x)T1 . . . (α
−NLN+1 + x)TN+1 R̂

−1
N . . . R̂−11 E2...N+1⟩ αN

detq(T )
=

= E2...N+1⟩N
1⟩
⟨N+1Detq(L;x) detq(T )

(
α−NLN+1 + x

)
TN+1 (N

−1)
N+1⟩
⟨1

αN

detq(T )
=

= αNE2...N+1⟩N
1⟩
⟨N+1Detq(L;x)

(
q2(N−1LN)

N+1
+ x
)
(N−1TN)

N+1
(N−1)

N+1⟩
⟨1 =

= αN E2...N+1⟩Detq(L;x) (q
2 L1 + x)T1,

(3.5.82)

where we have taken into account the commutation relations of detq(T ) and Li
j deduced by the

standard method:
E⟨1...N detq(T ) LN+1 = E⟨1...N T1 . . . TN LN+1 =

= αN E⟨1...N R̂N . . . R̂1L1R̂1 . . . R̂NT1 . . . TN = q2 αN (N−1 LN)
N+1

detq(T ) E⟨1...N
(3.5.83)

(Eqs. (3.5.79) and (3.5.20) were applied). Thus, we have the following relations (see (3.5.82)):

(L1 + x)T1Detq(L;αx) = αN Detq(L;x) (q
2 L1 + x)T1. (3.5.84)

The expansion of (3.5.84) over x gives the recurrent equation for desired commutation relations
of ak(L) with T i

j (k ⩾ 0):

α−k LT ak + α−1−k T ak+1 = q2 ak LT + ak+1T, T a0 = a0 T.

These equations are easy to solve by iteration, and the solution is

α−k Tak = akT − (q2 − 1)
k∑

m=1

(−1)mak−mL
m T. (3.5.85)

Since the matrix T is invertible, we write this equation in the form

α−k Tak T
−1 = ak − (q2 − 1)

k∑
m=1

(−1)mak−mL
m. (3.5.86)

For the left-hand side of (3.5.86), by using the definition (3.5.40) of ak, we deduce

α−k q−k T1ak T
−1
1 = α−k T1TrD(2...k+1)

(
A2...k+1 L2R̂2L2R̂

−1
2 . . . R̂k←2L2R̂

−1
k←2

)
T−11 =

= TrD(2...k+1)

(
A2...k+1 R̂1 . . . R̂k L1 . . . Lk R̂k . . . R̂1A2...k+1

)
=

= TrD(2...k+1)

(
R̂(1→k)A1...k L1 . . . Lk A1...k R̂(k←1)

)
=

= TrD(2...k+1)

(
R̂1 . . . R̂k A1...k L1 . . . Lk A1...k(R̂

−1
k + λ) R̂(k−1←1)

)
=
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= TrD(2...k)

(
R̂(1→k−1)

[
TrD(k)(A1...kL1 . . . Lk A1...k)

]
R̂(k−1←1)

)
+

+λ q2(1−k) TrD(2...k) (A1...kL1 . . . Lk) ,
(3.5.87)

where in the last transformation we apply the first identities in (3.1.22) and (3.1.38). By
repeating this transformation (3.5.87) for many times, we obtain

α−k q−k T1ak T
−1
1 = q−kak + λ(1 + q−2 + . . . q2(1−k))TrD(2...k) (A1...kL1 . . . Lk) =

= q−kak + q(1− q−2k)TrD(2...k) (A1...kL1 . . . Lk) . (3.5.88)

Comparing (3.5.86) and (3.5.88), we obtain the remarkable identities for quantum RE matrices
L (the so-called Cayley–Hamilton–Newton identities [125]):

[k]q TrD(2...k)(A1→kL1 . . . Lk) = −
k∑

m=1

(−1)mak−mL
m
1 . (3.5.89)

It follows from (3.5.89) (apply TrD(1) to the both sides) that the two basic sets (3.2.29), (3.5.40)
of central elements for the RE algebra (defined by the Hecke-type R-matrix) are related by the
q-analogue of the Newton relations:

[k]q
qk

ak +
k∑

m=1

(−1)mak−m pm = 0, k = 1, . . . , N, (3.5.90)

where we introduce power sums pm = TrD(L
m), m = 1, . . . , N , and we imply a0 = 1. Note that

in view of (3.5.30), (3.5.38), and (3.5.8), we have

[N ]q TrD(2...N)(A1→NL1 . . . LN) = [N ]q TrD(2...N)

(
A1→NL1̃ . . . LÑ(y2 · · · yN)

−1) =
= [N ]q Detq(L) q

(N−1)N TrD(2...N)(A1→N) = Detq(L) I1 ≡ aN I1.

Thus, for k = N the relation (3.5.89) provides the characteristic identity for the quantum
matrix L (q-analogue of the Cayley–Hamilton theorem):

N∑
k=0

(−L)k aN−k(L) = 0. (3.5.91)

This identity can formally be obtained by the substitution of x = −L in the characteristic
polynomial (3.5.34). Therefore, in view of (3.5.90) and (3.5.91), the elements am(L) can be
interpreted as noncommutative analogs of elementary symmetric functions for eigenvalues of
the quantum matrix L (see details in [129]).

Introduce generating functions a(t), p(t) for elementary symmetric functions and power
sums:

a(t) =
∑
k⩾0

ak t
k, p(t) =

∑
k⩾1

pk t
k.

Then it is worth noting [47] that quantum Newton relations (3.5.90) can be written as a finite
difference equation for a(t):

a(t) p(−t) = a(q−2t)− a(t)

q − q−1
. (3.5.92)
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This equation shows that the power sums pk can always be expressed as polynomials of the
elementary symmetric functions ak.

The Cayley–Hamilton–Newton identities (3.5.89) for the GL(n)-type quantum matrix alge-
bra were invented in [125]. It seems that these matrix identities were unknown even for the case
of usual commutative matrices (q = 1). For the reflection equation algebra, in the case N = 2,
the identity (3.5.91) was considered in [141] and in [264]. For general N these identities were
proved in [126, 127]. The Newton relations (3.5.90) have been obtained in [127, 128]. Identities
(3.5.82)–(3.5.85) and their special cases were essentially used in [129] (see Propositions 3.21
and 3.24 there). Moreover, the spectral properties of the reflection equation matrices Li

j were
investigated in [129]. In fact, all algebraic relations and identities of this section were important
for the investigations [129] of the theory of the q-deformed isotropic top [98, 124].

For GL(m|n)-type quantum supermatrix algebras, Cayley–Hamilton identities were ob-
tained in [130]. For orthogonal and symplectic types quantum matrix algebras, Cayley–
Hamilton identities and Newton relations were derived in [131].

3.6. Multiparameter deformations of linear groups

In this subsection, we consider a multiparameter deformation of the linear group GL(N)
(see [57, 74] and [132–137]). A multiparameter quantum hyperplane is defined by the relations

xixj = rijx
jxi, i < j, (3.6.1)

which can be written in the R-matrix form (3.4.6) if we introduce an additional parameter q.
Thus, we have N(N − 1)/2 + 1 deformation parameters: rij, i < j and q. The corresponding
R-matrix is (see, e.g., [57])

R12 = q
∑
i

ei,i ⊗ ei,i +
∑
i ̸=j

(ei,i ⊗ ej,j)aji + (q − q−1)
∑
i>j

ei,j ⊗ ej,i, (3.6.2)

where aij = 1/aji = rij/q (for i > j), and it can be represented in components as

Ri1,i2
j1,j2

= δi1j1δ
i2
j2

(
qδi1i2 +Θi2i1

q

ri1i2
+Θi1i2

ri2i1
q

)
+ (q − q−1)δi1j2δ

i2
j1
Θi1i2 , (3.6.3)

where Θij is defined in (3.4.10). The R-matrix (3.6.2) is obtained by the twisting of the standard
one-parameter R-matrix (3.4.8) (see Subsection 2.5 and Eqs. (2.5.6), (3.2.68)):

R12 → F21R12F
−1
12 ⇔ R̂12 → F12R̂12F

−1
12 , F12 =

∑
i,j

(ei,i ⊗ ej,j) fij, (3.6.4)

where aij = fij/fji and F̂ = PF satisfies the twisting matrix conditions (3.2.67). Thus, the
multiparametric R-matrix (3.6.3) is reduced to the one-parameter R-matrix with the help of
the appropriate twisting (see also [57] and [137]).

By the construction, in view of the twisting procedure (3.6.4), (3.2.67), the R-matrix (3.6.3)
satisfies the Yang–Baxter equation (3.1.11) and the same Hecke condition (3.4.11) as in the one-
parameter case.

Now, to justify expression (3.6.3), we try to find the most general Yang–Baxter solution R12

of the form (3.4.7). We only require that the R-matrix (3.4.7) has the lower-triangular block
form: bij = 0 for i ⩾ j (as it was shown in [68], this condition is not restrictive). When we
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check the fulfillment of the Yang–Baxter equation, it is convenient to use the diagrammatic
technique [46]:

R̂ = R̂i1,i2
j1,j2

= δi1j2δ
i2
j1

(
a0i1δ

i1i2 +Θi2i1a
−
i1i2

+Θi1i2a
+
i1i2

)
+ bi1i2δ

i1
j1
δi2j2Θi2i1 = (3.6.5)

i1
@
@@

�
��

j1

a0i1

j2

@
@@

�
��

i2

+

i1
@
@@

�
��

j1

a−i1i2�

j2

@
@@

�
��

i2

+

i1
@

@@

�
��

j1

a+i1i2-

j2

@
@@

�
��

i2

+ �
bi1i2

i1

j1 j2

i2

It turns out that not all solutions of the Yang–Baxter equation (3.1.11) that can be repre-
sented in the form (3.6.5) are exhausted by the multiparameter R-matrices (3.6.3). Indeed, if
we substitute the matrix (3.6.5) into the Yang–Baxter equation (3.1.11), we obtain the following
general conditions on the coefficients a0i , a

±
ij, bij:

bij = b, a+ija
−
ji = c, (a0i )

2 − ba0i − c = 0 (∀i, j). (3.6.6)

We normalize (3.6.5) in such a way that c = 1 and choose for convenience, instead of the
parameter b, a different parameter q, setting b = q − q−1. Then a0i can take two values
±q±1. For such a normalization, the solution of the Yang–Baxter equation of the form (3.6.5)
automatically satisfies the Hecke relation (3.4.11). If we set a0i = q (or a0i = −q−1) for all i,
then we arrive at the many-parametric case GLq,rij(N) (3.6.3) (up to exchange q → −q−1 in
the case a0i = −q−1). If, however, we set

a0i = q (1 ⩽ i ⩽M), a0i = −q−1 (M + 1 ⩽ i ⩽ N), (3.6.7)

then the R-matrix (3.6.5) does not reduce to (3.6.3) and will correspond to a multi-parameter
deformation of the supergroup GL(M |N −M):

R̂12 =
∑
i

(−1)[i] q1−2[i] eii ⊗ eii +
∑
i ̸=j

a+ij eij ⊗ eji + λ
∑
j>i

eii ⊗ ejj, (3.6.8)

where i, j = 1, . . . , N +M , [i] = 0, 1 (mod(2)), we take into account (3.6.7) and a+ij = 1/a+ji for
i > j. We consider this case (for a special choice of a+ij) below in Subsection 3.7.

By virtue of the fulfillment of the Hecke identity (3.4.11) for the multiparameter case, we
can introduce the same projectors P− and P+ as in the one-parameter case (3.4.21); the first
of them defines the bosonic quantum hyperplane (3.6.1) (the relations (3.4.6) with R-matrix
(3.6.3)), and the second one defines the fermionic quantum hyperplane:

P+x1x2 = 0 ⇔ (xi)2 = 0, q2xixj = −rijxjxi (i > j). (3.6.9)

Regarding (3.6.1) and (3.6.9) as comodules for the multiparameter quantum group GLq,rij(N),
we find that the generators T i

j of the algebra Fun(GLq,rij(N)) satisfy the same RTT rela-
tions (3.2.1) but with R-matrix (3.6.3). Note, however, that the quantum determinant detq(T )
(3.4.30) is not central in the multiparameter case [135]. This is due to the fact that in general
for the multiparameter R-matrix we have N ̸= const · I in Eqs. (3.5.21) and (3.5.25). There-
fore, reduction to the SL case by means of the condition detq(T ) = 1 is possible only under
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certain restrictions on the parameters q, rij. A detailed discussion of these facts can be found
in [135, 137].

The algebra (3.2.21), (3.2.22) (with the multiparameter R-matrix (3.8.3)) which is dual to
the algebra Fun(GLq,rij(N)) can also be considered. It appears that this algebra is isomorphic
to the one-parameter deformation of gl(N) (3.4.54)–(3.4.58). One can find details about the
dual algebras for the special case of Fun(GLq,p(2)) in papers [141, 142].

3.7. The quantum supergroups GLq(N |M) and SLq(N |M)

We choose the Hecke-type R-matrix (3.6.5), (3.6.8) and write it in the form (cf. [150–152])

R̂ =
∑
i

(−1)[i] q1−2[i] eii ⊗ eii +
∑
i ̸=j

(−1)[i][j] eij ⊗ eji + λ
∑
j>i

eii ⊗ ejj, (3.7.1)

where we have set (see (3.6.8))

a0i = (−1)[i]q1−2[i], a+ij = (a−ij)
−1 = (−1)[i][j], b = q − q−1 = λ.

We stress here that the matrix units eij and tensor products in (3.7.1) are not graded, as follows
form the previous Subsection 3.6. The component presentation of (3.7.1) is

R̂i1,i2
j1,j2

= δi1j2δ
i2
j1
(−1)[i1][i2] qδi1i2 (1−2[i1 ]) + δi1j1δ

i2
j2
λΘi2i1 . (3.7.2)

Thus, the parameters a0i take the two values ±q±1 and, as we assumed it in Subsection 3.6,
the R-matrix (3.7.1), (3.7.2) must correspond to some supergroup. Indeed, in the limit q → 1,
we find that R̂ tends to the supertransposition operator

R̂i1i2
j1j2

→ (−1)[i1][i2]δi1j2δ
i2
j1
≡ P12. (3.7.3)

Suppose that the R-matrix acts in the space of the direct product x⊗ y of two supervectors x and
y with coordinates xj1 and yj2 , and [i] = 0, 1 denotes the parity (grading) of the components15

xi and yi. According to (3.7.3), we write the condition for the graded tensor product ⊗ as

xj1⊗ yj2 = Pj1j2
k1k2

(1⊗ yk1)(xk2⊗ 1) ⇒ xj1⊗ yj2 = (−1)[j1][j2](1⊗ yj2)(xj1⊗ 1).

For definiteness, we will assume that

[i] = 0 (1 ⩽ i ⩽ N), [i] = 1 (N + 1 ⩽ i ⩽ N +M). (3.7.4)

As we noted in Subsection 3.6, the R-matrix (3.7.2) satisfies the Yang–Baxter equation
(3.1.11) (in the braid group form) and the Hecke relation (3.1.68). In addition to the matrix
R̂, we introduce the new R-matrix:

R12 = P12R̂12 = (−)(1)(2)P12R̂12 =

=
∑
i

q1−2[i] eii ⊗ eii +
∑
i ̸=j

eii ⊗ ejj + λ
∑
i>j

(−1)[i][j] eij ⊗ eji (3.7.5)

15There are two equivalent descriptions of supervector spaces V . The first one is to consider the graded basis
vectors ei, while coordinates xi of supervectors eixi ∈ V are ordinary numbers. Another (dual) approach is
that vectors ei form a bases of an ordinary vector space, but coordinates xi are graded in such a way that eixi
belongs to the superspace V . Here we use the second approach.
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with the semiclassical behavior (3.3.1). Here and below we use notation(
(−)(1)(2)

)i1i2
j1j2

:= (−1)[i1][i2] δi1j1 δ
i2
j2
. (3.7.6)

Then, for the new R-matrix (3.7.5), we obtain from Eq. (3.1.11) the graded form [154] of the
Yang–Baxter equation:

R12(−)(2)(3)R13(−)(2)(3)R23 = R23(−)(2)(3)R13(−)(2)(3)R12, (3.7.7)

where we have taken into account the fact that R12 is an even R-matrix, i.e.,

Ri1i2
j1j2

̸= 0 if [i1] + [j1] + [i2] + [j2] = 0 (mod(2)) ⇒

(−1)[i3]([i1]+[i2])Ri1i2
j1j2

δi3j3 = Ri1i2
j1j2

δi3j3 (−1)[j3]([j1]+[j2]) ⇔

(−)(3)((1)+(2))R12 I3 = R12 I3 (−)(3)((1)+(2)).

In the last relation, we set(
(−)(3)((1)+(2))

)i1i2i3
j1j2j3

= (−1)[i3]([i1]+[i2]) δi1j1 δ
i2
j2
δi3j3 .

For the R-matrix (3.7.1), (3.7.2) we will also use the properties

R̂12 = (−)(1)(2)R̂12(−)(1)(2), (−)(1)+(2)R̂12 = R̂12(−)(1)+(2). (3.7.8)

Since GLq(N |M) R-matrix (3.7.2) satisfies the Hecke condition, we find

(R̂−1)i1,i2j1,j2
= R̂i1,i2

j1,j2
− λ δi1j1δ

i2
j2
= δi1j2δ

i2
j1
(−1)[i1][i2] qδi1i2 (2[i1 ]−1) − λ δi1j1δ

i2
j2
Θi1i2 ,

and we have the identities (cf. (3.4.12))

R̂−112 [q
−1] = R̂21[q]. (3.7.9)

Finally, the skew-inverse matrix Ψ12 (3.1.18) for the GLq(N |M) R-matrix, defined in (3.7.1),
(3.7.2), has the form

Ψ̂12 =
∑
i

eii ⊗ eii(−1)[i]q2[i]−1 +
∑
i ̸=j

(−1)[i][j]eij ⊗ eji−

−λ
∑
i<j

eii ⊗ ejj(−1)[i]+[j]q(−1)
[i]
(2i−2N−1)−(−1)[j] (2j−2N−1),

Ψ̂i1i2
j1j2

= (−1)
[i1][i2] q

δi1i2
(2[i1 ]−1) δi1j2δ

i2
j1
−

−(−1)
[i1]+[i2]λ q(−1)

[i1] (2i1−2N−1) q(−1)
[i2] (1+2N−2i2))Θi2i1 δ

i1
j1
δi2j2 ,

(3.7.10)

which follows from the general formula (3.4.14) (for the case [i1] = [i2] = 0, we reproduce the
matrix (3.4.15)). The corresponding matrices of quantum supertraces are

D1 ≡ Tr2

(
Ψ̂12

)
⇒ Di

j = (−1)
[i]
q2M+(−1)[i] (2i−2N−1) δij,

Q2 ≡ Tr1

(
Ψ̂12

)
⇒ Qi

j = (−1)
[i]
q−2M+(−1)[i] (2N+1−2i)δij,

Tr(D) = Tr(Q) = (1− q2(M−N))/λ = q(M−N) [N −M ]q.

(3.7.11)
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Note that the quantum supertrace TrD, which is constructed by means of the matrix D (see
the first line in (3.7.11)), coincides up to the factor q(3M−N)/2 with the quantum trace presented
in [141]. For q → 1 quantum supertraces Tr

D
and Tr

Q
tend to the usual supertraces.

The quantum multidimensional superplanes for the Hecke-type R-matrix (3.7.2) are de-
fined as algebras V± with generators xi (i = 1, . . . , N + M) and defining relations (see, for
example, [74, 153] and [141]):

V− : (R̂− q)x1⟩x2⟩ = 0 ⇔ xixj = (−1)[i][j]qxjxi (i < j), (xi)2 = 0 if [i] = 1,

V+ : (R̂ + q−1)x1⟩x2⟩ = 0 ⇔ qxixj = −(−1)[i][j]xjxi (i < j), (xi)2 = 0 if [i] = 0.

(3.7.12)

The super-hyperplane V+ can be interpreted (see, e.g., [84]) as an exterior algebra of differentials
dxi of the coordinates xi for the first hyperplane V−.

We take the left coaction (3.4.3) of the quantum supergroup with generators T i
j to the

quantum superspaces V±, defined in (3.7.12), and consider this coaction to the spaces V±⊗V±:

(T i1
j1
⊗xj1) (T i2

j2
⊗xj2) = (−1)[j1]([i2]+[j2]) (T i1

j1
T i2
j2
)⊗ (xj1 xj2), (3.7.13)

where ⊗ is understood as a graded direct product. We postulate the gradings of the elements
T i
j and xi as [T i

j ] = [i]+[j] and [xi] = [i]. In [154], the right coaction of the quantum supergroup
was considered with another signs in the formulas, but it can be shown that this difference is
not essential.

From the condition of covariance of the relations (3.7.12) under coaction (3.7.13), we deduce
the graded form of the RTT equations:

R̂i1i2
k1k2

T k1
j1

(−1)[j1][k2] T k2
j2

(−1)[j1][j2] = T i1
k1
(−1)[k1][i2] T i2

k2
(−1)[k1][k2] R̂k1k2

j1j2
, (3.7.14)

written, with the help of the concise matrix notation (3.7.6), as (cf. (3.2.66))

R̂T1(−)(1)(2)T2(−)(1)(2) = T1(−)(1)(2)T2(−)(1)(2)R̂ ⇔

R12T1(−)(1)(2)T2(−)(1)(2) = (−)(1)(2)T2(−)(1)(2)T1R12,

(3.7.15)

and in the component form (we use the one-parametric R-matrix (3.7.2); the multiparametric
case was considered in [74]), we have

T i1
j1
T i2
j2
− (−1)([i1]+[j1])([i2]+[j2]) T i2

j2
T i1
j1

= (q − q−1) (−1)([j2][i2]+[j1]([i2]+[j2]) T i1
j2
T i2
j1

(i1 < i2, j1 < j2),

T i1
j1
T i2
j2

= (−1)([i1]+[j1])([i2]+[j2]) T i2
j2
T i1
j1

(i1 < i2, j1 > j2),

T i1
j1
T i2
j1

= (−1)[i1][i2] q T i2
j1
T i1
j1

([j1] = 0, i1 < i2),

T i1
j1
T i2
j1

= (−1)([i1]+1)([i2]+1) q−1 T i2
j1
T i1
j1

([j1] = 1, i1 < i2),

T i1
j1
T i1
j2

= (−1)[j1][j2] q T i1
j2
T i1
j1

([i1] = 0, j1 < j2),

T i1
j1
T i1
j2

= (−1)([j1]+1)([j2]+1) q−1 T i1
j2
T i1
j1

([i1] = 1, j1 < j2),

(T i1
j1
)2 = 0 ([i1] ̸= [j1]).

(3.7.16)

Relations (3.7.14)–(3.7.16) are the defining relations for the generators T i
j of the graded quantum

algebra Fun(GLq(N |M)).
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By using (3.3.1), the semiclassical analog of (3.7.15) can readily be deduced:{
T1, (−)(1)(2)T2(−)(1)(2)

}
= [T1(−)(1)(2)T2(−)(1)(2), r12],

or in the component form, we have

(−1)[j1]([i2]+[j2])
{
T i1
j1
, T i2

j2

}
=

= T i1
k1
(−1)[k1][i2] T i2

k2
(−1)[k1][k2] rk1k2j1j2

− ri1i2k1k2
T k1
j1

(−1)[j1][k2] T k2
j2

(−1)[j1][j2],

where {., .} denotes the Poisson superbrackets

{T i1
j1
, T i2

j2
} = −(−1)([i1]+[j1])([i2]+[j2]) {T i2

j2
, T i1

j1
}.

The matrix ||T i
j || is represented in the block form

T i
j =

(
A B

C D

)
, (3.7.17)

where the elements of the N × N matrix ||Ar
s|| and of the M × M matrix ||Dα

β || form the
algebras Fun(GLq(N)) and Fun(GLq−1(M)), respectively. Indeed, from (3.7.16) we have

R̂i1i2
k1k2

[q]Ak1
j1
Ak2

j2
= Ai1

k1
Ai2

k2
R̂k1k2

j1j2
[q], R̂α1α2

γ1γ2
[q−1]Dγ1

β1
Dγ2

β2
= Dα1

γ1
Dα2

γ2
R̂γ1γ2

β1β2
[q−1], (3.7.18)

where R̂i1i2
k1k2

[q] and R̂α1α2
γ1γ2

[q−1] are standard Fun(GLq(N)) and Fun(GLq−1(M)) R-matrices de-
fined in (3.4.10). We assume that the quantum matrices ||Ar

s|| and ||Dα
β || are invertible. It

means that the algebra Fun(GLq(N |M)) should be extended by the elements det−1q (A) and
det−1q−1(D) (see (3.4.38) and Definition 10). In this case, from (3.7.18) and (3.4.12) we obtain

R̂α1α2
γ1γ2

[q](D−1)γ1β1
(D−1)γ2β2

= (D−1)α1
γ1
(D−1)α2

γ2
R̂γ1γ2

β1β2
[q],

R̂i1i2
k1k2

[q−1](A−1)k1j1 (A
−1)k2j2 = (A−1)i1k1 (A

−1)i2k2R̂
k1k2
j1j2

[q−1].

For the elements of the rectangular matrices ||Br
β|| and ||Cα

s || we obtain from (3.7.16) the
commutation relations

R̂i1i2
k1k2

[q]Bk1
α1
Bk2

α2
= −Bi1

β1
Bi2

β2
R̂β1β2

α1α2
[q−1], Bi1

α1
Cα2

i2
= −Cα2

i2
Bi1

α1
,

−R̂α1α2
β1β2

[q−1]Cβ1

j1
Cβ2

j2
= Cα1

i1
Cα2

i2
R̂i1i2

j1j2
[q],

R̂α1α2
β1β2

[q]Cβ2

j2
Dβ1

γ1
= Pα1α2

β1β2
Dβ1

γ1
Cβ2

j2
, Bi2

β2
Dα1

β1
P β1β2
γ1γ2

= Dα1
β1
Bi2

β2
R̂β1β2

γ1γ2
[q−1],

Ak2
i2
Cα1

i1
R̂i1i2

j1j2
[q−1] = Cα1

i1
Ak2

i2
P i1i2
j1j2

, R̂i1i2
j1j2

[q−1]Aj2
k2
Bj1

β1
= P i1i2

j1j2
Bj1

β1
Aj2

k2
,

Ai
jD

α
β −Dα

βA
i
j = (q − q−1)Cα

jB
i
β.

By using these relations, one can prove that the elements of the matrix X = (A − BD−1C)
satisfy the RTT commutation relations

R̂i1i2
k1k2

[q]Xk1
j1
Xk2

j2
= X i1

k1
X i2

k2
R̂k1k2

j1j2
[q]. (3.7.19)

It means that elements X i
j (i, j = 1, . . . , N) generate a subalgebra Fun(GLq(N)) in

Fun(GLq(N |M)). Assume that the quantum matrix X = A−BD−1C is also invertible. Then
the same is valid for the matrix ||T i

j ||, as it follows from the Gauss decomposition:

T =

(
A B

C D

)
=

(
1 BD−1

0 1

)(
X 0

0 D

)(
1 0

D−1C 1

)
, (3.7.20)
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and we have

T−1 =

(
X−1 −X−1BD−1

−D−1C X−1 Y

)
=

(
X−1 −A−1BY

−Y CA−1 Y

)
, (3.7.21)

where Y = D−1CX−1BD−1 + D−1 = (D − CA−1B)−1. By inverting relations (3.7.15), we
obtain that elements of the inverse matrix T−1 satisfy

R̂12 (−)(1)(2)T−12 (−)(1)(2)T−11 = (−)(1)(2)T−12 (−)(1)(2)T−11 R̂12. (3.7.22)

Now we note that Eq. (3.7.19) is simply obtained from (3.7.18) and (3.7.22) if we take into
account (3.7.9) and (3.7.21).

In view of the existing of the inverse element (3.7.21), the algebra Fun(GLq(N |M)) with
defining relations (3.7.15) is a Hopf algebra with usual structure mappings (3.2.3):

∆(T i
k) = T i

j⊗T j
k , ϵ(T i

j ) = δij, S(T i
j ) = (T−1)ij,

where the product ⊗ in the definition of ∆ is understood as the graded direct product.
We define dual quantum multidimensional superplanes as a Fun(GLq(N |M))-comodule al-

gebra V∗ with generators yi (i = 1, 2, . . . , N +M) and left coaction (cf. (3.4.3)):

yi → δT (yi) = (1⊗ yj) ((T
−1)ji ⊗ 1) ≡ (−1)([i]+[j])[j] ((T−1)ji ⊗ yj). (3.7.23)

This coaction is such that the pairing

Q = (yi x
i) (3.7.24)

is a co-invariant element δT (Q) = 1⊗Q if the generators xi of the algebras V± (3.7.12) are
transformed according to (3.4.3). Assume that the grading of the coordinate yi is opposite to
the grading of xi, i.e., [yi] = [i] + 1. Then the dual algebras V∗, which are covariant under the
transformations (3.7.23), have the following defining relations (cf. (3.7.12)):

V∗− : y⟨2y⟨1

(
R̂

′

12 − q
)
= 0, V∗+ : y⟨2y⟨1

(
R̂

′

12 + q−1
)
= 0, (3.7.25)

where we have used new Hecke-type Yang–Baxter R-matrix: R̂ ′
12 = (−)(1)R̂12(−)(1). We check

directly the covariance of relations (3.7.25) under coaction (3.7.23):

y⟨2y⟨1

(
R̂

′

12 ± q∓1
)
→ y⟨2T

−1
2 y⟨1 T

−1
1

(
R̂

′

12 ± q∓1
)
=

= y⟨2 y⟨1(−)((1)+1)(2)T−12 (−)((1)+1)(2)T−11

(
R̂

′

12 ± q∓1
)
=

= y⟨2 y⟨1(−)(1)(2)+(2)T−12 (−)(1)(2)T−11

(
R̂12 ± q∓1

)
(−)(2) =

= y⟨2 y⟨1(−)(1)(2)+(2)
(
R̂12 ± q∓1

)
T−12 (−)(1)(2)T−11 (−)(2) =

= y⟨2 y⟨1

(
(−)(1)R̂12(−)(1) ± q∓1

)
(−)((1)+1)(2)T−12 (−)((1)+1)(2)T−11 .

Here we have used concise notation (1⊗ yj) ((T
−1)ji ⊗ 1) ≡ yj(T

−1)ji . In the component form,
Eqs. (3.7.25) are

V∗− : q yi yj = −(−1)([i]+1)([j]+1)yj yi (i < j), (yi)
2 = 0 if [i] = 1,

V∗+ : yi yj = (−1)([i]+1)([j]+1)q yj yi (i < j), (yi)
2 = 0 if [i] = 0.
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Covariant (with respect to coactions (3.4.3), (3.7.23)) cross-commutation relations for genera-
tors xi ∈ V± and yj ∈ V∗± are

x2⟩ y⟨2 = (−)(2) y⟨1 R̂12 x
1⟩.

Using these relations, we define covariant algebras V± ♯V∗± and V± ♯V∗∓ which are the cross-
products of algebras V± and V∗±. For q2 ̸= −1 one can easily check that the element Q ∈ V∓ ♯V∗±
(defined in (3.7.24) and having the grading [Q] = 1) satisfies Q2 = 0. Let d: V− ♯V∗+ → V− ♯V∗+
be the linear map d(f) = f ·Q, where f ∈ V− ♯V∗+, and we have d2(f) = 0. Put H(V− ♯V∗+) =
Ker(d)/Im(d). The map d defines the structure of the Koszul complex on V− ♯V∗+.

Proposition 3.13 (see [74]). H(V− ♯V∗+) is a one-dimensional subspace generated by∏
[i]=0

yi
∏
[j]=1

xj mod (Im(d)), (3.7.26)

and

δT

∏
[i]=0

yi
∏
[j]=1

xj

 = sdet−1q (T )⊗
∏
[i]=0

yi
∏
[j]=1

xj mod (Im(d)), (3.7.27)

where ∆(sdetq(T )) = sdetq(T )⊗ sdetq(T ). The element sdetq(T ) is called the quantum Berezi-
nian (or quantum superdeterminant).

We now compare the relations (3.7.15) with the graded Yang–Baxter equation (3.7.7). From
this comparison we readily see that the finite-dimensional matrix representations for the gen-
erators T i

j of the quantum algebra Fun(GLq(N |M)) (the superanalogs of the representations
(3.2.18)) can be chosen in the form

(T1)3 = (−)(1)(3)R13(−)(1)(3) ≡ R
(+)
13 , (T1)3 = (R−1)31 ≡ R

(−)
13 . (3.7.28)

From this, in an obvious manner, we obtain definitions of the quantum superalgebras which
are dual to the algebras Fun(GLq(N |M)) (cf. Eqs. (3.2.19)):

⟨L+
2 , T1⟩ = (−)(1)(2)R12(−)(1)(2) = R12, ⟨L−2 , T1⟩ = R−121 , (3.7.29)

where operator-valued matrices L± satisfy

R̂12 L
±
2 (−)(1)(2) L±1 (−)(1)(2) = L±2 (−)(1)(2) L±1 (−)(1)(2) R̂12,

R̂12 L
+
2 (−)(1)(2) L−1 (−)(1)(2) = L−2 (−)(1)(2) L+

1 (−)(1)(2) R̂12.
(3.7.30)

By using the identity R̂12(−)(1)(2) = (−)(1)(2)R̂12 (see (3.7.8)) for the R-matrix (3.7.1), one can
deduce from (3.7.30) the standard reflection equation (3.2.31) for the matrix L = S(L−)L+.

Recall that the R-matrix (3.7.1) for GLq(N |M) is such that its diagonal blocks R̂i1i2
k1k2

[q] and
R̂α1α2

γ1γ2
[q] are standard Fun(GLq(N)) and Fun(GLq(M)) R-matrices of the Hecke type and we

have commutation relations (3.7.18), (3.7.19) for matrices D and X = A−BD−1C. Then one
can write the quantum superdeterminant for GLq(N |M) by means of the definition (3.7.27) in
the form [74, 155, 156]

sdet−1q (T ) = detq−1(A−BD−1C)−1 detq−1(D), (3.7.31)
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where detq is defined in (3.4.32). Then the algebra Fun(SLq(N |M)) is distinguished by the
relation sdetq(T ) = 1.
Remark. The standard formula for superdeterminant of supermatrix T is deduced from the
integral representation:

sdet(TM
N ) ∼

∫ ∏
M

(dEM dFM) exp[iEN (TM
N )FM ], TM

N =

(
Aξ

η Bm
η

Cξ
n Dm

n

)
, (3.7.32)

where supermatrix T is given in the block form and we, respectively, divide the supervectors
EN = (bη, βn) and FM = (cξ, γm) on even {β, γ} and odd {b, c} parts. Then we transform the
quadratic expression EN (TM

N )FM to the “diagonal” form

E (T )F = b (A−BD−1C) c+ β̃ D γ̃,

by making the linear change of even variables β = β̃−bB D−1, γ = γ̃−D−1C c . The Jacobian
for such change of variables is equal to 1. After integration over b, c and β̃, γ̃ in (3.7.32), we
obtain

sdet(TM
N ) = det(A−BD−1C)

1

detD
. (3.7.33)

The element sdet−1q (T ), which appeared in Eqs. (3.7.27) and (3.7.31), is denoted as an inverse
of the superdeterminant sdetq(T ), since the element sdet−1q (T ) tends to sdet−1(T ) for q → 1
in view of the standard formula (3.7.33). We also note that the meaning of Proposition 3.13
is to find the Jacobian of the supercoordinate transformation for the measure (3.7.26) of an
integration over multidimensional quantum superplane.

The quantum supergroup GLq(N |M) was studied in detail from somewhat different posi-
tions in [156]. The simplest example of a quantum supergroup, GLq(1|1), has been investigated
in many studies (see, for example, [141] and [157–160]). The R-matrices (3.6.5) can be used
(see next Subsection 3.8) to construct the supersymmetric Baxterized solutions of the Yang–
Baxter equation (3.8.5) obtained in [161]. The Yangian limits of these solutions16 were used
to formulate integrable supersymmetric spin chains (see, e.g., [162]). The universal R-matrices
for the linear quantum supergroups (and more generally for quantum deformations of finite-
dimensional contragredient Lie (super)algebras) were constructed in [163].

3.8. GLq(N)- and GLq(N |M)-invariant Baxterized R-matrices. Dynamical R-matrices

By Baxterization, we mean the construction of an R-matrix that depends not only on a
deformation parameter q, but also on an additional complex spectral parameter x. We wish to
find a solution R̂(x) of the Yang–Baxter equation with spectral parameter x (see Eq. (3.8.2)
below) satisfying the quantum invariance condition

T1T2 R̂(x) (T1T2)
−1 = R̂(x),

(
T i
j ∈ Fun(GLq(N))

)
.

Then we must seek it in the form [84]

R̂(x) = b(x)(1 + a(x)R̂) (3.8.1)

(here a(x) and b(x) are certain functions of x), since by virtue of the Hecke relation (3.4.11),
there exist only two basis matrices 1 and R̂ that are invariants in the sense of the relations

16The corresponding RTT algebra defines the Yangian of the Lie superalgebra gl(n|m) [155].
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T1T2 R̂ (T1T2)
−1 = R̂ followed from (3.2.1). The Yang–Baxter equation with dependence on

the spectral parameter is chosen in the form

R̂12(x) R̂23(xy) R̂12(y) = R̂23(y) R̂12(xy) R̂23(x). (3.8.2)

Only the function a(x) is fixed by this equation. Indeed, we substitute here (3.8.1) and take
into account (3.1.11) and the Hecke condition (3.1.68). As a result, we obtain the equation [84]

a(x) + a(y) + λa(x)a(y) = a(xy), (3.8.3)

which is readily solved by the change of variables a(x) = (1/λ)(ã(x)− 1). After this, we obtain
for the function a the general solution

a(x) = (1/λ)(xξ − 1), (3.8.4)

where for simplicity the arbitrary parameter ξ can be set equal to −2. For convenience, we
choose the normalizing function b(x) = x. Then the Baxterized R-matrix satisfying the Yang–
Baxter equation (3.8.2) will have the form [113, 200, 237], [84]

R̂(x) = b(x)
(
1 + (1/λ)(x−2 − 1)R̂

)
=

1

λ
(x−1R̂− xR̂−1). (3.8.5)

Remarkably, this matrix is written as the rational function of R̂

R̂(x) =
(a−1x− ax−1)

λx2
R̂− a x2

R̂− a x−2
, a = ∓q±1. (3.8.6)

Below we call this R-matrix the Hecke-type Baxterized R-matrix. For the normalization adopted
in (3.8.5) we obtain

R̂(1) = 1, P± =
1

[2]q
R̂(q∓1), (3.8.7)

and the unitarity condition holds17

R̂(x) R̂(x−1) =

(
1− (x− x−1)2

λ2

)
. (3.8.8)

This unitarity follows from rational representation (3.8.6) and can be readily deduced from the
spectral decomposition

R̂(x) =
(x−1q − xq−1)

λ
P+ +

(xq − (xq)−1)

λ
P−,

where projectors P± were defined in (3.4.21), (3.4.22). Note that we have obtained the Bax-
terized solution (3.8.5) of the Yang–Baxter equation (3.8.2) only using the braiding relations
(3.1.6) and the Hecke condition (3.4.11) for the constant matrix R̂. Thus, any constant Hecke
solution of (3.1.6) (e.g., the multiparametric solution (3.6.2)) can be used for the construction
of the Baxterized R-matrices (3.8.5).

17Strictly speaking, we have to renormalize the R-matrix (3.8.5): R̂(x) → λ(x−1q − xq−1)−1R̂(x), to obtain
the unitarity condition with the unit matrix in the right-hand side of (3.8.8).
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For the Baxterized R-matrix (3.8.5), constructed via skew-invertible Hecke-type R-matrix,
one can deduce the cross-unitarity conditions

TrD(2)

(
R̂1(x)P01R̂1(z)

)
= η(x, z)D0 I1, TrQ(1)

(
R̂1(x)P23R̂1(z)

)
= η(x, z)Q3 I2, (3.8.9)

where
η(x, z) =

(x− x−1)(z − z−1)

λ2
,

P01, P23 are permutations, matrices D,Q were defined in (3.1.20) and spectral parameters x, z
are constrained by the condition

(x z)2 =
1

1− λTr(D)
=: b2.

We stress that for the GL(N |M)-type R-matrix we have b2 = q2(N−M).
Let Ψ̂12 be a skew-inverse matrix (3.1.18) for the Hecke R-matrix (3.1.68). Then, for the

Baxterized R-matrix (3.8.5), one can define the skew-inverse Baxterized matrix Ψ̂(x):

Ψ̂12(x) =
λ

x−1 − x

(
Ψ̂12 +

λ

b−2 − x−2
D1Q2

)
, (3.8.10)

such that
Tr2
(
Ψ̂12(x) R̂23(x)

)
= P13 = Tr2

(
R̂12(x) Ψ̂23(x)

)
. (3.8.11)

Let xi and pj (i, j = 1, . . . , N) be generators of the Heisenberg algebra:

[xi, pj] = i ℏ δij (i, j ⩽ N − 1), (3.8.12)

where ℏ is a Planck constant. The dynamical Yang–Baxter equation is defined as follows
[109, 233, 234] (see also [232, 235, 236]):

(Q−13 R̂12(p) Q3) R̂23(p) (Q
−1
3 R̂12(p) Q3) = R̂23(p) (Q

−1
3 R̂12(p) Q3) R̂23(p), (3.8.13)

where Q := diag(eix1 , eix2 , . . . , eixN ). We seek the solution of (3.8.13) in the form (cf. (3.4.7))

R̂12 = R̂i1i2
j1j2

(p) = δi1j2δ
i2
j1
ai1i2(p) + δi1j1δ

i2
j2
bi1i2(p) (3.8.14)

and require that this R-matrix satisfies the Hecke condition (3.1.68). Without limitation of
generality one can put bii(p) = 0. Now we substitute (3.8.14) to the dynamical Yang–Baxter
equation (3.8.13) and obtain the following constraints:

aij(p1, . . . , pN) = aij(pi, pj), bij(p1, . . . , pN) = bij(pi, pj), (3.8.15)

and equations [109]

a2i − λai − 1 = 0, bij(pi, pj) + bji(pj, pi) = λ, i ̸= j, (3.8.16)

aij(pi, pj) aji(pj, pi)− bij(pi, pj) bji(pj, pi) = 1, i ̸= j, (3.8.17)

bij bjk bki + bik bkj bji = 0, i ̸= j ̸= k ̸= i, (3.8.18)

bij(pi + ℏ, pj) =
bij(pi, pj) ai

1/ai + bij(pi, pj)
, bij(pi, pj + ℏ) =

bij(pi, pj)/aj
aj − bij(pi, pj)

, (3.8.19)
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where ai := aii, Eqs. (3.8.16), (3.8.17) are consequences of the Hecke condition (3.1.68), while
Eqs. (3.8.18), (3.8.19) follow from (3.8.13). The general solution of these equations for coeffi-
cients bij(p) are [109]:

bij(pi, pj) =
λ a

pi/ℏ
i a

−pj/ℏ
j b0ij

a
pi/ℏ
i a

−pj/ℏ
j b0ij + a

−pi/ℏ
i a

pj/ℏ
j b0ji

, (3.8.20)

where constants b0ij := bij(0, 0) have to obey the algebraic relations:

b0ii = 0, b0ij + b0ji = λ, b0ij b
0
jk b

0
ki + b0ik b

0
kj b

0
ji = 0. (3.8.21)

The first equation in (3.8.16) has two solutions ai = ±q±1. Recall (see Subsection 3.7) that
if we take ai = q, ∀i (or ai = −q−1, ∀i), then we will have the case of the standard quantum
group GLq(N) (or GL−1/q(N)). But if we consider the mixing case, ai = q for 1 ⩽ i ⩽ K
and ai = −q−1 for K + 1 ⩽ i ⩽ N , then we come to the case of supergroups GLq(K|N −K).
By considering the solution (3.8.20), it is clear that if ai = aj (indices i and j ‘have the same
grading’), then bij(pi, pj) = bij(pi−pj), but if ai = −1/aj (the case of supergroups when indices
i and j ‘have the opposite grading’), then we deduce that bij(pi, pj) = bij(pi+pj). Note that the
only conditions on the parameters aij(p) needed for fulfillment of the dynamical Yang–Baxter
equation are listed in (3.8.17).

Now we demonstrate that every solution R(p) given in (3.8.14), (3.8.17), (3.8.20) will lead
to the solution R(p, z) for the dynamical Yang–Baxter equation with spectral parameters

R̂12(p, y)Q3 R̂23(p, yz)Q
−1
3 R̂(p, z) = Q3 R̂23(p, z)Q

−1
3 R̂12(p, yz)Q3 R̂23(p, y)Q

−1
3 . (3.8.22)

Indeed, it is not difficult to check, by using (3.8.13) and the Hecke relation for R̂(p), that the
following matrices (cf. (3.8.5)):

R̂(p, y) = y−1 R̂(p)− y R̂(p)−1

are the solutions of (3.8.22). We note that these solutions satisfy the identity (cf. (3.8.8))

R̂(p, y) R̂(p, y−1) =
(
λ2 − (y − y−1)2

)
,

which is a kind of unitary condition for R̂(p) (if y∗ = y−1).

3.9. Quantum matrix algebras with spectral parameters. Yangians Yq(glN) and Y (glN)

It is a remarkable fact that the relations (3.2.21), (3.2.22), with the Hecke R̂-matrix, are
written as follows:

R̂12(x)L2(xy)L1(y) = L2(y)L1(xy) R̂12(x), (3.9.1)

L(x) := x−1L+ − xL−, (3.9.2)

where x and y are arbitrary spectral parameters and R̂(x) is Baxterized R-matrix (3.8.5).
Moreover, if we take the pairing of the relation (3.9.1) with the representation matrix T i

j acting
in the third space and use (3.2.19), we obtain the Yang–Baxter equation (3.8.2) for the solution
(3.8.5). Thus, in a certain sense, Eq. (3.9.1) generalizes (3.8.2).

Now we take the GLq(N)-type Baxterized R-matrix (3.8.5) and consider Eqs. (3.9.1) as
defining relations for new infinite-dimensional algebras with generators (L(r))

i
j, which appeared

in the expansion
Li
j(x) =

∑
r⩾0

(L(r))
i
j x
−2r. (3.9.3)

84



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

This algebra is called quantum Yangian Yq(glN) and it is a subalgebra in a quantum affine
algebra Uq(ĝlN) (the RTT definition of Uq(ĝlN) is given in [140], [112]). Formula (3.9.2) defines
a homomorphism Yq(glN) → Uq(glN) which is called evaluation homomorphism.

Let R(x) be some solution of the Yang–Baxter equation (3.8.2) and there is an algebra with
defining relations (3.9.1). It is known that (3.8.2) are associativity conditions of the unique
ordering of monomials of the third degree L1(x)L2(y)L3(z) for the algebra (3.9.1). Indeed, we
have the following diagram (the so-called “diamond” condition):

L(x)L(y)L(z)
�
��3

Q
QQs

L(y)L(x)L(z)

L(x)L(z)L(y)

-

-

L(y)L(z)L(x)

L(z)L(x)L(y)

Q
QQs

�
��3
L(z)L(y)L(x)

This diagram means that two different ways of reordering L(x)L(y)L(z) → L(z)L(y)L(x) (by
means of (3.8.2)) give the same result.

Now we stress that, for the quantum algebra (3.9.1) with special R-matrix (3.8.5), defined
by the Hecke R-matrix of the height N , the quantum determinant (the analog of (3.4.32)) can
also be constructed [113]:

detq(L(x)) E⟨12...N = E⟨12...N LN(q
N−1x) · · ·L2(qx)L1(x) ⇔ (3.9.4)

detq(L(x)) = Tr1...N
(
A1→N LN(q

N−1x) · · ·L2(qx)L1(x)
)
=

= Tr1...N
(
LN(x)LN−1(qx) · · ·L1(q

N−1x)A1→N

)
, (3.9.5)

detq(L(x))A1→N = LN(x)LN−1(qx) · · ·L1(q
N−1x)A1→N , (3.9.6)

where the rank-1 antisymmetrizer A1→N has been introduced in (3.5.1). Equation (3.9.4) is
self-consistent, since its right-hand side has the same symmetry as the left-hand side (the action
on both sides of this equation by the projectors (3.8.7) P+

k ∼ R̂k(q
−1) gives zero). The last form

(3.9.5) of the quantum determinant detq(L(x)) is obtained with the help of (3.5.1) and (3.9.1).

Proposition 3.14. The q-determinant detq(L(x)) is a generating function of central elements
for the algebra (3.9.1) with the GLq(N)-type Baxterized R-matrix (3.8.5).

Proof. The centrality of detq(L(x)) means that [Li
j(xy), detq(L(x))] = 0 ∀x, y. Indeed,

LN+1(xy) Tr1...N
(
LN(x)LN−1(qx) · · ·L1(q

N−1x)A1→N

)
= (3.9.7)

= Tr1...N

(
R̂−1N (y) . . . R̂−11 (q1−Ny)LN+1(x) · · ·L2(q

N−1x)L1(xy) ×

× R̂1(q
1−Ny) . . . R̂N(y)A1→N

)
.

(3.9.8)

Using the Yang–Baxter equation (3.8.2) and the representation of A1→N in terms of the Bax-
terized elements (3.5.1), we deduce

R̂1(q
1−Ny) . . . R̂N(y)A1→N = A2→N+1 R̂1(y) . . . R̂N(q

1−Ny).

By means of this relation and Eq. (3.9.6) one can rewrite (3.9.8) in the form

detq(L(x)) Tr1...N

(
R̂−1N (y) . . . R̂−11 (q1−Ny)L1(xy)A2→N+1 ×

× R̂1(y) . . . R̂N(q
1−Ny)A1→N

)
=
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= detq(L(x))
(
N(y)−1 L(xy)N(y)

)
N+1

= detq(L(x))LN+1(xy), (3.9.9)

where matrices N(y) and N(y)−1 are defined by

(N(y))
1⟩
⟨N+1 = E⟨2...N+1 R̂1(y) . . . R̂N(q

1−Ny) E1...N⟩,

(N(y)−1)
N+1⟩
⟨1 = E⟨1...N R̂−1N (y) . . . R̂−11 (q1−Ny) E2...N+1⟩

and, for GL(N)-type Baxterized R-matrices, they are proportional to the unit matrix. Com-
paring (3.9.7) and (3.9.9), we obtain the statement of the Proposition.
We stress here that not for all Hecke-type Baxterized R-matrices the element detq(L(x)) is cen-
tral for the algebra (3.9.1). The example is given by multiparametric Hecke R-matrices (3.6.3).

We now note that from the algebra (3.9.1), disregarding the particular representation (3.9.2)
for the L(x) operator, we can obtain a realization for the Yangian Y (gl(N)) [10, 143] (see also
review papers [144, 145]). Indeed, in (3.8.2) and (3.9.1), we make the change of spectral
parameters

x = exp

(
−1

2
λ(θ − θ′)

)
, y = exp

(
−1

2
λθ′
)
. (3.9.10)

Then the relations (3.8.2) and (3.9.1) can be rewritten in the form

R̂12(θ − θ′) R̂23(θ) R̂12(θ
′) = R̂23(θ

′) R̂12(θ) R̂23(θ − θ′) ⇒ (3.9.11)

R23(θ − θ′)R13(θ)R12(θ
′) = R12(θ

′)R13(θ)R23(θ − θ′), (3.9.12)

R̂12(θ − θ′)L2(θ)L1(θ
′) = L2(θ

′)L1(θ) R̂12(θ − θ′), (3.9.13)

where we redefine L-operator L(θ) := L
(
exp(−λ

2
θ)
)

and R-matrix

R̂(θ) := R̂
(
e−

λ
2
θ
)
= cosh (λθ/2) +

1

λ
sinh (λθ/2) (R̂ + R̂−1). (3.9.14)

Equations (3.9.12) have a beautiful graphical representation in the form of the triangle equa-
tion [4, 5]:

3

θ

θ′
θ−θ′

?

Q
Q
Q
Q
Q
Q
QQs
2

1

�
�
�
�
�
�
��3 =

?

Q
Q

Q
Q

Q
Q
QQs

�
�

�
�

�
�
�3

θ′

θ

θ−θ′
2

1

3
(3.9.15)

where the arrowed lines show trajectories of point particles, and the R-matrix

Rij(θ) =

i j

θ

�
�
���

@
@

@@I

describes a single act of the scattering of these particles. We now take the limit λ = q−q−1 → 0
in Eq. (3.9.13). On the basis of (3.8.5), (3.9.14), we readily find that in this limit the matrix
R̂(θ) is equal to the Yang matrix:

R̂(θ) = (1 + θ P12) ⇒ R12(θ) = θ
(
1 +

P12

θ

)
. (3.9.16)
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For the operators L(θ), we shall assume the expansion

L(θ)ij =
∞∑
k=0

T (k)i

jθ
−k, (3.9.17)

where T (0)i

j = δij and T (k)i

j (k > 0) are the generators of the Yangian Y (gl(N)) (see [10]). The
defining relations for the Yangian Y (gl(N)) are obtained from (3.9.13) by substituting (3.9.16)
and (3.9.17) (we give these relations in more general form of the super Yangian Y (gl(N |M));
see below (3.9.22)). The comultiplication for Y (gl(N)) obviously has the form

∆(L(θ)ij) = L(θ)ik ⊗ L(θ)kj . (3.9.18)

The Yangian Y (sl(N)) is obtained from Y (gl(N)) after the imposition of an additional condition
for the generators T (k)i

j:
detq(L(θ)) = 1,

where the Yangian quantum determinant [146]

detq(L(θ)) = Tr1...N
(
Acl

1→N LN(θ −N + 1) · · ·L2(θ − 1)L1(θ)
)

(3.9.19)

is obtained from (3.9.5) after substitution q = eh, x = exp(−λ
2
θ) ∼ e−hθ and taking the limit

h→ 0 (or λ→ 0). In (3.9.19), we denote by Acl
1→N a classical antisymmetrizer:

Acl
1→N = lim

q→1
A1→N =

1

N !
(1 + PN−1 + . . .+ P1 · · ·PN−1) · · · (1 + P2 + P1P2)(1 + P1).

Since the R̂-matrix (3.7.1), (3.7.2) (for the group GLq(N |M)) satisfies the Hecke condition
(3.4.11), the same Baxterized R-matrix (3.8.5) is appropriate for the supersymmetric case.
Almost all statements of this subsection can be readily reformulated for the supersymmetric
case. In particular, the Yangian R-matrix for Y (gl(N |M)) is deduced from (3.9.14) and has
the form (cf. (3.9.16))

R̂(θ) = (1 + θP12), (3.9.20)

where P12 is a supertransposition operator introduced in (3.7.3). The defining relations (3.9.1)
should be modified for the super Yangian Y (gl(N |M)) (cf. (3.7.15)):

R̂12(θ − θ′) (−)(1)(2) L2(θ) (−)(1)(2) L1(θ
′) = (−)(1)(2) L2(θ

′) (−)(1)(2) L1(θ) R̂12(θ − θ′), (3.9.21)

while the form of the comultiplication (3.9.18) (where ⊗ is the graded tensor product) is un-
changed. Taking into account (3.9.17) and (3.9.20), we obtain the component form of the
defining relations (3.9.21) for Y (gl(N |M)):

[T (r)i

j, T
(s+1)k

l } − [T (r+1)i

j, T
(s)k

l } = (−1)[k][i]+[k][j]+[i][j]
(
T (s)k

j T
(r)i

l − T (r)k

j T
(s)i

l

)
, (3.9.22)

where r, s ⩾ 0, T (0)i

j = (−1)[i] δij, the grading [i] = 0, 1 mod(2) is defined in (3.7.4) and [a, b}
denotes a supercommutator [a, b} := a b− (−1)[a][b]b a, [a] = deg(a).

The relations (3.9.13), (3.9.21) play an important role in the quantum inverse scattering
method [7–9]. Equations (3.9.12) are the conditions of factorization of the S-matrices in certain
exactly solvable two-dimensional models of quantum field theory (see [4, 5]). The matrix
representations for the operators (3.9.2) satisfying (3.9.1) lead to the formulation of lattice
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integrable systems (see, for example, [103]). These questions will be discussed in more detail
in the final section of the paper.

Another interesting presentations of the quantum operators L(x), which satisfy (3.9.1), are
given in [147, 148]. In paper [148], to construct L-operator, we use Eq. (3.9.1) with Baxterized
R-matrix which is defined by means of the multiparametric R-matrix (3.6.3). These L-operators
were applied to the formulation of 3-dimensional integrable models.

The super Yangians Y (gl(N |M)) and their representations have been discussed in [149, 155].
The quantum Berezinian for the Yangian (an analog of (3.7.31) and superanalog of (3.9.19))
was introduced in [155].

3.10. The quantum groups SOq(N) and Spq(2n) (B, C, and D series)

3.10.1. Spectral decomposition for SOq(N)- and Spq(2n)-type R-matrices

In the remarkable paper [42], the quantum groups18 SOq(N) and Spq(N)|N=2n were studied
as Hopf algebras with the defining RTT relations (3.2.1). These quantum groups are quantum
deformations of Lie groups SO(N) (Bn and Dn series, respectively, for N = 2n+1 and N = 2n)
and Sp(2n) (Cn series). It was shown in [42] that SOq(N)- and Spq(2n)-type R-matrices (used
in the RTT algebra (3.2.1)) have the form

R12 =
∑
i,j

q(δij−δij′ ) eii ⊗ ejj + λ
∑
i>j

eij ⊗ eji − λ
∑
i>j

qρi−ρj ϵi ϵj eij ⊗ ei′j′ , (3.10.1)

R̂12 := P12R12 =
∑
i,j

q(δij−δij′ ) eij ⊗ eji + λ
∑
i<j

eii ⊗ ejj − λ
∑
i>j

qρi−ρj ϵi ϵj ei′j ⊗ eij′ , (3.10.2)

where
ϵi = +1 ∀i (for SOq(N)),

ϵi = +1 (1 ⩽ i ⩽ n), ϵi = −1 (n+ 1 ⩽ i ⩽ 2n) (for Spq(2n)),

(ρ1, . . . , ρN) =

{
(n− 1

2 , n− 3
2 , . . . ,

1
2 , 0, −

1
2 , . . . ,−n+ 1

2 ), B : (SOq(2n+ 1)),
(n, n− 1, . . . , 1, −1, . . . , 1− n, −n), C : (Spq(2n)),
(n− 1, n− 2, . . . , 1, 0, 0, −1, . . . , 1− n), D : (SOq(2n)).

(3.10.3)

We deduce these R-matrices in Subsection 3.11.2 below. The matrices (3.10.1) satisfy not only
the Yang–Baxter equation (3.1.2), (3.1.6), but also the cubic characteristic equation (3.1.72)
(see Eq. (3.1.64) for M = 3):

(R̂− q1)(R̂ + q−11)(R̂− ν1) = 0, (3.10.4)

where ν = ϵqϵ−N is a “singlet” eigenvalue of R̂, and the case ϵ = +1 corresponds to the
orthogonal groups SOq(N) (Bn and Dn series), while the case ϵ = −1 corresponds to the
symplectic groups Spq(2n) (Cn series). The projectors (3.1.66) arising from the characteristic
equation (3.10.4) can be written as follows [42]:

P± =
(R̂± q∓11)(R̂− ν1)
(q + q−1)(q±1 ∓ ν)

≡ 1

q + q−1

(
±R̂ + q∓11 + µ±K

)
,

P0 =
(R̂− q1)(R̂ + q−11)
(ν − q)(q−1 + ν)

≡ µ−1K,

(3.10.5)

18We often use the short notation SOq(N) and Spq(N) (for quantum groups) instead of more precise notation
for algebras Fun(SOq(N)) and Fun(Spq(N)).
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where
µ =

(q − ν)(q−1 + ν)

λν
=
λ+ ν−1 − ν

λ
= (1 + ϵ[N − ϵ]q),

µ± = ± λ

(1∓ q±1ν−1)
= ∓ν ± q∓1

µ
, λ := q − q−1.

We also give the relations between the parameters ν, µ, µ± that we introduced:

qµ+ − q−1µ− = ν(µ+ + µ−), µ+ + µ− = −q + q−1

µ
,

which are helpful in various calculations with projectors (3.10.5). For convenience, we define
in (3.10.5) the operator Ki1i2

j1j2
, which projects R̂ onto the “singlet” eigenvalue ν:

K R̂ = R̂K = νK, (K2 = µK). (3.10.6)

Then the characteristic equation (3.10.4) is written in another form (cf. (3.1.68))

R̂− R̂−1 − λ+ λK = 0. (3.10.7)

The spectral decomposition (3.1.67) for the SOq(N)- and Spq(2n)-type R-matrices is

R̂ = q P+ − q−1 P− + ν K.

Note that in the semiclassical limit (3.3.1), when q = eh → 1, the characteristic equation
(3.10.7) is reduced to the relation

1

2
(r12 + r21) = P12 − ϵK(0)

12 , (3.10.8)

where (P12)
i1i2
j1j2

≡ (P )i1i2j1j2
= δi1j2δ

i2
j1

is the permutation matrix, and in the right-hand side of
(3.10.8), we obtain split Casimir operators for so and sp Lie algebras (see [176, 177] and
references therein). Thus, as in the GLq(N) case (3.3.8), the semiclassical limit (3.10.8) of the
characteristic equation fixes the ad-invariant part of the classical r-matrix. Here we have used
an expansion of the matrix K = K(0) + hK(1) +O(h2), where the first term is

(K(0))i1i2j1j2
= (C0)

i1i2(C−10 )j1j2 ⇒ K(0)
12 = C

12⟩
0 (C−10 )⟨12 . (3.10.9)

The matrices (C0)
ij: (C0)

2 = ϵ, (C0)
t = ϵC0 are the metric (symmetric) and symplectic (an-

tisymmetric) matrices, respectively, for the groups SO(N) and Sp(2n). The semiclassical ex-
pansion for the projectors (3.10.5) and (3.10.47) has the form

P±cl =
1
2

(
(1 ± P )± hP r̃ − (1± ϵ)P0

cl

)
,

P0
cl =

ϵ
N

(
K(0) + hK(1)

)
,

(3.10.10)

where the semiclassical matrix r̃ (3.3.8) (which satisfies the modified classical Yang–Baxter
equation) is given by the formula

r̃ = r12 − P12 + ϵK
(0)
12 = −r21 + P12 − ϵK

(0)
12 .
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The ranks of the quantum projectors (3.10.5) are equal (for q which is not the root of unity) to
the ranks of the projectors (3.10.10), which are readily calculated in the classical limit h = 0.
Accordingly, we have [42]:
1) for the groups SOq(N)

rank(P (+)) =
N(N + 1)

2
− 1, rank(P (−)) =

N(N − 1)

2
, rank(P (0)) = 1 ; (3.10.11)

2) for the groups Spq(2n)

rank(P (+)) =
N(N + 1)

2
, rank(P (−)) =

N(N − 1)

2
− 1, rank(P (0)) = 1 . (3.10.12)

Since the rank of projector P (0) is equal to 1, we can write

(P (0))i1i2j1j2
= αCi1i2C j1j2 ⇒ Ki1i2

j1j2
= Ci1i2C j1j2 , (3.10.13)

where in view of the second equation in (3.10.6), we have C i1i2C
i1i2 = µ = α−1.

3.10.2. Quantum algebras Fun(SOq(N)), Fun(Spq(2n)) and their dual algebras

The number of generators T i
j (i, j = 1, . . . , N) for the algebras Fun(SOq(N)) and

Fun(Spq(2n)) (2n = N), which satisfy the RTT relations (3.2.1)

Ri1i2
j1j2

T j1
k1
T j2
k2

= T i2
j2
T i1
j1
Rj1j2

k1k2
, (3.10.14)

coincides with dimensions of the groups SO(N) and Sp(2n) in the undeformed case, since for
T i
j the following subsidiary conditions are imposed:

TCT tC−1 = CT tC−1T = 1 ⇒ (3.10.15)

T1T2C
12⟩ = C12⟩, C−1⟨12 T1T2 = C−1⟨12. (3.10.16)

These relations directly generalize the classical conditions for the elements of the groups SO(N)
and Sp(2n). The matrices Cij, C−1kl , which are understood in (3.10.16) as elements in VN ⊗VN
(1 and 2 label the spaces VN), are the q-analogs of the metric and symplectic matrices C0 for
SO(N) and Sp(N), respectively. The explicit form of these matrices, which is given in [42] (see
also Subsection 3.11), is not important for us, but we stress that the following equation holds:

C−1 = ϵC, (3.10.17)

where ϵ = +1 and ϵ = −1, respectively, for SOq(N) and Spq(N) cases. Substituting the
R-matrix representations (3.2.18) for T i

j in the relations (3.10.15), we obtain the following
conditions on the R-matrices:

R12 = C1(R
t1
12)
−1C−11 = C2(R

−1
12 )

t2C−12 , (3.10.18)

where, as usual, C1 = C ⊗ I and C2 = I ⊗ C. As consequences of (3.10.18), we have the
equation

Rt1t2
12 = C−11 C−12 R12C1C2 (3.10.19)

and also subsidiary conditions

L±2 L
±
1 C

12⟩ = C12⟩, C−1⟨12 L
±
2 L

±
1 = C−1⟨12 (3.10.20)
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on the generators of the dual Uq(so(N)) and Uq(sp(N = 2n)) algebras (3.2.21), (3.2.22):

R̂12 L
±
2 L

±
1 = L±2 L

±
1 R̂12, R̂12 L

+
2 L

−
1 = L−2 L

+
1 R̂12. (3.10.21)

The semiclassical analogs of the conditions (3.10.18) and (3.10.19) have the form

r12 = −(C0)1r
t1
12(C0)

−1
1 = −(C0)2r

t2
12(C0)

−1
2 = (C0)1(C0)2r

t1t2
12 (C0)

−1
1 (C0)

−1
2 .

It follows from Eqs. (3.10.15) and (3.10.17) that the antipode S(T ) = C T tC−1 for the
Hopf algebras Fun(SOq(N)) and Fun(Spq(N)) satisfies the relation

S2(T ) = (CCt)T (CCt)−1, (3.10.22)

which is analogous to (3.2.5). Thus, the matrix D that defines the quantum trace for the
quantum groups of the SO and Sp series can be chosen in the form

D = ϵν CCt ⇔ Di
j = ν Cik C−1jk , (3.10.23)

where we take into account (3.10.17). Here we choose the numerical factor ϵν in order to relate
(3.10.23) with the general definitions of D-matrix (3.1.20), (3.1.22).

We now note that the matrix C12⟩C−1⟨12 ∈ Mat(N)⊗Mat(N) projects any vector X12⟩ onto
the vector C12⟩, i.e., the rank of the projector C12⟩C−1⟨12 is 1. In addition, from (3.10.16) we have

C12⟩C−1⟨12 T1 T2 = T1 T2C
12⟩C−1⟨12,

which means that the projector C12⟩C−1⟨12 should be a polynomial in R̂. Therefore, C12⟩C−1⟨12 ∼
P0

12, and, as it was established in [42] (cf. (3.10.13)),

C12⟩C−1⟨12 ≡ K12. (3.10.24)

Using this relation, RTT relations (3.10.14), and equations (3.10.7), one can deduce

T1 T2 K12 = K12 T1 T2 = τ(T ) K12, (3.10.25)

where we defined the scalar element τ = µ−1C−1⟨12 T1T2C
12⟩. Comparing Eq. (3.10.25) with

Eqs. (3.10.15) and (3.10.16), we conclude that τ = 1. Therefore, for the correct definition of
the quantum groups SOq(N) and Spq(N) we should require the centrality of the element τ in
the RTT algebra (the centrality of the element τ is discussed below after Eq. (3.11.37)).

We note that Eqs. (3.10.6), (3.10.24) are equivalent to the relations

R̂12C
12⟩ = ν C12⟩, C−1⟨12 R̂12 = ν C−1⟨12, (3.10.26)

which give the possibility to rewrite conditions (3.10.20) for the generators Li
j = (S(L−)L+)ij,

L̄i
j = (L+S(L−))ij of the reflection equation algebras (3.2.31), (3.2.32) in the form

L1 R̂12 L1C
12⟩ = ν C12⟩, C−1⟨12 L1 R̂12 L1 = ν C−1⟨12,

L2 R̂12 L2C
12⟩ = ν C12⟩, C−1⟨12 L2 R̂12 L2 = ν C−1⟨12.
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By making use of the statements of Proposition 3.6, we construct the central elements (3.2.29)
for the algebras Uq(so(N)) and Uq(sp(N = 2n)) as

C(M) = TrD
(
LM
)
≡ Tr

(
DLM

)
, (3.10.27)

where the quantum trace matrix D is defined in (3.10.23). The elements (3.10.27) are quantum
analogs of the Casimir operators for the algebras Uq(so(N)) and Uq(sp(N = 2n)).

We now present some important relations for the matrices R̂ and K; many of them are
given, in the same form or other, in [42]. We note first that in accordance with (3.1.15) we have

K12 R̂23 R̂12 = R̂23 R̂12 K23 ⇔ R̂12 R̂23 K12 = K23 R̂12 R̂23. (3.10.28)

Further, from Eqs. (3.10.18) and (3.10.24) (or substituting the matrix representations (3.2.18)
in (3.10.25) for τ = 1), we obtain

R̂±112 R̂
±1
23 K12 = P12 P23 K12 = K23 P12 P23,

K12 R̂
±1
23 R̂

±1
12 = K12 P23 P12 = P23 P12 K23.

(3.10.29)

A consequence of these relations is the equations

R̂±123 K12 R̂
±1
23 = R̂∓112 K23 R̂

∓1
12 ⇔ R̂12 R̂23 K12 = K23 R̂

−1
12 R̂

−1
23 ,

R̂23 R̂12 K23 = K12 R̂
−1
23 R̂

−1
12 .

(3.10.30)

In particular, taking into account the characteristic equation (3.10.7), we obtain the identity

(R̂12 − λ)K23 (R̂12 − λ) = (R̂23 − λ)K12 (R̂23 − λ)

or

R̂12 K23R̂12 = R̂−123 K12 R̂
−1
23 =

= R̂23 K12 R̂23 + λ(R̂12 K23 − K12 R̂23 − R̂23 K12 + K23 R̂12) + λ2(K12 − K23),

(3.10.31)

which will be used in Subsection 3.12. Equation (3.10.24) leads to the identities

K12 K23 = K12 P23 P12 = P23 P12 K23, K23 K12 = P12 P23 K12 = K23 P12 P23, (3.10.32)

from which we immediately obtain

K12 K23 K12 = K12, K23 K12 K23 = K23. (3.10.33)

We now compare the relations (3.10.29) and (3.10.32). The result of this comparison is the
equations

R̂±123 R̂
±1
12 K23 = K12 K23 = K12 R̂

±1
23 R̂

±1
12 ,

R̂±112 R̂
±1
23 K12 = K23 K12 = K23 R̂

±1
12 R̂

±1
23 .

(3.10.34)

We now apply to the first of the chain of equations in (3.10.34) the matrix K12 from the right
(or K23 from the left) and take into account (3.10.6) and (3.10.33). We then obtain

K23 R̂
±1
12 K23 = ν∓1K23, K12 R̂

±1
23 K12 = ν∓1K12. (3.10.35)
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The braid relation (3.1.11) and Eqs. (3.10.6), (3.10.7), (3.10.35) define the R-matrix repre-
sentation of the Birman–Murakami–Wenzl algebra [229] (see also Subsection 4.4 below). Equa-
tions (3.10.28), (3.10.30), (3.10.31), (3.10.33), and (3.10.34) directly follow from this definition.
As we shall see in Subsection 3.12, the relations for the Birman–Murakami–Wenzl algebra will
be sufficient for the construction of SOq(N) and Spq(2n)-symmetric Baxterized R̂(x)-matrices.
The relations (3.10.28), (3.10.30), and (3.10.33)–(3.10.35) have a natural graphical representa-
tion in the form of relations for braids and links if we use the diagrammatic technique (only 3
of these operators are independent in view of (3.10.7)):

R =
@
@

��	
@
@R

�� R−1 =
@@

�
�	 @@R

�
�

I1I2 =

? ?

K =
� ? ?

� �
? ?

(3.10.36)

3.10.3. Quantum traces and quantum hyperplanes for SOq(N) and Spq(N)

We now give some important relations for the quantum trace (3.2.12) corresponding to the
quantum groups SOq(N) and Spq(N). Similar relations for the q-trace (3.2.14) can be derived
exactly in the same way. From the definitions of the matrix K (3.10.24) and the matrix D
(3.10.23), we obtain

Trq2(K12) = ν I(1). (3.10.37)

We use the relations (3.10.19) and the definition of the quantum trace (3.2.12) with the matrix
D (3.10.23); then, for an arbitrary quantum matrix Ei

j, we obtain the relations

ν R̂n
12E1 K12 = Trq2(K12E1 R̂

n
12)K12,

νK12E1 R̂
n
12 = K12Trq2(R̂

n
12E1 K12), ∀n,

(3.10.38)

νK12E1 K12 = Trq(E)K12. (3.10.39)

Calculating Trq2 of (3.10.38), we deduce

Trq2(R̂
n
12E1 K12) = Trq2(K12E1 R̂

n
12), ∀n. (3.10.40)

Further, from the first identity of (3.10.35), averaging it by means of Trq2, we readily obtain
for the algebras Fun(SOq(N)) and Fun(Spq(N)) the analogs of (3.2.16). These take the form

Trq2(R̂
±1
12 ) ≡ ϵ ν Tr2(CC

tR̂±112 ) = ν1∓1I(1). (3.10.41)

Using this relation and Eq. (3.10.7), we can calculate

Trq(I) = Tr(D) = ν(1 + ϵ [N − ϵ]q) = ν µ. (3.10.42)

We now separate irreducible representations for the left adjoint comodules (3.2.10). For an
arbitrary N ×N quantum matrix Ei

j we have

E1 = ν−1Trq2(E1 K12) = E
(0)
1 + E

(+)
1 + E

(−)
1 , (3.10.43)

where E
(i)
1 = ν−1Trq2(Pi

12E1 K12) = ν−1Trq2(K12E1 Pi
12). It is obvious that the tensors

E(i), (i = ±, 0) are invariant with respect to the adjoint coaction (3.2.10) and Trq2(P(j)E(i)K) =
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0 (if i ̸= j) by virtue of (3.10.38). Thus, (3.10.43) is the required decomposition of the adjoint
comodule E into irreducible components. It is clear that the component E(0) is proportional
to the unit matrix, (E(0))ij = e(1) · δij (e(1) is a constant), and, thus, applying Trq1 to (3.10.43),
we obtain

Trq(E) = e(1)Trq(I) = νµE(1), (3.10.44)

where we have used the property (3.4.18), which also holds for the case of the quantum groups
SOq(N) and Spq(2n). To conclude this subsection, we note that, as in the case of the linear
quantum groups, we can define fermionic and bosonic quantum hyperplanes covariant with
respect to the coactions of the groups SOq(N) and Spq(2n). Taking into account the ranks
of the projectors (3.10.11) and (3.10.12), we can formulate definitions of the hyperplanes for
SOq(N) (ϵ = 1) and for Spq(N) (ϵ = −1) in the form

(P− + (ϵ− 1)K)xx′ = 0 (3.10.45)

for the bosonic hyperplane (number of relations N(N − 1)/2) and

(P+ + (ϵ+ 1)K)xx′ = 0 (3.10.46)

for the fermionic hyperplane (number of relations N(N + 1)/2). For all these algebras, the
elements Kxx′ are central elements, and it is obvious that for Spq(N) bosons and SOq(N)
fermions we have Kxx′ = 0. It is interesting that the projectors P± (3.10.5) can be represented
as

P± =
1

q + q−1

(
±R̂′ + q∓11

)
− 1

2µ
(1± ϵ)K (3.10.47)

where the matrix
R̂′ = R̂− 1

2
[µ−(1 + ϵ) + µ+(ϵ− 1)]K

satisfies the Hecke condition (3.1.68). However, using (3.10.28)–(3.10.35), one can directly check
that R̂′ does not obey the Yang–Baxter equation (3.1.6).

Note that the conditions (3.10.15) and (3.10.16) can be understood as conditions of invari-
ance of the quadratic forms x(1)C−1x(2) and y(1)Cy(2) with respect to left and right transforma-
tions of the hyperplanes x(k), y(k):

xi(k) → T i
j ⊗ xj(k), y(k)i → y(k)j ⊗ T j

i .

3.11. The multiparameter deformations SOq,aij , Spq,aij and q-supergroups Ospq(N |2m)

3.11.1. General multiparametric R-matrices of the OSp type

In this subsection, we show that it is possible to define multiparameter deformations of
the quantum groups SOq(N) and Spq(2n) and also the quantum supergroups OSpq(N |2m) (as
RTT algebras) if we consider for the R-matrix the ansatz:

R̂ =
K∑

i,j=1

aij eij ⊗ eji +
∑
i<j

bij eii ⊗ ejj +
∑
i>j

dij ei′j ⊗ eij′ ⇒ (3.11.1)

R̂i1,i2
j1,j2

= δi1j2δ
i2
j1
ai1i2 + δi1j1δ

i2
j2
bi1i2 Θi2i1 + δi1i

′
2δj1j′2 d

i2
j1
Θi2

j1
= (3.11.2)
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=

i1
@
@@

�
��

j1

ai1i2

j2

@
@@

�
��

i2

+ �
bi1i2

i1

j1 j2

i2

+

i1

j1

� �
�
�
�	� �di2j1
i2

j2

where Θi
j := Θij, j′ = K + 1 − j; K = N for the groups SO(N), K = 2n for the groups

Sp(2n), and K = N + 2m for the groups Osp(N |2m). The expression (3.11.2) is a natural
generalization of the expression (3.6.5) for the multiparameter R-matrix corresponding to the
linear quantum groups. Namely, the third term in (3.11.2) is constructed from the SO-invariant
tensor δi1i′2δj1j′2 , which takes into account the presence of the invariant metrics for the consid-
ered groups. The functions Θ are introduced in (3.11.2) (they are indicated as arrows in the
graphical representation) in order to ensure that the matrix R12 = P12R̂ has lower triangu-
lar block form. This is necessary for the correct definition of the operators L(±) by means of
the expressions (3.2.19). We demonstrate below that the ansatz (3.11.2) for the solution of
the Yang–Baxter equation (3.1.6) automatically defines the family of the Birman–Murakami–
Wenzl R-matrices with fixed parameter ν which corresponds to the quantum groups SOq(N),
Spq(2n), and Ospq(N |2m).

We substitute the ansatz (3.11.2) for the R-matrix in the Yang–Baxter equation (3.1.6). It
is obvious that the first two terms in (3.11.2) make contributions to the Yang–Baxter equation
that are analogous to the contributions of the general R-matrix ansatz in the case of the linear
quantum groups (see Subsection 3.6). It is, therefore, clear that for the parameters aij and
bij we reproduce almost the same conditions (3.6.6), which in the convenient normalization
c = 1, b = q − q−1 have the form

bij = b = λ (∀i, j), aii = a0i = ±q±1 (i ̸= i′), aij aji = 1 (i ̸= j, i ̸= j′). (3.11.3)

Note that the conditions in (3.11.3) are somewhat weaker than in (3.6.6) (because of the
restrictions i ̸= i′, i ̸= j′). This is due to the fact that the contributions to the Yang–Baxter
equation proportional to aii′ begin to be canceled by the contributions from the third term
in (3.11.2). The corresponding condition on aii′ fulfilling the Yang–Baxter equation can be
expressed as follows:

ajj′ = κ−1j (a0j − b), aj′j = κj(a
0
j − b) (j ̸= j′) ⇔

a0j ajj′ = κ−1j , a0j aj′j = κj (j ̸= j′),
(3.11.4)

where in addition for the constants a0j and κi we have

κjκj′ = 1, a0j = a0j′ . (3.11.5)

Taking into account Eqs. (3.11.3), the relations (3.11.4) are equivalent to the pair of possibilities
(j ̸= j′):

1) a0j = q → aj′j κ
−1
j = q−1 = ajj′ κj,

2) a0j = −q−1 → aj′j κ
−1
j = −q = ajj′ κj.

(3.11.6)

We shall see below that if we restrict our consideration to the first possibility for all j (or only
the second possibility), then we obtain the R-matrices for the quantum groups SOq(N) and
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Spq(2n). If, however, we consider the mixed case, when both possibilities are satisfied (for
different j), then we expect (by analogy with the linear quantum groups; see Subsection 3.6)
that the corresponding R-matrix will be associated with the supergroups Ospq(N |2m). The
case j = j′ is obviously realized only for groups of the series B (SOq(2n + 1)) and for the
supergroups Ospq(2n+ 1|2m), and it follows from the Yang–Baxter equation (3.1.11) that

ajj′ = 1, κj = 1, for j = j′ =
K + 1

2
. (3.11.7)

For the groups SOq(2n), Spq(2n), and Ospq(2n|2m) the parameter ajj′ (j = j′) is simply absent.
Further consideration of the contributions to the Yang–Baxter equation from the third term in
(3.11.2) leads to the equations

aij ai′j = κj, aji aji′ = κ−1j (∀i ̸= i′), (3.11.8)

λ djk κi + dji d
i
k = 0 (3.11.9)

(there is no summation over repeated indices). The general solution of Eq. (3.11.9) has the
form

dij = −λκi
cj
ci
, (3.11.10)

where ci are arbitrary parameters. The remaining terms in the Yang–Baxter equation that do
not cancel under the conditions (3.11.3)–(3.11.10) give recursion relations for the coefficients
ci:

cj′aj′j + λcjΘj′j − λcj
∑
i>j

κi
ci′

ci
= νcj. (3.11.11)

These relations can be represented graphically in the form

@
@@

�
��

j

tcj′
� �
aj′j

j′

@
@@

�
��

+ λ

cj t
�

� �

j j′

+

j

tci′
� �
� �

	

�
�
�� �dij

j′

= ν
� �tcj
j j′

Another equivalent forms of (3.11.11) are∑
k>m

dik′d
k
j = dij

(
ν − cm′

cm
am′m − λΘm′m

)
, (3.11.12)

∑
k<m

dik′d
k
j = dij

(
−ν−1 + cm′

cm
a−1mm′ − λΘmm′

)
, (3.11.13)

which are related to each other by the identity∑
k

dik′d
k
j = −λµ dij, (µ := (λ− ν + ν−1)/λ) (3.11.14)

used below. Now the R-matrix (3.11.1) is represented in the form

R̂ = aij eij ⊗ eji + λΘji eii ⊗ ejj +Θij d
i
j ei′j ⊗ eij′ , (3.11.15)
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where the summation over the indices i, j is assumed and the parameters aij and dij are fixed
by the conditions (3.11.3)–(3.11.8), (3.11.10), and (3.11.11). This R-matrix satisfies the Yang–
Baxter equation (3.1.6) and additional relations (cf. (3.10.6), (3.10.7), and (3.10.35))

R̂2 − λR̂− 1 = −λνK, KR̂ = R̂K = νK, (3.11.16)

K12 R̂
±1
23 K12 = ν∓1 K12, K2 = µK, (3.11.17)

where we have introduced the rank-1 matrix:

K := −λ−1
∑
i,j

dij ei′j ⊗ eij′ =
∑
i,j

κi
cj
ci
ei′j ⊗ eij′ ⇔ (3.11.18)

Ki1i2
j1j2

= Ci1i2 Cj1j2 , Cij = ϵδij
′ κj
cj
, Cij =

1

ϵ
δij′ci. (3.11.19)

To prove the relations (3.11.16), (3.11.17), we have used the definitions of aij (3.11.3)–(3.11.7),
dij (3.11.10) and take into account the identities (3.11.12)–(3.11.14) and

Θki′Θkj = Θki′Θkj(Θi′j +Θji′ + δi′j) = Θi′jΘki′ + (Θji′ + δi′j)Θkj.

Thus, the R-matrix (3.11.15) with constraints (3.11.3)–(3.11.8), (3.11.10), and (3.11.11) auto-
matically leads to the R-matrix representation of the Birman–Murakami–Wenzl algebra (the
definition of this algebra is given below in Subsection 4.4). In (3.11.19), we define the quantum
metric, or quantum symplectic, matrices C (cf. (3.10.13), (3.10.24)). The parameter ϵ (see
Subsection 3.11) is introduced in (3.11.19) in order to match the definition of the matrices C
to the study of [42], where ϵ = ±1.

Note that the conditions (3.11.3)–(3.11.8) can be solved as

aij = (a0i )
(δij−δij′ ) fij

fji
,

fijfi′j
fjifji′

= κj (∀i ̸= i′) ⇒ κj =
fj′j
fjj′

, (3.11.20)

and, after substitution of (3.11.20) in (3.11.15), one can observe that the R-matrix (3.11.15) is

R̂ =
∑
i,j

(a0i )
(δij−δij′ ) fij

fji
eij ⊗ eji + λ

∑
i<j

eii ⊗ ejj − λ
∑
i>j

fi′i
fii′

cj
ci
ei′j ⊗ eij′ (3.11.21)

and produced by the twisting (3.6.4) from the matrix

R̂ =
∑
i,j

(a0i )
(δij−δij′ ) eij ⊗ eji + λ

∑
i<j

eii ⊗ ejj − λ
∑
i>j

c̃j
c̃i
ei′j ⊗ eij′ , (3.11.22)

where c̃i = fii′ci and the parameters a0j = a0j′ , cj are determined in (3.11.6), (3.11.7), and
(3.11.11). In this case, the relations (3.2.67) lead to additional conditions on the twisting
parameters fij:

fijfi′j = κjvj, fjifji′ = vj, ∀i, (3.11.23)

which are consistent with (3.11.8), (3.11.20). It is evident that for R-matrix (3.11.22) the
analogs of matrices (3.11.18), (3.11.19) are

Ki1i2
j1j2

=
∑
i,j

c̃j
c̃i

(ei′j)
i1
j1
⊗ (eij′)

i2
j2
= C̃i1i2 C̃j1j2 ⇒
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C̃ij = ϵδij
′ 1

c̃j
, C̃ij =

1

ϵ
δij′ c̃i ⇒ C̃ij C̃jk = δik. (3.11.24)

Now we show that the constant ν is fixed by the relations (3.11.11) uniquely. We consider
the solution of Eqs. (3.11.11), which are written in the form

γjaj′jκ
−1
j + λΘj′j − λ

K∑
i=j+1

γi = ν, (3.11.25)

where
γj =

cj′

cj
κj =

c̃j′

c̃j
=

1

γj′
. (3.11.26)

Equation (3.11.25) is readily solved by the changing of variables: γi → Xi,

Xj := q2j
K∑

i=j+1

γi, (XK = 0),

where the inverse transformation is γj = q−2j(q2Xj−1 −Xj) and we fix ν in (3.11.25) by taking
into account the properties (3.11.26).

3.11.2. The case of SOq(N) and Spq(N) groups

First, we consider the possibility 1) in (3.11.6). The possibility 2) gives, in view of a
symmetry of Eq. (3.11.25), an analogous result except for the substitution q → −q−1. The
corresponding form of Eq. (3.11.26) for j > j′ is

q (Xj−1 −Xj) = q2j ν,

and we obtain the solution:

Xj = νq2K−1
1− q−2(K−j)

1− q−2
⇔ γj = νq2K−2j+1, (j > j′). (3.11.27)

For the case K = 2n+1 the possibility j = j′(= K+1−j = n+1) is realized and Eq. (3.11.25)
(in view of (3.11.7), (3.11.26), (3.11.27)) gives

γn+1 = νqK−1 = 1 ⇒ ν = q1−K . (3.11.28)

For the case K = 2n we take j = K
2
, (j′ = K

2
+ 1 > j) in Eq. (3.11.25) and obtain γK

2
=

νqK+1 − λq. On the other hand, Eq. (3.11.27) gives γK
2
+1 = νqK−1. Thus, in view of the

condition γK
2
= γ−1K

2
+1

(3.11.26), we deduce the equation 1 + λqKν = ν2q2K with two roots:

ν1 = q1−K , ν2 = −q−1−K . (3.11.29)

We summarize the results (3.11.27)–(3.11.29), for the solution of (3.11.25), in the form

γj ≡
c̃j′

c̃j
= νq2(N−j)+1 (j > j′), γj = 1 (j = j′), ν = ϵqϵ−N (3.11.30)

(parameters c̃i were introduced in (3.11.22)) and relate the cases (ϵ = +1) and (ϵ = −1) to the
groups SOq(N) and Spq(N), respectively.
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In order to determine from the conditions (3.11.30) the parameters c̃j and, thus, to fix
the matrices C̃ (3.11.24), we require fulfillment of the relation C̃ij = ϵC̃ij (cf. (3.10.17)).
Substitution of (3.11.24) gives the equation c̃j c̃j′ = ϵ, which together with (3.11.30) enables us
to choose c̃j in the form [42]

c̃j = ϵ qj−
1
2
(N+ϵ+1) (j > j′) ⇒ c̃j = ϵj q

−ρj , (3.11.31)

where
ϵi = +1 ∀i (for SOq(N)),

ϵi = +1 (1 ⩽ i ⩽ n), ϵi = −1 (n+ 1 ⩽ i ⩽ 2n) (for Spq(2n)),
(3.11.32)

and (cf. (3.10.3))

(ρ1, . . . , ρN) =


(n− 1

2
, n− 3

2
, . . . , 1

2
, 0, −1

2
, . . . ,−n+ 1

2
) B : (SOq(2n+ 1)),

(n, n− 1, . . . , 1, −1, . . . , 1− n, −n) C : (Spq(2n)),
(n− 1, n− 2, . . . , 1, 0, 0, −1, . . . , 1− n) D : (SOq(2n)).

(3.11.33)

We note that diagonal matrices ρ = diag(ρ1, . . . , ρN) are equal to ρ =
∑n

i=1 δiHi, where
elements Hi = (eii − eN−i,N−i) form a dual basis of the Cartan subalgebras in the Lie algebras
so(N), sp(2n) and δ = (δ1, . . . , δn) are Weyl vectors for root systems of so(2n), so(2n+ 1) and
sp(2n) (see definitions in [178] and in Subsection 3.13 below; see also [139], Subsections 3.1.1
and 3.5.2).

Thus, the final expression for the R-matrix (3.11.21) corresponding to the multiparameter
deformation of the groups SO(N) and Sp(2n) (see [136, 137]) is

R̂12 =
∑
i,j

q(δij−δij′ )
fij
fji

eij ⊗ eji + λ
∑
i<j

eii ⊗ ejj − λ
∑
i>j

fi′i
fjj′

qρi−ρj ϵi ϵj ei′j ⊗ eij′ ,

where the parameters are defined in (3.11.23), (3.11.32), (3.11.33). The matrix R = PR̂ is
represented in the component form as

Ri1,i2
j1,j2

= δi1j1δ
i2
j2

[
(q δi1i2|i1 ̸=i′2

+ q−1 κi1 δ
i1i′2|i1 ̸=i2 + ai2i1|i1 ̸=i2 ̸=i′1

+ δi1i
′
1δi2i

′
2

]
+ (3.11.34)

+λ δi1j2δ
i2
j1
Θi1i2 − λκi1δ

i1i′2δj1j′2 Θ
i1
j1
ϵi1 ϵj1q

ρi1−ρj1 ,

where

aij = 1/aji =
fij
fji

∀j ̸= i ̸= j′, ajj′κj = aj′jκ
−1
j = q−1 ∀j ̸= j′,

aij ai′j = κj, aji aji′ = κ−1j , κi = (κi′)
−1 =

fi′i
fii′
.

(3.11.35)

Now we clarify the role of the parameters κi. Consider the RTT algebra (3.2.1) with multi-
parameter R-matrix (3.11.34). We show that for κi ̸= ±1 the element τ introduced in (3.10.25)
is not central [136]. Indeed, we take the identity K12K23K12 = K12 I3 (which is readily deduced
from the explicit representation (3.11.18), (3.11.19)) and multiply it by T1T2T3 from the right.
For the right-hand side of the identity we have

K12T1T2T3 = τ K12 T3, (3.11.36)

while for the left-hand side we obtain

K12K23K12T1T2T3 = K12T1K23T2T3 K12 = K12T1K23 K12τ = X3T3X
−1
3 K12τ, (3.11.37)
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whereX i
j = CjkC

ki = δij κi, (X−1)ij = CkjC
ik = δij κi′ and we have used the identity T1K23 K12 =

K23 K12X3T3X
−1
3 followed from the definition (3.11.19). Comparing (3.11.36) and (3.11.37),

we obtain
τ T = X T X−1 τ ⇒ τ T i

j = κi T
i
j κj′ τ.

Thus, only for κi = ±1 the element τ is central and one can relate the multiparameter R-
matrices (3.11.34) with quantum deformations SOq,aij(N) and Spq,aij(2n) of the groups SO(N)
and Sp(2n) (see discussions after Eq. (3.10.25)).

The conditions (3.11.35) show that, for κi = ±1, the independent parameters are q and
aij for i < j ⩽ j′. The numbers of these parameters are n(n − 1)/2 + 1 and n(n + 1)/2 + 1,
respectively, for the groups of the series C,D (with N = 2n) and B (with N = 2n + 1). Note
that the last term in the square brackets in the expression (3.11.34) is appeared only for the
groups of the series B. If we set aij = 1 (j′ ̸= i ̸= j), κi = 1, then the R-matrices (3.11.34)
are identical to the one-parameter matrices R = PR̂ (3.10.1) deduced from (3.11.22) and given
in [42].

3.11.3. The case of Ospq(N |2m) supergroups

For the groups Osp(N |2m) (K = N +2m) we choose a grading in accordance with the rules

[j] = 0 for m+ 1 ⩽ j ⩽ m+N
[j] = 1 for 1 ⩽ j ⩽ m, m+N + 1 ⩽ j ⩽ N + 2m.

(3.11.38)

Thus, for [j] = 0 (j ̸= j′) and [j] = 1 the possibilities 1) and 2) in (3.11.6) are respectively
realized

a0j = (−1)[j] q1−2[j] = (−1)[j] q(−1)
[j]

, [j] = (j′). (3.11.39)

In this case, Eq. (3.11.25) is written as the system of equations

γj q + λ
K∑

i=j+1

γi = −ν, (N +m+ 1 ⩽ j ⩽ N + 2m), (3.11.40)

γj q − λ+ λ
K∑

i=j+1

γi = −ν, (1 ⩽ j ⩽ m), (3.11.41)

γj q
(δj′j −1) + λΘj′j − λ

K∑
i=j+1

γi = ν, (m+ 1 ⩽ j ⩽ m+N). (3.11.42)

In (3.11.42), for the case j = j′, we take into account (3.11.7). The solution of (3.11.40) is (cf.
(3.11.27)):

γj = −ν q2(j−K)−1, (N +m+ 1 ⩽ j ⩽ N + 2m), (3.11.43)

and we have λ
∑

i>m+N

γi = ν(q−2m − 1). Using this fact, Eq. (3.11.42) is written in the form

γjq
(δj′j −1) + λΘj′j − λ

m+N∑
i=j+1

γi = νq−2m, (3.11.44)

and its solution is
γj = ν q2(N−j)+1, (j′ < j ⩽ N +m). (3.11.45)
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In addition, for N = 2n+ 1 and j = j′ = m+ n+ 1 we have

γm+n+1 = νqN−2m−1 = 1, ν = q2m−N+1, (3.11.46)

and for N = 2n we obtain the condition γm+N
2
= νqN−2m+1−λq = γ−1

m+N
2
+1

, which is equivalent
to the quadratic equation on ν:

(νqN−2m − q)(νqN−2m + q−1) = 0. (3.11.47)

Accordingly, we summarize the results (3.11.43), (3.11.45)–(3.11.47) as

γj ≡
c̃j′

c̃j
= (−1)[j]νq(−1)

[j](2N−2j+1)−[j]4m (j > j′), ν = ϵqϵ+2m−N , (3.11.48)

where ϵ = ±1 and the case ϵ = +1 corresponds to Ospq(N |2m), while the case ϵ = −1 we relate
to a quantum group denoted as Osp′q(2m|2n). It is obvious that for the groups Ospq(2n+1|2m)
(as well as for SOq(2n + 1)) we have γj = γj′ = 1 for j = j′. Note that if in (3.11.48) we set
m = 0, or N = 0 and q → −q−1, then we reproduce (3.11.30).

The analog of the relation (3.10.17) for the groups Ospq(N |2m) is the equation

C̃ij = (−1)(i) ϵ C̃ij,

which is equivalent to (−1)(i) c̃i c̃i′ = ϵ, and taking into account (3.11.48), we obtain

cj = ϵ q(−1)
[j](j−m−N− 1

2
)− ϵ

2
+N

2 (j > j′) ⇒ c̃j = ϵjq
−ρj ,

where [j] = 0, 1 is the grading (3.11.38). The parameters (ρ1, . . . , ρK), (ϵ1, . . . , ϵK) are fixed
according to the following cases:
1) The case ϵ = +1, ν = q1+2m−N for Ospq(N |2m) (N = 2n+ 1):

ρi = (
N

2
−m, . . . ,

N

2
− 1︸ ︷︷ ︸

m

;
N

2
− 1, . . . ,

1

2
, 0,−1

2
, . . . , 1− N

2︸ ︷︷ ︸
2n+1

; 1− N

2
, . . . ,m− N

2︸ ︷︷ ︸
m

)

ϵi = (−1, . . . ,−1︸ ︷︷ ︸
m

; +1, . . . ,+1︸ ︷︷ ︸
2n+1

; +1, . . . ,+1︸ ︷︷ ︸
m

)
(3.11.49)

2) The case ϵ = +1, ν = q1+2m−N for Ospq(N |2m) (N = 2n):

ρi = (n−m, . . . , n− 1︸ ︷︷ ︸
m

;n− 1, . . . , 1, 0, 0,−1, . . . , 1− n︸ ︷︷ ︸
2n

; 1− n, . . . ,m− n︸ ︷︷ ︸
m

)

ϵi = (−1, . . . ,−1︸ ︷︷ ︸
m

; +1, . . . ,+1︸ ︷︷ ︸
2n

; +1, . . . ,+1︸ ︷︷ ︸
m

)
(3.11.50)

3) The case ϵ = −1, ν = −q−1+2m−2n for Osp′q(2m|2n):

ρi = (n+ 1−m, . . . , n︸ ︷︷ ︸
m

;n, . . . , 1,−1, . . . ,−n︸ ︷︷ ︸
2n

;−n, . . . ,m− 1− n︸ ︷︷ ︸
m

)

ϵi = (−1, . . . ,−1︸ ︷︷ ︸
m

; +1, . . . ,+1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

;−1, . . . ,−1︸ ︷︷ ︸
m

)
(3.11.51)

To conclude this subsection, we give the final expression for the R-matrix (3.11.21) corre-
sponding to the quantum supergroups Ospq(N |2m) (ϵ = +1) and Osp′q(2m|2n) (ϵ = −1):

R̂12 =
∑
i,j

(−1)(i)[j] q(−)
(i)(δij−δij′ ) eij ⊗eji+λ

∑
i<j

eii⊗ejj −λ
∑
i>j

qρi−ρj ϵi ϵj ei′j ⊗eij′ , (3.11.52)
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where the parameters ϵi, ρj are defined in (3.11.49)–(3.11.51). We stress here that the matrix
units eij and tensor products in (3.11.52) are not graded, as follows form the discussion of the
general Yang–Baxter solution (3.11.21) in Subsection 3.11.1. To obtain (3.11.52), we used
the condition (3.11.39) and put fij/fji = (−1)[i][j] (∀i ̸= j ̸= i′), fi′i = fii′ = 1 in (3.11.21).
This choice of the parameters fij is such that R̂12 tends to the supertransposition matrix
(−1)(1)(2)P12 when q → 1 (for the notation (−1)(1)(2) see (3.7.6)). In the supergroup case, the
multiparameter R-matrices are restored directly from (3.11.52) by the same twisting (3.6.4) if
we take into account conditions (3.11.23).

The quantum supergroup Ospq(N, 2m) is the graded algebra generated by elements T i
k

(i, k = 1, . . . , N + 2m) of (N + 2m) × (N + 2m) supermatrix. As in the case of quantum
supergroups GLq(N,M) and SLq(N,M), the generators {T i

k} of the Ospq(N, 2m) algebra
satisfy the graded RTT relations (3.7.14), (3.7.15) but with the Ospq(N, 2m)-type R-matrix
(3.11.52). The Hopf structure of the quantum supergroup Ospq(N, 2m) is introduced in the
same way as the Hopf structure of GLq(N,M) (see Subsection 3.7).

We note that the parameters ν for the cases Ospq (3.11.50) and Osp′q (3.11.51) are related to
each other by means of the transformation: q ↔ −q−1, n ↔ m. However, this transformation
does not relate the corresponding R-matrices (3.11.52). Our conjecture is that for the cases
Ospq (3.11.50) and Osp′q (3.11.51) the R-matrices (3.11.52) and corresponding quantum groups
are inequivalent.

The R-matrices constructed in this subsection for the quantum supergroups realize R-matrix
representations of the Birman–Murakami–Wenzl algebra, since they are the special examples
of the general R-matrix (3.11.15) which satisfy (3.11.16), (3.11.17). Some of these R-matrices
can be obtained on the basis of the results of [161], in which Baxterized trigonometric solutions
(see next Subsection 3.12) of the Yang–Baxter equation associated with the classical super-
groups Osp(N |2m) were obtained. Rational solutions, some special cases, and other questions
relating to the subject of the quantum supergroups Ospq(N |2m) are also discussed in [162, 164]
and [167, 168].

3.12. SOq(N)-, Spq(2n)- and Ospq(N |2m)-invariant Baxterized R-matrices

Arguing, as in Subsection 3.8, we conclude that the SOq(N)- and Spq(N)- (as well as
Ospq(N |2m)-) invariant Baxterized matrices R̂(x) must be sought (by virtue of the fact that
the characteristic equation (3.10.4) is cubic) in the form of a linear combination of the three
basis matrices 1, R̂, R̂2. Expressing R̂2 in terms of K and R̂, we can represent invariant
R(x)-matrix in the form [84]

R̂(x) = c(x)
(
1 + a(x)R̂ + b(x)K

)
, (3.12.1)

where a(x), b(x), and c(x) are certain functions that depend on the spectral parameter x. We
determine the functions a(x), b(x) from the Yang–Baxter equation (3.8.2). The normalizing
function c(x) is not fixed by Eq. (3.8.2). After substitution of (3.12.1) in (3.8.2) and using
(3.10.28)–(3.10.35), the following relations arise [84]:

a1 + a3 + λa1 a3 = a2,

b3 − b2 − λνa1 a3 + νa1 b3 − λa1 b2 b3 + λ2a1 a3 b2 +

+ b1(1 + νa3 − λa3 b2 + µb3 + ν−1a2 b3 + b2 b3) = 0,

a2 b1 + a3 b1 b2 = a1 b2 + λa1 a3 b2, a2 b3 + a1 b2 b3 = a3 b2 + λa1 a3 b2,

(3.12.2)
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where we denoted

a1 = a(x), a2 = a(xy), a3 = a(y), b1 = b(x), b2 = b(xy), b3 = b(y).

The four relations (3.12.2) are equivalent to the three functional equations

a(x) + a(y) + λa(x)a(y) = a(xy), (3.12.3)

b(y)− b(xy) + a(x)[νb(y)− λνa(y)− λb(xy)b(y) + λ2a(y)b(xy)]+

+b(x)[1 + νa(y)− λa(y)b(xy) + µb(y) + ν−1a(xy)b(y) + b(xy)b(y)] = 0,
(3.12.4)

a(xy)b(y) + a(x)b(xy)b(y) = b(xy)(a(y) + λa(x)a(y)), (3.12.5)

since the third and fourth relations in (3.12.2) give the same equation (3.12.5). As was to be
expected, Eq. (3.12.3) is identical to Eq. (3.8.3) obtained in the GLq(N) case, and its general
solution is given in (3.8.4). By means of (3.12.3), we can transform the right-hand side of
Eq. (3.12.5) in such a way that (3.12.5) reduces to the equation

a(x)

a(xy)
=

b(xy)− b(y)

b(xy)(b(y) + 1)
≡ 1− b(y)(1 + b(y))−1

b(xy)(1 + b(xy))−1
. (3.12.6)

We now note that Eq. (3.12.3) can be rewritten in the form

a(x)

a(xy)
= 1− a(y)(λa(y) + 1)−1

a(xy)(λa(xy) + 1)−1
(3.12.7)

and, comparing (3.12.6) and (3.12.7), we arrive at the result

a(y)(b(y) + 1)

(λa(y) + 1)b(y)
= const ≡ α + 1

λ
, (3.12.8)

where α denotes an arbitrary parameter. The specific choice of the form of the constant in the
right-hand side of (3.12.8) is made for convenience in what follows. Substituting the solution
(3.8.4) in (3.12.8), we obtain the following general expression for b(y):

b(y) =
yξ − 1

αyξ + 1
. (3.12.9)

It is a remarkable fact that Eq. (3.12.4) is satisfied identically on the functions (3.8.4) and
(3.12.9) if the constant α satisfies the quadratic equation

α2 − λ

ν
α− 1

ν2
= 0. (3.12.10)

The two solutions of this equation are readily found:

α± = ±q
±1

ν
, (3.12.11)

where we recall that

ν = ϵqϵ−N for groups SOq(N) (ϵ = +1), Spq(N) (ϵ = −1);

ν = ϵqϵ+2m−N for supergroups Ospq(N |2m) (ϵ = +1) and

Osp′q(2m|N) (N = 2n, ϵ = −1).

(3.12.12)
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Thus, the solutions of the Yang–Baxter equation (3.8.2) can be represented in the form19 [84,
237]

R̂(x) = c(x)

(
1 +

1

λ
(xξ − 1)R̂ +

xξ − 1

αxξ + 1
K
)

(3.12.13)

and we have the two possibilities α = α± (3.12.11), which are inequivalent (both for all the
cases SOq(N), Spg(N), and Ospq(N |2m)), since these solutions cannot be reduced to each
other by any functional transformations of the spectral parameter x. However, these solutions
are related by the transformation q → −q−1. For convenience, we choose c(x) = x and ξ = −2
in (3.12.13); then for the R-matrices (3.12.13) we can propose four equivalent expressions:

R̂±(x) :=
1

λ

(
x−1R̂− xR̂−1

)
+

α± + 1

α±x−1 + x
K = (3.12.14)

=
(q±2x−1 − x)

(q±2 − 1)x2
(R̂± q±1x2)

(R̂± q±1x−2)
= (3.12.15)

=
x− x−1

λ(x+ α±x−1)

(
−xR̂−1 − α±x

−1R̂ +
λ(α± + 1)

x− x−1

)
=

=
(x−1q − xq−1)

λ
P+ +

(xq − (xq)−1)

λ
P− +

(q±2x−1 − x)

(q±2 − 1)

(x−1 + xα±)

(x+ x−1 α±)
P0, (3.12.16)

where projectors P± and P0 are defined in (3.10.5). The last expression is the spectral decom-
position of R̂(x), from which, for example, we can readily obtain the identities

R̂+(±q) = ±(q + q−1)P−, R̂−(±q−1) = ±(q + q−1)P+, (3.12.17)

lim
x2→−α±

R±(x) ∼ P0, R̂±(1) = 1, R̂±(i) = ±i(q + q−1)

λ
(1 − 2P±). (3.12.18)

From rational representations (3.12.15) of R-matrix, one can immediately deduce the identity

R̂±(x) R̂±(x−1) =

(
1− (x− x−1)2

λ2

)
· 1. (3.12.19)

Note that the relations (3.12.17)–(3.12.19) agree with the Yang–Baxter equation (3.8.2).
The cross-unitarity condition for the BMW-type R-matrix (3.12.14) can be written in the

matrix form as (cf. (3.8.9))

TrD(2)

(
R̂±1 (x)P01R̂

±
1 (z)

)
= η±(x) η±(z)D0 I1,

TrQ(1)

(
R̂±1 (x)P23R̂

±
1 (z)

)
= η±(x) η±(z)Q3 I2,

(3.12.20)

where the matrices D,Q are defined in (3.1.20) and

(x z)2 = α2
±, η±(x) =

1

λ
(x− x−1)

(α±νx
2 + ν−1)

(x2 + α±)
, α± := ±q

±1

ν
.

19The Baxterized trigonometric R-matrices (3.12.13), corresponding to the one of the parameter choice in
(3.12.11), were first found by V. Bazhanov in 1984 and were published in [169, 170]. The same R-matrices were
independently constructed in [171].
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The Baxterized R̂-matrices (3.12.13) and (3.12.14)–(3.12.16) determine algebras with the
defining relations (3.9.1). However, a realization of the operators L(x) in terms of the generators
L(±) of the quantum algebras Uq(so(N)) and Uq(sp(N)) (analogous to (3.9.2)) is unfortunately
missing (see, however, [101, 102] and discussion of the case q → 1 in [103, 104]).

To conclude this subsection, we present the expressions for the rational R-matrices of the
Yangians Y (so(N)), Y (sp(N)), and Y (osp(N |2m)). We give the definition of Yangians in
Subsection 3.13 below. We make the ansatz x = exp(−λθ/2) for the spectral parameter in
(3.12.14) and rewrite the R-matrix in the form (cf. (3.9.14))

R̂(θ) := R̂
(
e−

λ
2
θ
)
= cosh(λθ/2) [1− K] + 1

λ
sinh(λθ/2) [R̂ + R̂−1] +

+ [cosh(λθ/2) + β± sinh(λθ/2)]
−1 K,

(3.12.21)

where β± =
α± − 1

α± + 1
. The Yangian R-matrices can be obtained from (3.12.21) after the passage

to the limit h → 0 (q = exp(h) → 1). Further, it is easy to see that the cases α = α+, ϵ = 1
(SOq(N)) and α = α−, ϵ = −1 (Spq(2n)) are reduced to theGL(N)-symmetric Yang’s R-matrix
(3.9.16). The nontrivial SO(N)- and Sp(N)-symmetric Yangian R-matrices for Y (so(N)) and
Y (sp(N)) correspond to the choice

α = α−, ϵ = 1 (SOq(N)) ; α = α+, ϵ = −1 (Spq(N)) (3.12.22)

and have the form
R̂(θ) = (1 + θ P12) +

2 θ

(2ϵ− (N + 2θ))
K

(0)
12 . (3.12.23)

The matrix K
(0)
12 is defined in (3.10.9). Nontrivial rational R-matrices for super Yangians

Y (osp(N |2m)) and Y ′(osp(2m|2n)) can be obtained from (3.12.21) in the cases:

α = α−, ϵ = 1 (Ospq(N |2m)) ; α = α+, ϵ = −1, N = 2n (Osp′q(2m|2n)).

The form of these supersymmetric R-matrices is

R̂(θ) = (1 + θP12) +
2 θ

2ϵ+ 2m− (N + 2 θ)
K(0)

12 , (3.12.24)

where P i1i2
j1j2

= (−1)[i1][i2]δi1j2δ
i2
j1

is the supertransposition operator (the parity [j] is defined in
(3.11.38)). The matrix (K(0))i1i2j1j2

= Ci1i2Cj1j2 is a classical limit (q → 1) of the rank-1 matrix
K in the supersymmetric case and the ortho-symplectic matrices Cij = ϵjδ

ij′ , Cij = ϵiδij′ are
determined by their parameters ϵi (3.11.49)–(3.11.51). Then the defining relations for the
generators (3.9.17) of the Yangians Y (so(N)), Y (sp(N)) and Y (osp(N |2m)), Y ′(osp(2m|2n))
are identical to (3.9.13) and (3.9.21), respectively, while the comultiplication is given by (3.9.18).

The Yangian R-matrix (3.12.23) for the SO(N) case was found in [4, 5] and that for the
Sp(2n) case — in [166]. These R-matrices were used in [103] to construct and investigate exactly
solvable SO(N)- and Sp(2n)-symmetric magnets. Twisted Yangians for the SO(N) and Sp(2n)
cases have been considered in [144, 145]. The super Yangians of the type Y (osp(N |2m)) and
corresponding spin chain models were discussed in [167, 168].

3.13. Split Casimir operators and rational solutions of Yang–Baxter equations. Yangians

The material of this subsection is based on the papers [143, 172]; see also [173, 174, 176, 177].

105



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

3.13.1. Invariant R-matrices for simple Lie algebras g

Let g be a simple Lie algebra with the basis elements Xa|a=1,...,dim(g) and defining relations

[Xa, Xb] = Xd
ab Xd, (3.13.1)

where Xd
ab are the structure constants. We denote an enveloping algebra of the Lie algebra g

as U(g). Let gdf be the inverse matrix to the Cartan–Killing metric

gab ≡ Xd
acX

c
bd = Tr(ad(Xa) · ad(Xb)), (3.13.2)

where ad denotes adjoint representation. Introduce the operator

Ĉ = gabXa ⊗ Xb ≡ Xa ⊗ Xa ∈ g ⊗ g ⊂ U(g) ⊗ U(g), (3.13.3)

which is called the split (or polarized) Casimir operator of the Lie algebra g. The operator
(3.13.3) is related to the usual quadratic Casimir operator

C(2) = gab Xa ·Xb ∈ U(g) (3.13.4)

by means of the formula
∆(C(2)) = C(2) ⊗ I + I ⊗ C(2) + 2 Ĉ, (3.13.5)

where ∆: U(g) → U(g)⊗ U(g) is the standard comultiplication defined by ∆(Xa) = Xa ⊗ I +
I ⊗Xa. Let u be a spectral parameter. One can check that the operator function

r(u) =
Ĉ

u
=
Xa ⊗ Xa

u
≡ r21(u), (3.13.6)

obeys the semiclassical Yang–Baxter equation (cf. (3.3.2)):

[r12(u), r13(u+ v)] + [r13(u+ v), r23(v)] + [r12(u), r23(v)] = 0. (3.13.7)

The aim of this subsection is to find rational (as a function in the spectral parameter u)
solutions R(u) of the Yang–Baxter equations (3.9.12) (θ′ = u, θ = u+ v):

R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u), (3.13.8)

that are unitary
R12(u)R21(−u) = 1 ≡ I ⊗ I (3.13.9)

and possess semiclassical behavior R12(u) → 1 as u→ ∞. We then write the expansion

R12(u) = 1+
Ĉ

u
+
X

u2
+O

( 1

u3

)
. (3.13.10)

The second term here is justified by (3.13.7). As we will see below, the solutions of this kind
are given (up to a renormalization) by (3.12.23) for Lie algebras g = so(N) and sp(N)|N=2r in
defining representations.

First, we use the unitarity condition (3.13.9) to find X:

1 = R12(u)R21(−u) = 1− 1

u2
Ĉ2 +

1

u2
(X12 +X21) + . . . .
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We search for the symmetric solutions X12 = X21, so we have

X12 =
1

2
Ĉ2. (3.13.11)

Then we examine the limit v → ∞ of (3.13.8):

R12(u)
(
1+

Ĉ13

u+ v
+

X13

(u+ v)2
+ . . .

)(
1+

Ĉ23

v
+
X23

v2
+ . . .

)
=

=
(
1+

Ĉ23

v
+
X23

v2
+ . . .

)(
1+

Ĉ13

u+ v
+

X13

(u+ v)2
+ . . .

)
R12(u).

(3.13.12)

We expand out the brackets in (3.13.12) and multiply both sides by v(u + v). As a result, we
obtain

R12(u)
(
v(Ĉ23 + Ĉ13) + uĈ23 + Ĉ13Ĉ23 +

u+v
v
X23 +

v
u+v

X13 + . . .
)
=

=
(
v(Ĉ23 + Ĉ13) + uĈ23 + Ĉ23Ĉ13 +

u+v
v
X23 +

v
u+v

X13 + . . .
)
R12(u).

(3.13.13)

We see that the terms of order v give

[R12(u), (Ĉ23 + Ĉ13)] = 0 ⇒ [R12(u), I ⊗Xa +Xa ⊗ I] = 0, (3.13.14)

which is the condition of the invariance of R(u) under the action of g. Thus, by Schur’s lemma,
one can express the image R(µν)(u) = (Tµ⊗Tν)R(u) of the operator R(u) in the representation
(Tµ ⊗ Tν) of g as follows:

R(µν)(u) =
∑

Tλ⊂Tµ⊗Tν

τλ(u) Pλ, (3.13.15)

where Pλ is the projector onto the irreducible subrepresentation Tλ ⊂ Tµ ⊗ Tν and τλ(u) are
some rational functions of u, which is yet undetermined. At this stage, we require that the set
of projectors Pλ form the complete system of mutually orthogonal projectors∑

λ

Pλ = Iµ ⊗ Iν , Pλ Pλ′ = Pλδλλ′ . (3.13.16)

We also require that the decomposition Tµ ⊗ Tν =
∑

λ Tλ be without multiplicities, otherwise,
R(u) acts on the isomorphic components Tλ1 , . . . , Tλr as matrix ||Mij(u)||i,j=1,...,r which is not,
in general, diagonalizable.

The terms of order v0 = 1 in (3.13.13) give

R12(u)
(
uĈ23 + Ĉ13Ĉ23 +X23 +X13

)
=
(
uĈ23 + Ĉ23Ĉ13 +X23 +X13

)
R12(u). (3.13.17)

We rewrite it by using (3.13.11) and applying the identities

Ĉ13 Ĉ23 +
1
2
(Ĉ2

13 + Ĉ2
23) =

1
2
[Ĉ13, Ĉ23] +

1
2
(Ĉ13 + Ĉ23)

2,

[Ĉ13, Ĉ23] = Xa
bc X

b ⊗Xc ⊗Xa = −1
2
[∆C(2), (I ⊗Xa)]⊗Xa,

so that, because of (3.13.14), we simplify (3.13.17) as

R12(u)
(
uĈ23 +

1

2
[Ĉ13, Ĉ23]

)
=
(
uĈ23 +

1

2
[Ĉ23, Ĉ13]

)
R12(u) ⇒
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R12(u)
(
u(I ⊗Xa)− 1

4
[∆C(2), I ⊗Xa]

)
=
(
u(I ⊗Xa) +

1
4
[∆C(2), I ⊗Xa]

)
R12(u).

(3.13.18)
Now we consider the image of (3.13.18) in the representation Tµ ⊗ Tν , substitute (3.13.15) and
act by projectors Pκ and Pλ from the right and the left, respectively. As a result, we deduce
the relation between coefficients τλ(u):

τλ(u)
(
u− 1

4

(
C(2)(λ)− C(2)(κ)

))
Pλ (I ⊗Xa)Pκ =

= τκ(u)
(
u+ 1

4

(
C(2)(λ)− C(2)(κ)

))
Pλ (I ⊗Xa)Pκ,

(3.13.19)

where C(2)(λ) is the value of the quadratic Casimir operator (3.13.4) in the representation Tλ
and for brevity we write (I⊗Xa) instead of (Tµ(I)⊗Tν(Xa)). We enumerate the representations
Tλ of the Lie algebra g by their highest weights λ. In this case, the value of C(2)(λ) is given by
the formula

C(2)(λ) = (λ, λ+ 2 δ), (3.13.20)

where δ is the Weil vector of the algebra g. Finally, from Eq. (3.13.19), in the case when
Pλ (I ⊗Xa)Pκ ̸= 0, we have

τλ(u)

τκ(u)
=
u+ 1

4

(
C(2)(λ)− C(2)(κ)

)
)

u− 1
4

(
C(2)(λ)− C(2)(κ)

) . (3.13.21)

We consider the condition Pλ (I ⊗ Xa)Pκ ̸= 0 in more detail. Let Vλ be the space of the
representation Tλ. We note that (I ⊗ Xa + Xa ⊗ I) · Vλ ⊂ Vλ, where Vλ ⊂ Vµ ⊗ Vν , and, for
orthogonal projectors Pκ and Pλ, we deduce

Pλ (I ⊗Xa)Pκ =
1

2
Pλ (I ⊗Xa −Xa ⊗ I)Pκ. (3.13.22)

One can interpret (I ⊗ Xa − Xa ⊗ I) as the tensor operator in the adjoint representation
and, according to the Wigner–Eckart theorem, the matrix (3.13.22) should be proportional to
Clebsch–Gordan coefficients which transform the basis of Vλ into the basis of Vad⊗Vκ. We note
that for existence of the R-matrix, it is necessary that the system of equations (3.13.21) have
a solution. However, in general, the system (3.13.21) is overdetermined and not always has a
solution.

Further we consider the equivalent representations Tν = Tµ and require that the R-matrix
be symmetric R12 = R21. Then the space Vµ⊗Vµ is splitted into symmetric P (+)

12 (Vµ⊗Vµ) and
antisymmetric P (−)

12 (Vµ ⊗ Vµ) parts, where P (±)
12 := 1

2
(I ± P12). It means that the whole set of

projectors (3.13.16) is also divided onto subsets of symmetric and antisymmetric projectors

P (+)
κ := P

(+)
12 Pκ, P (−)

σ := P
(−)
12 Pσ ⇒

∑
κ

P (+)
κ = P (+),

∑
σ

P (−)
σ = P (−), (3.13.23)

and for matrices (3.13.22) we have P (±)
σ (I⊗Xa−Xa⊗I)P (±)

κ = 0. So, the nonzero contributions
to (3.13.22) are P (±)

σ (I⊗Xa−Xa⊗I)P (∓)
κ . Thus, the representations Tλ and Tκ in Eqs. (3.13.21)

should have the different symmetry, i.e.,

Vλ ⊂ P (+) V ⊗2µ , Vκ ⊂ P (−) V ⊗2µ , or Vλ ⊂ P (−) V ⊗2µ , Vκ ⊂ P (+) V ⊗2µ ,

and satisfy conditions
Tλ ⊂ ad⊗ Tκ, Tκ ⊂ ad⊗ Tλ. (3.13.24)

108



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

Below, by solving the system of equations (3.13.21), we present g-invariant R-matrices for all
simple Lie algebras g (except for g = slN , e8) in the defining representation Tµ = □ ≡ [1] [175]
(see also [176, 177]).

1. The so and sp algebras
The expansion of the tensor product of defining representations of algebras so(N) and sp(N)|N=2r

is [1]⊗2 = [2] + [12] + [∅], and the highest weights of subrepresentations, Weyl vectors δ and
corresponding eigenvalues C(2)(λ), defined in (3.13.20), are

λ[2] = (2, 0, . . . , 0), λ[12] = (1, 1, 0, . . . , 0), λ[∅] = (0, . . . , 0),

for so(N):

δ =

[N
2
]∑

i=1

(
N

2
− i)e(i), C(2)(λ[2]) = 2N, C(2)(λ[12]) = 2N − 4, C(2)(λ[∅]) = 0, (3.13.25)

and for sp(N):

δ =

N
2∑

i=1

(
N

2
+ 1− i)e(i), C(2)(λ[2]) = 2N + 4, C(2)(λ[12]) = 2N, C(2)(λ[∅]) = 0. (3.13.26)

Below we also need the expansion

[12]⊗ [2] = [3, 1] + [2, 12] + [12] + [2]. (3.13.27)

For the so(N) case, the representations [2] and [∅] belong to the symmetric part of [1]⊗2,
while the adjoint representation [12] = ad belongs to the antisymmetric part of [1]⊗2, and we
have (cf. (3.13.24), (3.13.27)) [12] ⊂ [12]⊗ [∅], [12] ⊂ [12]⊗ [2]. Therefore, in view of (3.13.25),
the system of equations (3.13.21) is written as

τ[∅](u)

τ[12](u)
=
u− N

2
+ 1

u+ N
2
− 1

,
τ[2](u)

τ[12](u)
=
u+ 1

u− 1
, (3.13.28)

and after a renormalization the so-invariant R-matrix (3.13.15) is

R(u) = P[12] +
τ[2](u)

τ[12](u)
P[2] +

τ[∅](u)

τ[12](u)
P[∅] = P[12] +

u+ 1

u− 1
P[2] +

u− N
2
+ 1

u+ N
2
− 1

P[∅]. (3.13.29)

This R-matrix is called Zamolodchikov’s solution [4, 5] of the Yang–Baxter equation.
For sp(N) algebras the representations [12] and [∅] belong to the antisymmetric part of [1]⊗2,

while the adjoint representation [2] = ad belongs to the symmetric part of [1]⊗2, and we have
(cf. (3.13.24), (3.13.27)) [2] ⊂ [2] ⊗ [∅], [2] ⊂ [2] ⊗ [12]. Therefore, in view of (3.13.26), the
system of equations (3.13.21) is written as

τ[∅](u)

τ[2](u)
=
u− N

2
− 1

u+ N
2
+ 1

,
τ[12](u)

τ[2](u)
=
u− 1

u+ 1
, (3.13.30)

and after a renormalization the sp-invariant R-matrix (3.13.15) is

R(u) = P[2] +
τ[12](u)

τ[2](u)
P[12] +

τ[∅](u)

τ[2](u)
P[∅] = P[2] +

u− 1

u+ 1
P[12] +

u− N
2
− 1

u+ N
2
+ 1

P[∅]. (3.13.31)
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2. The g2 algebra
Further we denote by [[n]] the n-dimensional representation of the Lie algebra g. The R-matrix
operator (3.13.15) of the algebra g2 in the minimal fundamental representation [[7]] acts in the
reducible 49-dimensional space [[7]]⊗2 which can be expanded in the irreducible components as
follows:

[[7]]⊗ [[7]] = S([[7]]⊗2) + A([[7]]⊗2) = ([[1]] + [[27]]) + ([[7]] + [[14]]). (3.13.32)

Here the fundamental [[7]] and adjoint [[14]] representations of g2 are embedded into the an-
tisymmetric A part of [[7]]⊗2, while the representations [[1]] and [[27]] compose the symmetric
S part of [[7]]⊗2. The highest weight vectors µ[[n]] of the representations [[n]] in the right-hand
side of (3.13.32) and Weyl vector δ are [178] (see also [139] and references therein):

µ[[1]] = (0, 0, 0), µ[[7]] = λ(1) = (0,−1, 1), µ[[14]] = λ(2) = (−1,−1, 2),

µ[[27]] = 2λ(1) = (0,−2, 2), δ =
2∑

i=1

λ(i) = (−1,−2, 3),
(3.13.33)

where λ(1) and λ(2) are fundamental weights of g2, and we describe the root space of the rank-2
Lie algebra g2 as a plane Pu in 3-dimensional Euclidean space R3, normal to vector u = (1, 1, 1).
The values (3.13.20) of the quadratic Casimir operators of the representations of the highest
weights (3.13.33) are written as

C
[[1]]
2 = 0, C

[[7]]
2 = 12, C

[[14]]
2 = 24, C

[[27]]
2 = 28. (3.13.34)

For the case of Lie algebra g2 the conditions (3.13.24) are (see, e.g., [179] about tensor product
of g2 representations):

[[1]] ⊂ ad⊗ [[14]], [[27]] ⊂ ad⊗ [[7]], [[27]] ⊂ ad⊗ [[14]],

where ad = [[14]], and we write the system of equations (3.13.21) as

τ[[1]](u)

τ[[14]](u)
=
u− 6

u+ 6
,

τ[[7]](u)

τ[[27]](u)
=
u− 4

u+ 4
,

τ[[14]](u)

τ[[27]](u)
=
u− 1

u+ 1
. (3.13.35)

Finally, after a normalization, the g2-invariant R-matrix (3.13.15) in the fundamental represen-
tation [[7]] acquires the form [175] (see also [176, 177] with u→ −u):

R(u) =
τ[[1]](u)

τ[[27]](u)
P[[1]] +

τ[[7]](u)

τ[[27]](u)
P[[7]] +

τ[14]](u)

τ[[27]](u)
P[[14]] + P[[27]] =

=
(u− 6)(u− 1)

(u+ 6)(u+ 1)
P[[1]] +

u− 4

u+ 4
P[[7]] +

u− 1

u+ 1
P[[14]] + P[[27]].

(3.13.36)

3. The f4 algebra

The f4-invariant R-matrix (3.13.15) in the minimal fundamental representation [[26]] acts in
the reducible 676-dimensional space [[26]]⊗2 which is expanded in the irreducible components
as follows:

[[26]]⊗2 = S([[26]]⊗2) + A([[26]]⊗2) = ([[1]] + [[26]] + [[324]]) + ([[52]] + [[273]]), (3.13.37)
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where representations [[1]], [[26]], and [[324]] belong to the symmetric part of [[26]]⊗2, while
the adjoint representation [[52]] and representation [[273]] belong to the antisymmetric part of
[[26]]⊗2.

The highest weight vectors of the representations in (3.13.37) and f4 Weyl vector δ are [178]
(see also [139] and references therein):

µ[[1]] = (0, 0, 0, 0), µ[[26]] = λ(4) = (0, 0, 0, 1), µ[[52]] = λ(1) = (1, 0, 0, 1),

µ[[273]] = λ(3) =
1
2
(1, 1, 1, 3), µ[[324]] = 2λ(4) = (0, 0, 0, 2), δ =

4∑
i=1

λ(i) =
1
2
(5, 3, 1, 11),

(3.13.38)
where λ(i)|i=1,...,4 are fundamental weights of f4. Now we deduce the values (3.13.20) of the
quadratic Casimir operators, which correspond to the highest weights (3.13.33)

C
[[1]]
2 = 0, C

[[26]]
2 = 12, C

[[52]]
2 = 18, C

[[273]]
2 = 24, C

[[324]]
2 = 26. (3.13.39)

The analogs of the conditions (3.13.24) for the Lie algebra f4 have the form

[[52]] ⊂ ad⊗ [[1]], [[324]] ⊂ ad⊗ [[52]], [[324]] ⊂ ad⊗ [[273]], [[273]] ⊂ ad⊗ [[26]],

where ad ≡ [[52]], and the system of equations (3.13.21) is represented as

τ
[[1]]

(u)

τ
[[52]]

(u)
=
u− 9

2

u+ 9
2

,
τ[[[52]]](u)

τ
[[324]]

(u)
=
u− 2

u+ 2
,

τ
[[273]]

(u)

τ
[[324]]

(u)
=
u− 1

2

u+ 1
2

,
τ
[[26]]

(u)

τ
[[273]]

(u)
=
u− 3

u+ 3
. (3.13.40)

Finally, after a normalization, the f4-invariant R-matrix in the fundamental representation [[26]]
has the form [175] (see also [176, 177] with u→ −2u):

R(u) =
τ
[[1]]

(u)

τ
[[324]]

(u)
P[[1]] +

τ
[[26]]

(u)

τ
[[324]]

(u)
P[[26]] +

τ
[[52]]

(u)

τ
[[324]]

(u)
P[[52]] +

τ
[[273]]

(u)

τ
[[324]]

(u)
P[[273]] + P[[324]] =

= (u−9/2)(u−2)
(u+9/2)(u+2)

P[[1]] +
(u−3)(u−1/2)
(u+3)(u+1/2)

P[[26]] +
u−2
u+2

P[[52]] − u−1/2
u+1/2

P[[273]] + P[[324]].
(3.13.41)

4. The e6 algebra

The 78-dimensional algebra e6 has two inequivalent minimal fundamental representations [[27]]
and [[27]]. Here we consider e6-invariant R-matrix (3.13.15) which acts in the space of reducible
representation

[[27]]⊗2 = S([[27]]⊗2) + A([[27]]⊗2) = ([[27]] + [[351]]1) + ([[351]]2), ad ≡ [[78]] . (3.13.42)

The highest weight vectors µ[[n]] of the representations in (3.13.42) and Weyl vector δ for e6
are [139, 178]

µ[[27]] = λ(1) = (−1
3
,−1

3
, 1, 0, 0, 0, 0, 1

3
), µ[[27]] = λ(6) =

2
3
(−1,−1, 0, 0, 0, 0, 0, 1),

µ[[351]]1 = 2λ(1) = (−2
3
,−2

3
, 2, 0, 0, 0, 0, 2

3
), µ[[351]]2 = λ(2) = (−2

3
,−2

3
, 1, 1, 0, 0, 0, 2

3
),

δ =
6∑

i=1

λ(i) = (−4,−4, 4, 3, 2, 1, 0, 4),

(3.13.43)
where λ(i)|i=1,...,6 are fundamental weights of e6, and we numerate nodes of e6 Dynkin diagram
as follows:
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e e e e ee
1 2 3 4 6

5

The values (3.13.20) of the quadratic Casimir operators, which correspond to the representations
with highest weights (3.13.43), are

C
[[27]]
2 = 52

3
, C

[[351]]1
2 = 112

3
, C

[[351]]2
2 = 100

3
. (3.13.44)

We note that, in view of the symmetry of the e6 Dynkin diagram, the values (3.13.44) are
invariant under the change of the fundamental weights in (3.13.43): λ(1) ↔ λ(6) and λ(2) ↔ λ(4).
This symmetry also means that the R-matrix in the representation [[27]]⊗2 has the same form
as the R-matrix in the representation [[27]]⊗2. The analogs of the conditions (3.13.24) for the
Lie algebra e6 are (see, e.g., [179])

[[351]]2 ⊂ ad⊗ [[27]], [[351]]1 ⊂ ad⊗ [[351]]2,

where ad ≡ [[78]], and the system of equations (3.13.21) is written as

τ
[[27]]

(u)

τ
[[351]]2

(u)
=
u− 4

u+ 4
,

τ
[[351]]1

(u)

τ
[[351]]2

(u)
=
u+ 1

u− 1
. (3.13.45)

Finally, the e6-invariant R-matrix in the representation [[27]] acquires the form [175–177]

R(u) =
τ
[[27]]

(u)

τ
[[351]]2

(u)
P[[27]] +

τ
[[351]]1

(u)

τ
[[351]]2

(u)
P[[351]]1 + P[[351]]2 =

= u−4
u+4

P[[27]] +
u+1
u−1P[[351]]1 + P[[351]]2 .

(3.13.46)

5. The e7 algebra
Here we consider e7-invariant R-matrix (3.13.15) which acts in the space of the representation

[[56]]⊗2 = S([[56]]⊗2) + A([[56]]⊗2) = ([[133]] + [[1463]]) + ([[1]] + [[1539]]) , (3.13.47)

where [[133]] ≡ ad is the adjoint representation of e7. The highest weight vectors µ[[n]] of the
representations in (3.13.47) and Weyl vector δ for the algebra e7 are [139, 178]

µ[[1]] = (0, 0, 0, 0, 0, 0, 0, 0), µ[[133]] = λ(7) = (−1, 0, 0, 0, 0, 0, 0, 1),

µ[[1463]] = 2λ(1) = (−1, 2, 0, 0, 0, 0, 0, 1), µ[[1539]] = λ(2) = (−1, 1, 1, 0, 0, 0, 0, 1),

µ[[56]] = λ(1) = (−1
2
, 1, 0, 0, 0, 0, 0, 1

2
), δ =

7∑
i=1

λ(i) = (−17
2
, 5, 4, 3, 2, 1, 0, 17

2
),

(3.13.48)

where λ(i)|i=1,...,7 are fundamental weights of e7 and we numerate nodes in Dynkin diagram as
follows: e e e e e ee

1 2 3 4 5 7

6

The values (3.13.20) of the quadratic Casimir operators, which correspond to the represen-
tations with highest weights (3.13.48), are

C
[[56]]
2 = 57

2
, C

[[133]]
2 = 36, C

[[1463]]
2 = 60, C

[[1539]]
2 = 56. (3.13.49)
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The analogs of the conditions (3.13.24) for the Lie algebra e7 have the form (see, e.g., [179])

[[133]] ⊂ ad⊗ [[1]], [[1539]] ⊂ ad⊗ [[1463]], [[1539]] ⊂ ad⊗ [[133]],

where ad ≡ [[133]], and the system of equations (3.13.21) is written as

τ[[1]](u)

τ[[133]](u)
=
u− 9

u+ 9
,

τ[[133]](u)

τ[[1539]](u)
=
u− 5

u+ 5
,

τ[[1463]](u)

τ[[1539]](u)
=
u+ 1

u− 1
. (3.13.50)

Thus, the e7-invariant solution (3.13.15) of the Yang–Baxter equation in the defining represen-
tation [[56]] has the form

R(u) =
(u− 9)(u− 5)

(u+ 9)(u+ 5)
P[[1]] +

u− 5

u+ 5
P[[133]] +

u+ 1

u− 1
P[[1463]] + P[[1539]]. (3.13.51)

6. The e8 algebra
For the exceptional Lie algebra e8 the adjoint and minimal fundamental representations coincide
and have dimension 248. The tensor product of its two 248-dimensional representations has
the following decomposition into irreducible representations [179, 180]:

[[248]]⊗2 = S([[248]]⊗2) + A([[248]]⊗2) = ([[1]] + [[3875]] + [[27000]]) + ([[248]] + [[30380]]) .
(3.13.52)

The highest weight vectors µ[[n]] of the representations in (3.13.52) and Weyl vector δ for the
algebra e8 are [139, 178]

µ[[248]] = λ(1) = (1, 0, 0, 0, 0, 0, 0, 1), µ[[3875]] = λ(8) = (0, 0, 0, 0, 0, 0, 0, 2),

µ[[27000]] = 2λ(1) = (2, 0, 0, 0, 0, 0, 0, 2), µ[[30380]] = λ(2) = (1, 1, 0, 0, 0, 0, 0, 2),

δ =
8∑

i=1

λ(i) = (6, 5, 4, 3, 2, 1, 0, 23),

(3.13.53)

where λ(i)|i=1,...,8 are fundamental weights of e8 and we numerate nodes in Dynkin diagram as
follows:

e
1

e
2

e
3

e
4

e
5

e
6

e
8

e7

The values (3.13.20) of the quadratic Casimir operators, which correspond to the represen-
tations with highest weights (3.13.53), are

C
[[248]]
2 = 60, C

[[3875]]
2 = 96, C

[[27000]]
2 = 124, C

[[30380]]
2 = 120. (3.13.54)

The analogs of the conditions (3.13.24) for the Lie algebra e8 have the form (see, e.g., [179])

[[248]] ⊂ ad⊗ [[1]], [[3875]] ⊂ ad⊗ [[248]], [[27000]] ⊂ ad⊗ [[248]],

[[30380]] ⊂ ad⊗ [[27000]], [[30380]] ⊂ ad⊗ [[3875]],

where ad ≡ [[248]], and the part of the system of equations (3.13.21) is written as

τ[[248]](u)

τ[[3875]](u)
=
u− 9

u+ 9
,

τ[[248]](u)

τ[[27000]](u)
=
u− 16

u+ 16
,

τ[[27000]](u)

τ[[30380]](u)
=
u+ 1

u− 1
,

τ[[30380]](u)

τ[[3875]](u)
=
u+ 6

u− 6
.

(3.13.55)
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It is clear that Eqs. (3.13.55) are inconsistent. Thus, the e8-invariant R-matrix in the minimal
fundamental (adjoint) representation [[248]] does not exist. This fact is in agreement with
the general statement [143, 174] that the adjoint representation of e8 can not be lifted to the
representation of the Yangian Y (e8).

In papers [176, 177], the R-matrix solutions (3.13.29), (3.13.31), (3.13.36), (3.13.41),
(3.13.46), and (3.13.51) are written as rational functions of the split Casimir operators (3.13.3)
in the defining representations. In particular, for Lie algebras g = so, sp, e6 we have [176, 177]

R(u) =
u+ 1

2
(Ĉ + ag)

u− 1
2
(Ĉ + ag)

, (3.13.56)

where aso = 1, asp = −1, ae6 = 2/3 and the split Casimir operators Ĉ are normalized such
that Ĉki

jk = C2(λ)δ
i
j (here λ is a highest weight of the defining representation of g and the value

C2(λ) is given by (3.13.20)).

3.13.2. Yangians Y (g)

The Yangians Y (g) can be defined by means of the rational R-matrix solutions (3.13.10),
(3.13.15) of the Yang–Baxter equations (3.13.8). First, we consider equations (cf. (3.9.13)

R12(u− v)L1(u)L2(v) = L2(v)L1(u)R12(u− v), (3.13.57)

where u, v are spectral parameters, indices 1, 2 numerate the spaces V of the defining represen-
tation T in the product V ⊗ V , and R12(u) is the g-invariant R-matrix in the representation
T⊗T . We search the elements Li

j(u) of the quadratic algebra (3.13.57) in the form (cf. (3.9.17))

Li
j(u) = δij +

∞∑
k=1

T (k)i

ju
−k = δij +

1

u
Iij +

1

u2

(1
2
(I2)ij + Ji

j

)
+

1

u3
. . . , (3.13.58)

where T (k)i

j (k > 1) are the generators of the Yangian Y (g) [10, 143] and we introduce the
notation

T (1)i

j ≡ Iij = Ia(Ta)
i
j, T (2)i

j ≡
1

2
(I2)ij + Ji

j, Ji
j := Ja(Ta)

i
j.

Here (Ta)ij = T i
j(Xa) are generators of g in the representation T . Now we substitute expansions

(3.13.10), (3.13.11), and (3.13.58) into (3.13.57), multiply both sides by (u− v)2 and consider
Eq. (3.13.57) in the limit u, v → ∞. We take into account identities (cf. (3.13.14))

(I1 + I2)Ĉ12 = Ĉ12(I1 + I2), (J1 + J2)Ĉ12 = Ĉ12(J1 + J2),

where Ĉ12 is the split Casimir operator in the defining representation T . Then the terms of
zero order in u, v of Eqs. (3.13.57) give relations (3.13.1):

[I1, I2] = Ĉ12I1 − I1Ĉ12 ⇒ [Ia, Ib] = Xd
ab Id, (3.13.59)

which means that coefficients Ia are the basis elements of the Lie algebra g. The terms of order
u−2v and uv−2 of Eqs. (3.13.57) give commutation relations

[I1, J2] = Ĉ12J1 − J1Ĉ12 ≡ J2Ĉ12 − Ĉ12J2 ⇒ [Ia, Jb] = Jd X
d
ab, (3.13.60)
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which means that the elements Jb form the adjoint representation of g. We also note useful
generalizations of (3.13.59) and (3.13.60):

[I1, I
k
2] = Ik2 Ĉ12 − Ĉ12 I

k
2, [I1, J

k
2] = Jk

2 Ĉ12 − Ĉ12 J
k
2. (3.13.61)

The commutator [J1, J2] is not fully specified by Eq. (3.13.57) if we know the expansion of
R-matrix (3.13.10) only up to the order u−2.

We define the Yangian Y (g) as the enveloping algebra generated by the basis elements
Ia|a=1,...,dim g of the Lie algebra g, the additional set of elements Ja|a=1,...,dim g, which form the
adjoint representation (3.13.60) of g and with a nontrivial noncommutative coproduct ∆ :
Y (g) → Y (g)⊗ Y (g) which is defined by

∆(Li
j(u)) = Li

k(u)⊗ Lk
j(u). (3.13.62)

The substitution of (3.13.58) into (3.13.62) gives

∆(Iij) = Iij ⊗ 1 + 1⊗ Iij ⇒ ∆(Ia) = Ia ⊗ 1 + 1⊗ Ia,

∆(Ji
j) = Ji

j ⊗ 1 + 1⊗ Ji
j +

1

2

(
Iik ⊗ Ikj − Ikj ⊗ Iik

)
⇒

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja +
1

2
Xabc I

b ⊗ Ic,

(3.13.63)

where Xabc = Xd
ab gdc. Finally, we remark that the commutator [Ja, Jb] is constrained by the

requirement that ∆ be a homomorphism. Indeed, we have [143, 173]:

[Ja, [Jb, Ic]]− [Ia, [Jb, Jc]] = aabc
efg {Ie, If , Ig},

[[Ja, Jb], [Ic, Jd]] + [[Jc, Jd], [Ia, Jb]] = (aabh
efg Xhcd + acdh

efg Xhab){Ie, If , Jg},

where aabhefg = 1
24
Xe

iaX
f
jbX

g
khX

ijk and {x1, x2, x3} =
∑

e ̸=f ̸=g

xe, xf , xg.

3.14. Quantum Knizhnik–Zamolodchikov equations

In Subsections 3.8 and 3.12, by using R-matrix representations for the Hecke and Birman–
Murakami–Wenzl algebras, we have found the trigonometric solutions R(x) of the Yang–Baxter
equations (Baxterized R-matrices). In this subsection, we show that, for every trigonometric
solution R(x) of the Yang–Baxter equations (3.8.2), one can construct the set of difference
equations which are called quantum Knizhnik–Zamolodchikov equations. These equations are
important, since their solutions are related (see, e.g., [181–183] and references therein) to the
correlation functions in spin chain models associated with the same trigonometric matrix R(x).

In this subsection, we follow the presentation of the papers [184–186].
Consider a tensor function Ψ1...N⟩(z1, . . . , zN) ∈ V ⊗N (zi ∈ C, i = 1, . . . , N) which satisfies

a system of difference equations

T(i) Ψ
1...N⟩(z1, . . . , zN) = A

(i)
1...N(z1, . . . , zN)Ψ

1...N⟩(z1, . . . , zN), (3.14.1)

where operator T(i) is defined as

T(i) Ψ
1...N⟩(z1, . . . , zN) := Ψ1...N⟩(z1, . . . , zi−1, pzi, zi+1, . . . , zN), (3.14.2)
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A
(i)
1...N(z1, . . . , zN) ∈ End(V ⊗N) is called discrete connection and indices 1, . . . , N denote the

numbers of the vector spaces V in V ⊗N . A consistence condition T(i)T(j) = T(j)T(i) of the
system (3.14.1) requires additional constraints on the discrete connection A(j)

1...N(z1 . . . zN):

T(i)A
(j)
1...NT

−1
(i) A

(i)
1...N = T(j)A

(i)
1...NT

−1
(j)A

(j)
1...N ⇒ (3.14.3)

A
(j)
1...N A

(i)
1...N = A

(i)
1...N A

(j)
1...N , A(i) := T−1(i) A

(i)
1...N . (3.14.4)

Connections A(i)
1...N and A

(j)
1...N which satisfy (3.14.3) and (3.14.4) are called flat (or integrable).

Now we introduce the following discrete connection [184]:

A
(j)
1...N(z1, . . . , zN) = T(j)Rj j−1 . . . Rj 2Rj 1T

−1
(j) Dj R

−1
N jR

−1
N−1 j . . . R

−1
j+1 j =

= Rj j−1(
zj

zj−1
p) . . . Rj 2(

zj
z2
p)Rj 1(

zj
z1
p)Dj R

−1
N j(

zN
zj
)R−1N−1 j(

zN−1

zj
) . . . R−1j+1 j(

zj+1

zj
),

(3.14.5)

where Ri j := Ri j(zi/zj) is the R-matrix which acts nontrivially only in the vector spaces V
with numbers i, j in V ⊗N and satisfies the Yang–Baxter equation (3.8.2) in the form (Rij(x) =

PijR̂ij(x)):
Rij(x)Rik(xy)Rjk(y) = Rjk(y)Rik(xy)Rij(x). (3.14.6)

The unitarity condition Rij(x)Rji(x
−1) = 1 is also required (cf. (3.8.8), (3.12.19)) for these

R-matrices. The constant matrix Di acts in the ith vector space Vi and obeys RijDiDj =
DiDjRij. Equations (3.14.1) with discrete connection (3.14.5) are called quantum Knizhnik–
Zamolodchikov (q-KZ) equations. It is convenient to rewrite the definition of the discrete
connection (3.14.5) in the form of commutative matrices (3.14.4) as follows:

A
(j)
1...N(z1, . . . , zN) = T−1(j) A

(j)
1...N(z1, . . . , zN) =

ˆ̂
Rj−1 . . . ,

ˆ̂
R1X

ˆ̂
R−1N−1

ˆ̂
R−1N−2 . . .

ˆ̂
R−1j ,

X := T−1(1) D1P1,2P2,3 . . .PN−1,N ,
(3.14.7)

where Pj,k = Pj,k · Pzj ,zk and Pzj ,zk is an operator which permutes the spectral parameters zj
and zk:

Pzj ,zk · f(z1, . . . , zk, . . . , zj, . . . , zN) = f(z1, . . . , zj, . . . , zk, . . . , zN) · Pzj ,zk ,

such that ˆ̂
Rj := Pj,j+1Rj,j+1(zj/zj+1) realize generators of the braid group BN (see Eqs. (4.1.1)

in Subsection 4.1). We note that operator X satisfies the relations

ˆ̂
Rk+1X = X

ˆ̂
Rk (k = 1, . . . , N − 2),

ˆ̂
R1X

2
= X

2 ˆ̂
RN−1, (3.14.8)

and it can be considered as the image of an additional element which extends the group BN .

Proposition 3.15 (see [184, 185]). Discrete connection (3.14.5) is the flat discrete connection
(i.e., satisfies (3.14.3)), and therefore the system of equations (3.14.1) with connection (3.14.5)
is consistent.

Proof. Indeed, we have from (3.14.3) for j > i:

T(i)T(j)Rj j−1 . . . Rj 1T
−1
(j)DjR

−1
Nj . . . R

−1
j+1 jRi i−1 . . . Ri 1T

−1
(i) DiR

−1
Ni . . . R

−1
i+1 i =

= T(i)Ri i−1 . . . Ri 1T
−1
(i) DiT(j)R

−1
Ni . . . R

−1
i+1 iRj j−1 . . . Rj 1T

−1
(j)DjR

−1
Nj . . . R

−1
j+1 j.

116



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

In the left-hand side, we obtain for j > i:

T(i)T(j)Rj j−1 . . . Rj 1Ri i−1 . . . Ri 1T
−1
(i) T

−1
(j)DiDjR

−1
N j . . . R

−1
j+1 jR

−1
Ni . . . R

−1
i+1 i. (3.14.9)

Then we use here identities for transfer-matrices

Rj j−1 . . . Rj 1(Ri i−1 . . . Ri 1) = (Ri i−1 . . . Ri 1)Rj j−1 . . . Rj i+1Rj i−1 . . . Rj 1Rji,

(R−1Nj . . . R
−1
j+1 j)R

−1
N i . . . R

−1
i+1 i = R−1ji R

−1
Ni . . . R

−1
j+1 iR

−1
j−1 i . . . R

−1
i+1 i(R

−1
Nj . . . R

−1
j+1 j)

and obvious relations [T−1(i) T
−1
(j) , Ri j] = 0 = [DiDj, Ri j]. As a result, we obtain for the l.h.s.

(3.14.9):

T(i)T(j)(Ri i−1 . . . Ri 1)Rj j−1 . . . Rj i+1Rj i−1 . . . Rj 1T
−1
(i) T

−1
(j)DiDj ×

× R−1Ni . . . R
−1
j+1 iR

−1
j−1 i . . . R

−1
i+1 i(R

−1
Nj . . . R

−1
j+1 j).

(3.14.10)

In the r.h.s., we use [Ri jDk] = 0 = [Ri jTk] for i, j ̸= k and the identity

R−1Ni · · ·R
−1
i+1 iRj j−1 · · ·Rj 1 = Rj j−1 · · ·Rj i+1Rj i−1 · · ·Rj 1R

−1
Ni · · ·R

−1
j+1 iR

−1
j−1 i · · ·R−1i+1 i,

which gives for the r.h.s. just the same answer (3.14.10) as for the l.h.s.
At the end of this subsection, we present the definition of the q-KZ equations due to F. Smir-

nov [186]. Define the R-matrix and operator Di as follows:

Ψ1...N⟩(z1, . . . , zi+1, zi, . . . zN) = R̂i i+1(zi/zi+1)Ψ
1...N⟩(z1, . . . , zi, zi+1, . . . , zN),

Ψ1...N⟩(p z1, z2, . . . , zN) = D1Ψ
2...N,1⟩(z2, z3, . . . , zN , z1).

(3.14.11)

One can explicitly show that Eqs. (3.14.11) lead to Eqs. (3.14.1), (3.14.2), (3.14.5). Indeed,
one can cyclically permute spectral parameters in Ψ1...N⟩ by means of the first equation in
(3.14.11) and then use the second equation in (3.14.11). The self-consistence of Eqs. (3.14.11)
can be checked directly. It also follows from the self-consistence of the extended Zamolodchikov
algebra with generators {Ai(zi), Q} (i = 1, . . . , N):

R̂1 2(z1/z2)A
1⟩(z1)A

2⟩(z2) = A1⟩(z2)A
2⟩(z1), D1A

1⟩(z1)Q = QA1⟩(p z1),

and remark that Eqs. (3.14.11) can be formally produced from the representation

Ψ1...N⟩(z1, . . . , zN) = Tr
(
QA1⟩(z1)A

2⟩(z2) . . . A
N⟩(zN)

)
.

The semiclassical limit of the q-KZ equations (if we take the the trigonometric R-matrices
(3.8.5) and (3.12.14) and consider their Yangian limits) gives [184] the usual Knizhnik–Za-
molodchikov equations. Moreover, the flat connections (3.14.5) (and their semiclassical limits)
are related to Dunkl operators for Calogero–Moser–Sutherland and Ruijsenaars–Schneider type
models.
Remark. In [187] (see also [188, 189]), the rather general classification for q-KZ flat connections
was proposed. This classification is based on the interpretation of q-KZ flat connections (3.14.4)
as images (in R-matrix representations) of commutative Jucys–Murphy elements for affine braid
groups defined by Coxeter graphs. We discuss such braid groups below in Subsection 4.1. In
particular, the connections (3.14.7) are images of the Jucys–Murphy elements J i for affine braid
group BN(C

(1)) (see Proposition 2.1 in [187]).
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3.15. Elliptic solutions of the Yang–Baxter equation

In this subsection, we consider ZN ⊗ ZN -symmetric solutions of the Yang–Baxter equation
(3.9.12) (see [190]). The elements Ri1i2

j1j2
(θ) of the corresponding R-matrix will be expressed in

terms of elliptic functions of the spectral parameter θ.
We construct this solution explicitly, following the method of the paper [190]. We consider

two matrices g and h such that gN = hN = 1:

g =


1 0 0 . . . 0
0 ω 0 . . . 0
...

...
0 0 0 . . . ωN−1

 , h =


0 1 0 . . . 0
0 0 1 . . . 0
...
1 0 0 . . . 0

 , (3.15.1)

where ω = exp(2πi/N) and h g = ω g h. The matrices g and h are ZN -graded generators of the
algebra Mat(N), the graded basis for which can be chosen in the form

Iα⃗ = Iα1α2 = gα1hα2 , α1,2 = 0, 1, . . . , N − 1. (3.15.2)

On the other hand, the matrices (3.15.2) realize a projective representation of the group ZN ⊗
ZN : Iα⃗Iβ⃗ = ωα2β1Iα⃗+β⃗ . Any matrix R12(θ) = Ri1i2

j1j2
(θ) can now be written in the form

R12(θ) = Wα⃗,β⃗(θ) Iα⃗ ⊗ Iβ⃗

(the sum over αi, βj is assumed). We consider the ZN ⊗ ZN -invariant subset of such matrices:

R12(θ) = Wα⃗(θ)Iα⃗ ⊗ I−1α⃗ , (3.15.3)

where I−1α⃗ = h−α2g−α1 = ωα1α2I−α⃗. The invariance of the matrices (3.15.3) is expressed by the
relations

R12(θ) = (Iγ⃗ ⊗ Iγ⃗)R12(θ) (Iγ⃗ ⊗ Iγ⃗)
−1 ∀γ⃗, (3.15.4)

which obviously follow from the identity

Iγ⃗ Iα⃗ I
−1
γ⃗ = ω<α,γ>Iα⃗, < α, γ >= α1γ2 − α2γ1.

It was noted in [190] that the relations

R12(θ + 1) = g−11 R12(θ) g1 = g2R12(θ) g
−1
2 ,

R12(θ + τ) = exp(−iπτ) exp(−2πiθ)h−11 R12(θ)h1 =

= exp(−iπτ) exp(−2πiθ)h2R12(θ)h
−1
2 ,

(3.15.5)

R12(0) = Iα⃗ ⊗ I−1α⃗ ≡ P12, (3.15.6)

where τ is some complex parameter (period), are consistent with the Yang–Baxter equation
(3.9.12) and can be regarded as subsidiary conditions to these equations (the last identity in
(3.15.6) follows from (Iα⃗⊗I−1α⃗ ) Iβ⃗⊗Iγ⃗ = Iγ⃗⊗Iβ⃗ (Iα⃗⊗I

−1
α⃗ )). Moreover, for the ZN⊗ZN -invariant

R-matrix (3.15.3) the conditions (3.15.5), (3.15.6) determine the solution of the Yang–Baxter
equation uniquely. Indeed, substitution of (3.15.3) in (3.15.5), (3.15.6) leads to the equations

Wα⃗(θ + 1) = ωα2 Wα⃗(θ),

Wα⃗(θ + τ) = exp(−iπτ) exp(−2πiθ)ω−α1 Wα⃗(θ), Wα⃗(0) = 1,
(3.15.7)
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the solution of which can be found by means of an expansion in a Fourier series and has the
form

Wα⃗(θ) =
Θα⃗(θ + η)

Θα⃗(η)
, (Wα⃗+ν⃗(u) = Wα⃗+ν⃗ ′(u) = Wα⃗(u)) , (3.15.8)

where ν⃗ = (N, 0), ν⃗ ′ = (0, N),

Θα⃗(u) =
∞∑

m=−∞

exp
[
iπτ(m+

α2

N
)2 + 2πi(m+

α2

N
)(u+

α1

N
)
]
, (3.15.9)

and we recall that α1,2 ∈ ZN . The parameter η in (3.15.8) is arbitrary. For N = 2, the
solution (3.15.8) is identical to the solution obtained by Baxter [1, 3, 191] in connection with
the investigation of the so-called eight-vertex lattice model.

Direct substitution of (3.15.3) in the Yang–Baxter equation (3.9.12) shows that the functions
Wα⃗(θ) must satisfy the relations∑

γ⃗

Wγ⃗(θ − θ′)Wα⃗−γ⃗(θ)Wβ⃗+γ⃗(θ
′)
(
ω<γ,β> − ω<α−γ,β>) = 0. (3.15.10)

As it was proved in [192–195], these relations hold when the functions (3.15.8) and (3.15.9) are
substituted. We will see later that the identities (3.15.10) are intimately related to a version of
the Yang–Baxter equations appeared in Interaction Round Face models (see Subsection 5.3).
Remark. In the paper [196], (ZN ×ZN)-invariant solutions R(θ) of the Yang–Baxter equation
are interpreted as matrix analogues of elliptic functions. A matrix analogue of the Weierstrass
sigma function σ(θ) is introduced in [196], which is an entire matrix function with zeros at the
points of a 2D lattice L and satisfies quasiperiodicity conditions similar to (3.15.5). Then the
(ZN × ZN)-invariant R-matrix is constructed as the ratio

R(θ) = σ−1(θ + η)σ(θ − η), (3.15.11)

where η is an additional parameter. It turns out (see [196]) that the representation (3.15.11)
remains valid with degeneracy of the lattice L to a one-dimensional lattice (the trigonometric
case) or to a zero-dimensional lattice (the rational case). In the latter case, the sigma function
is chosen in the form σ0(θ) = P+ + θP− (here P± = 1

2
(I ± P )), i.e., it is represented as the

polynomial of the first order in θ. Interestingly, there is an inverse procedure when the complete
elliptic Weierstrass matrix function σ(θ) and also the R-matrix (3.15.11) can be obtained by
using a special multiplicative averaging of matrices σ0(θ) and R0 = σ−10 (θ+η)σ0(θ−η) over the
lattice L. Finally, we note that for trigonometric solutions R(θ) analogous representations, as
a product of ratios of entire matrix functions, were studied in detail in [197]. The entire matrix
functions introduced in [197] can be considered as matrix generalizations of the trigonometric
functions.

In connection with this remark, we also recall the representations (3.8.6), (3.12.15) in
the form of rational functions for trigonometric solutions R (in defining representations of
SLq(N), SOq(N), and Spq(2n)), obtained by using the Baxterization procedure. For Yangian
solutions the analogous formula is given in Eq. (3.13.56).

4. Group algebra of braid group and its quotients

4.1. Affine braid groups and Coxeter graphs

A braid group BM+1 is generated by elements σi (i = 1, . . .M) subject to the relations

σi σi+1 σi = σi+1 σi σi+1, [σi, σj] = 0 for |i− j| > 1. (4.1.1)
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By definition the elements σi are supposed to be invertible and represented graphically as
(cf. (3.1.14)):

σi =

• • . . . • • . . . •1 2 i i+ 1 M + 1
@
@

�
�	

@
@R

�
�

? ? ?• • . . . • • . . . • (4.1.2)

Definition 13. An extension of the braid group BM by one invertible generator σM subject to
the relations

σMσM−1σM = σM−1σMσM−1, σ1σMσ1 = σMσ1σM ,

[σM , σk] = 0 (k = 2, . . . ,M − 2)
(4.1.3)

is called a periodic braid group BM ≡ BM(A(1)).

Definition 14. An extension of the braid group BM+1 (M ⩾ 1) by one invertible generator y1
which satisfies the relations

y1σ1y1σ1 = σ1y1σ1y1, [σi, y1] = 0 ∀i > 1 (4.1.4)

is called the affine braid group B̂M+1 ≡ BM+1(C) of the C type. The extension of the group
B̂M+1 by one more additional generator yM+1 with the defining relations

yM+1σMyM+1σM = σMyM+1σMyM+1, [σi, yM+1] = 0 ∀i < M, [y1, yM+1] = 0 (4.1.5)

is the affine braid group of the C(1) type which is denoted as BM+1(C
(1)).

It is clear that the affine group BM+1(C) is the subgroup of the affine braid group BM+1(C
(1)),

while the braid group BM+1 is the subgroup of BM+1(C). The defining relations (4.1.1), (4.1.3),
(4.1.4), and (4.1.5) (where we denote y1 = σ0 and yM+1 = σM+1) of the (affine) braid groups
can be written in the unified form as

σi σj σi . . .︸ ︷︷ ︸
mij factors

= σj σi σj . . .︸ ︷︷ ︸
mij factors

, (4.1.6)

where mij = mji are integers such that mii = 1, mij ⩾ 2 for i ̸= j. The set of data given by the
matrix ||mij|| is conveniently represented as the Coxeter graph with M (or M + 1, or M + 2)
nodes associated with generators σi, and the nodes i and j are connected by (mij − 2) lines if
mij = 2, 3, 4 and by 3 lines if mij = 6. Thus, the Coxeter graph for the braid group relations
(4.1.1) is the A-type graph:

d
σ1

d
σ2

d
σ3

. . . . . . . . d
. . .

d
σM

(4.1.7)

and, for the affine braid group relations (4.1.3), (4.1.4), and (4.1.5), the Coxeter graphs are
respectively

A(1) = d
σ1

d
σ2

d
σ3

. . . . . . . . . . d
. . .

d
σ

M−1

������������ XXXXXXXXXXXX

d σM

(4.1.8)
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C = eσ0 eσ1 ....... eσM−1 eσM (4.1.9)

C(1) = eσ0 eσ1 ....... eσM−1 eσM eσM+1

(4.1.10)

In the same way, one can also define the affine braid groups of B(1) andD(1) types (see, e.g., [187]
and references therein).

Consider the affine braid group B̂M+1 ≡ BM+1(C). The elements {yi} (i = 1, . . .M + 1)
defined by

y1, y2 = σ1y1σ1, y3 = σ2σ1y1σ1 σ2, . . . , yi+1 = σiyiσi, (4.1.11)

are called Jucys–Murphy elements and generate an Abelian subgroup in B̂M+1. For y1 = 1, the
Jucys–Murphy elements (4.1.11) generate an Abelian subgroup in the braid group BM+1. Note
that condition ynyn+1 = yn+1yn is equivalent to the reflection equation for yn:

yn σn yn σn = σn yn σn yn. (4.1.12)

Then we have yn yn+1 σn = σn yn yn+1, and the element Z = y1y2 · · · yM+1 is obviously central
in BM+1.

Proposition 4.16. The product of m elements of B̂M+1: y
(m)
k+1 := yk+1yk+2 . . . yk+m (k +m <

M + 1) satisfies the following relations:

y
(m)
k+1 = U(k,m) y

(m)
1 U(m,k), (4.1.13)

where (cf. (3.2.46))

U(k,m) = σ(k→m+k−1) . . . σ(2→m+1) σ(1→m) ≡ σ(k←1)σ(k+1←2)σ(k+m−1←m), (4.1.14)

and (k ⩽ n)
σ(k→n) = σkσk+1 . . . σn, σ(n←k) = σn . . . σk+1σk.

Proof. First of all, we show that

y
(m)
k+1 = σ(k→k+m−1) y

(m)
k σ(k+m−1←k). (4.1.15)

This identity is proved by induction. For m = 1 we obviously have yk+1 = σkykσk. Let (4.1.15)
be correct for some m. Then, for y(m+1)

k+1 we have

y
(m+1)
k+1 = y

(m)
k+1 yk+m+1 = σ(k→k+m−1) y

(m)
k σ(k+m−1←k) σk+myk+mσk+m =

= σ(k→k+m−1) y
(m)
k σk+myk+mσk+m σ(k+m−1←k) =

= σ(k→k+m−1)σk+m (y
(m)
k yk+m)σk+mσ(k+m−1←k),

which coincides with (4.1.15) for m → m + 1. Applying (4.1.15) several times, we deduce
(4.1.13).

One can graphically represent elements U(k,m) (4.1.14) (by means of the rules (4.1.2)) in the
following form (cf. (3.1.61)):
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U(k,m) =

• ••H
HHH

HHH
HHHHHj

. . . . . .

. . .
. . .

. . .• • . . .• •
1 k k+1 k+m k+m+1 M+1

�� �
����

��

�����
���

����

H
HHH

HHH
HHH

HHj

H
HHH

HHH
HHH

HHj ??• •. . . • ••. . . . . . . . .• •
(4.1.16)

From this representation it becomes clear that the following braid relations hold:

U(k,m) (TmU(k,n))U(m,n) = (TkU(m,n))U(k,n) (TnU(k,m)), (4.1.17)

where we have introduced jump operations Tm: σi → σi+m. One can check relations (4.1.17)
by direct calculations.
Remark. The sets of commutative Jucys–Murphy elements for all affine braid groups of the
A(1), B(1), C(1) and D(1) types were constructed in [187]. These elements were realized in
R-matrix representations of Birman–Murakami–Wenzl algebras and then used in [187] for the
formulation of the special q-KZ equations.

4.2. Group algebra of the braid group BM+1 and shuffle elements

We denote the group algebra of the braid group BM+1 over complex numbers as C[BM+1].
Consider the elements Σm→n ∈ C[BM+1], for n = m, m + 1, . . . , M + 1, that are defined
inductively

Σm→n = fm→nΣm→n−1 = fm→n fm→n−1 · · · fm→m+1 fm→m, (4.2.1)

where the subscript m→ n denotes the set of indices (m,m+ 1, . . . , n), Σm→m = 1 and

fk→k = 1, fk→n = 1 + σn−1 + σn−2 σn−1 + · · ·+ σk σk+1 · · ·σn−1 =

= 1 + fk→n−1 σn−1, k < n.
(4.2.2)

Note that, by means of braid relations (4.1.1), we derive the mirror set of expressions for the
elements Σk→n (4.2.1):

Σk→n = Σk→n−1 fk→n = fk→k fk→k+1 · · · fk→n−1 fk→n, (4.2.3)

where

fk→k = 1, fk→n = 1 + σn−1 + σn−1 σn−2 + · · ·+ σn−1 . . . σk+1 σk =

= 1 + σn−1fk→n−1 , k < n.
(4.2.4)

The elements Σm+1→n play the role of symmetrizers in C[BM+1] and, in view of the projection
σi → 1 for (4.2.1)–(4.2.4), they are algebraic analogs of the factorials (n−m)!. The important
properties of the elements fk→n ∈ C[BM+1] are

f1→nf1→n−1 . . . f1→m+1 = ⨿⨿(m,n−m)
1→n Σm+1→n (0 ⩽ m < n), (4.2.5)

where we introduce elements ⨿⨿(m,n−m)
1→n ∈ C[BM+1] with initial conditions ⨿⨿(n,0)

1→n = ⨿⨿(0,n)
1→n = 1,

⨿⨿(m−1,1)
1→m = f1→m. The identities (4.2.5) and definition (4.2.1), written in the form

Σ1→n = f1→nf1→n−1 . . . f1→m+1Σ1→m,
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lead to the right factorization formula

Σ1→n = ⨿⨿(m,n−m)
1→n Σ1→m Σm+1→n. (4.2.6)

Thus, taking into account the interpretation of Σm→n as factorials, one can consider ⨿⨿(m,n−m)
1→n

as an algebraic analog of the binomial coefficient.

Proposition 4.17. The elements ⨿⨿(m,n−m)
1→n are defined inductively by using the recurrent

relations [47, 199] (braid analogs of the Pascal rule):

⨿⨿(m,n+1−m)
1→n+1 = ⨿⨿(m,n−m)

1→n +⨿⨿(m−1,n+1−m)
1→n σn σn−1 . . . σm. (4.2.7)

Proof. We denote fk := f1→k and consider formula (4.2.5) for n→ (n+ 1):

⨿⨿(m,n+1−m)
1→n+1 Σm+1→n+1 = fn+1fn · · · fm+1 = (1 + fnσn)fnfn−1 · · · fm+1 =

= fnfn−1 · · · fm+1 + fnσn(1 + fn−1σn−1)fn−1fn−2 · · · fm+1 =

= fn · · · fm+1(1 + σn) + fnfn−1σnσn−1(1 + fn−2σn−2)fn−2 · · · fm+1 = · · · =
= fn · · · fm+1(1 + σn + σnσn−1 + · · ·+ σn · · ·σm+1) + fn · · · fm σn · · ·σm =

= ⨿⨿(m,n−m)
1→n Σm+1→n fm+1→n+1 +⨿⨿(m−1,n−m+1)

1→n Σm→n σnσn−1 · · ·σm =

= ⨿⨿(m,n−m)
1→n Σm+1→n+1 +⨿⨿(m−1,n−m+1)

1→n σnσn−1 · · ·σm Σm+1→n+1,

(4.2.8)

where we used (4.2.2)–(4.2.4). After dividing both sides of (4.2.8) by Σm+1→n+1 from the right,
we obtain (4.2.7).

In particular, Eq. (4.2.7) is written for m = (n−1) as ⨿⨿(n−1,2)
1→n+1 = (f1→n+⨿⨿(n−2,2)

1→n σn σn−1),
(n ⩾ 2) which gives

⨿⨿(m−1,2)
1→m+1 = f1→m + f1→m−1 (σm σm−1) + f1→m−2 (σm−1 σm−2) (σm σm−1)+

+ · · ·+ f1→2 (σ3 σ2) · · · (σm σm−1) + (σ2 σ1) · · · (σm σm−1).
(4.2.9)

The next relation is ⨿⨿(n−2,3)
1→n+1 = ⨿⨿(n−2,2)

1→n +⨿⨿(n−3,3)
1→n σn σn−1 σn−2 for (n ⩾ 3), etc.

Note that ⨿⨿(m,n−m)
1→n are sums over the braid group elements which can be considered as

quantum analogs of (m, n −m) shuffles of two piles with m and (n −m) cards if we read all
monomials in ⨿⨿(m,n−m)

1→n from right to left (the standard shuffles are obtained by projection
σi → si, where si are generators of the symmetric group SM+1). As it follows from (4.2.5), the
elements f1→m = ⨿⨿(m−1,1)

1→m are the sums of (m− 1, 1) shuffles. One can use the operators Σ1→n

(4.2.1) and identities (4.2.6) for the definition of the associative products that are analogs of the
wedge products proposed by S. Woronowicz in the theory of differential calculus on quantum
groups [70]. In view of (4.2.6), these products are related to the quantum shuffle products
(for quantum shuffles and corresponding products, see [198, 199]). The associativity of these
products is provided by the identities

⨿⨿(n−m,m)
1→n ⨿⨿(k,m−k)

1→m = ⨿⨿(k,n−k)
1→n ⨿⨿(m−k,n−m)

k+1→n (k < m < n), (4.2.10)

which are the consistence conditions for the definition of a 3-pile shuffles (k,m− k, n−m):

Σ1→n = ⨿⨿(k,m−k,n−m)
1→n Σ1→k Σk+1→m Σm+1→n.
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Going further, one can introduce m-pile shuffles ⨿⨿(n1,n2,...,nm)
1→n of the pack of n cards (n =

n1 + n2 + · · ·+ nm). Then we observe that the “symmetrizer” Σ1→n (4.2.1) is nothing else but
the n-pile shuffle ⨿⨿(1,1,...,1)

1→n .
By means of the mirror mapping (when we write generators σk ∈ BM+1 in all monomials in

opposite order) we obtain from (4.2.6) a left factorization formula

Σ1→n = Σ1→m Σm+1→n ⨿⨿
(m,n−m)

1→n , (4.2.11)

where the elements ⨿⨿(m,n−m)

1→n are defined by recurrence relations [47, 199] (cf. (4.2.7))

⨿⨿(m,n−m+1)

1→n+1 = ⨿⨿(m,n−m)

1→n + σm . . . σn⨿⨿
(m−1,n−m+1)

1→n

with initial conditions ⨿⨿(n,0)

1→n = ⨿⨿(0,n)

1→n = 1, ⨿⨿(n−1,1)
1→n = f 1→n, and ⨿⨿(m,n−m)

1→n is a sum over
(m,n−m) quantum shuffles (if we read all monomials from left to right). The mirror analogs
of the factorization identities (4.2.10) also hold

⨿⨿(k,m−k)
1→m ⨿⨿(m,n−m)

1→n = ⨿⨿(m−k,n−m)

k+1→n ⨿⨿(k,n−k)
1→n .

4.3. A-type Hecke algebra HM+1(q)

4.3.1. Jucys–Murphy elements, symmetrizers and antisymmetrizers in HM+1

A-type Hecke algebra HM+1(q) (see, e.g., [201] and references therein) is a quotient of the
braid group algebra (4.1.1) by the additional relation

σ2
i − 1 = λσi, (i = 1, . . . ,M). (4.3.1)

Here λ = (q−q−1), and q ∈ C\{0,±1} is a deformation parameter. Note that algebras HM+1(q)
and HM+1(−q−1) are isomorphic to each other: HM+1(q) ≃ HM+1(−q−1). The group algebra of
BM+1 (4.1.1) has an infinite dimension, while its quotient HM+1(q) is finite-dimensional. It can
be shown (see, e.g., [203]) that HM+1(q) is linearly spanned by (M + 1)! monomials appeared
in the expansion of Σ1→M+1 (4.2.1) (or in the expansion of (4.2.3)).

The A-type Hecke algebra is a special case of a general affine Hecke algebra. The affine
Hecke algebra is the quotient (by additional constraint (4.3.1)) of the affine braid groups with
generators {σi} subject to general relations (4.1.6). As it was shown in Subsection 4.1, the
Coxeter graph for the braid group relations (4.1.1) is the A-type graph (4.1.7). That is why
the Hecke algebra with defining relations (4.1.1) and (4.3.1) is called the A-type Hecke algebra.
The A-type Hecke algebra HM+1(q) is a semisimple algebra.

An essential information about a finite-dimensional semisimple associative algebras A is
contained (see, e.g., [138]; see also Subsection 4.5 in [139] and references therein) in the structure
of its regular bimodule, which is decomposed into direct sums:

A =
s⊕

α=1

A · eα, A =
s⊕

α=1

eα · A

of left and right submodules (ideals), respectively (left and right Peirce decompositions). Here
the elements eα ∈ A (α = 1, . . . , s) are mutually orthogonal idempotents resolving the identity
operator 1:

eα · eβ = δαβeα, 1 =
s∑

α=1

eα. (4.3.2)
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Making use of left and right Peirce decompositions simultaneously, we have two-sided Peirce
decomposition

A =
s⊕

α,β=1

eα A eβ =
s⊕

α,β=1

Aα,β, Aα,β = eα A eβ. (4.3.3)

Here the linear spaces Aα,β are, generally speaking, neither left nor right ideals in A. Instead,
products of elements of Aα,β obey the relations: Aα,β ·Aγ,κ = δβ,γ Aα,κ, which resemble relations
for matrix units.

The number s depends on the choice of the type of idempotents in A. There are two
important types of the idempotents in A and correspondingly two decompositions of the identity
operator:
(1) Primitive idempotents. An idempotent eα is primitive if it cannot be further resolved into
a sum of nontrivial mutually orthogonal idempotents.
(2) Primitive central idempotents. An idempotent e′A (A = 1, . . . , s′) is primitive central if it is
central element in A and primitive in the class of central idempotents.
One can expand any central idempotent eA in primitive idempotents {eα}: eA =

∑
α∈A eα,

where A is a subset of indices from the set {1, 2, . . . , s}; i.e., central orthogonal idempotents
{eA} are conveniently labeled by non-intersecting subsets A ⊂ {1, 2, . . . , s}, which cover the
entire set of indices {1, 2, . . . , s}.

Let Ai (i = 1, . . . , s′) be non-intersecting subsets in {1, 2, . . . , s} which cover the entire set
and define central idempotents eAi

. Let α ∈ Ai, β ∈ Aj and i ̸= j, then, in view of orthogonality
eAi

·eAj
= 0, for any element a ∈ A we have aα,β = eα ·a·eβ = 0. This tells us that the two-sided

Peirce decomposition (4.3.3) of semisimple algebra A does not contain terms Aα,β, if α ∈ Ai,
β ∈ Aj and i ̸= j, so that we have

A =
s′⊕
i=1

e′Ai
· A · e′Ai

=
s′⊕
i=1

⊕
α,β∈Ai

eα A eβ =
s′⊕
i=1

⊕
α,β∈Ai

Aα,β, (4.3.4)

where, again, s′ is the number of primitive central idempotents eAi
. Thus, the regular bimodule

of the semisimple algebra A decomposes into direct sums of irreducible sub-bimodules (two-
sided ideals) A =

⊕s′

i=1 A · e′Ai
=
⊕s′

i=1 e
′
Ai

· A with respect to the central idempotents e′A. For
semisimple algebras A the subspaces Aα,β in (4.3.4) are one-dimensional and for any a ∈ A we
have eα ·a·eβ = c(a) eαβ, where c(a) are constants and basis elements eαβ ∈ Aα,β are normalized
such that eαβ · eγδ = δβγ eαδ. In view of these relations, the elements eαβ ∈ A are called matrix
units. The diagonal matrix units coincide with the primitive idempotents: eαα = eα.

Now we return back to the consideration of the Hecke algebra HM+1 (here and below
we omit the parameter q in the notation HM+1(q)). First of all, we construct two special
primitive idempotents in the Hecke algebra HM+1 which correspond to the symmetrizers and
antisymmetrizers. For this purpose, we consider two substitutions σi → qσi, σi → −q−1σi for
the braid group algebra element Σ1→n (4.2.1). As a result, for the algebra HM+1 we obtain two
sequences of operators S1→n and A1→n (n = 1, . . .M + 1):

S1→n := a−n Σ1→n(q σi), A1→n := a+n Σ1→n(−q−1 σi) (4.3.5)(
a∓n =

q∓
n(n−1)

2

[n]q!
, [n]q! := [1]q [2]q · · · [n]q, [n]q =

(qn − q−n)

(q − q−1)

)
,
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σi S1→n = S1→n σi = q S1→n (i = 1, . . . n− 1),

σiA1→n = A1→n σi = −1
q
A1→n (i = 1, . . . n− 1),

(4.3.6)

which are symmetrizers and antisymmetrizers, respectively (see [111]). The normalization
factors a∓n have been introduced in (4.3.5) in order to obtain the idempotent conditions S2

1→n =
S1→n and A2

1→n = A1→n. Here we additionally suppose that [n]q ̸= 0, ∀n = 1, . . . ,M + 1. The
first two idempotents are

S12 =
1

[2]q
(q−1 + σ1), A12 =

1

[2]q
(q − σ1). (4.3.7)

Note that Eqs. (4.3.6) immediately follow from the factorization relations (4.2.6), (4.2.11), the
form of the first idempotents (4.3.7) and the Hecke condition (4.3.1). The projectors S1→n and
A1→n (4.3.5) correspond to the Young tableaux which have only one row and one column

P
(

1 . . . n
)
= S1→n, P

 1
...
n

 = A1→n.

It follows directly from (4.3.6) that the idempotents S1→M+1 and A1→M+1 are central in
HM+1(q).

Consider now the elements yi (i = 1, . . . ,M + 1) (4.1.11) which generate a commutative
subalgebra YM+1 in HM+1. It can be proved that YM+1 is a maximal commutative subalgebra
in HM+1. The elements yi are called Jucys–Murphy elements and can be easily rewritten in the
form (by using the Hecke condition (4.3.1) and braid relations (4.1.1)):

y1 = 1, yi = σi−1 yi−1 σi−1 = σi−1 . . . σ2 σ
2
1 σ2 . . . σi−1 =

= λσi−1 . . . σ2 σ1 σ2 . . . σi−1 + σi−1 . . . σ3 σ
2
2 σ3 . . . σi−1 = · · · =

= λ
i−2∑
k=1

σi−1 . . . σk+1 σk σk+1 . . . σi−1 + λσi−1 + 1 =

= λ
i−2∑
k=1

σk . . . σi−2 σi−1 σi−2 . . . σk + λσi−1 + 1, i = 2, . . . ,M + 1.

(4.3.8)

It is interesting that the idempotents (4.3.5) which correspond to the symmetrizers and an-
tisymmetrizers (the Young tableaux are only one row or column) can be constructed in the
different way as polynomial functions of the elements yn.

Proposition 4.18. The idempotents S1→n and A1→n (n = 2, . . .M + 1) (4.3.5) are expressed
in terms of the Jucys–Murphy elements as

S1→n =
(y2 − q−2)

(q2 − q−2)

(y3 − q−2)

(q4 − q−2)
· · · (yn − q−2)

(q2(n−1) − q−2)
, (4.3.9)

A1→n =
(y2 − q2)

(q−2 − q2)

(y3 − q2)

(q−4 − q2)
· · · (yn − q2)

(q2(1−n) − q2)
. (4.3.10)

Proof. We note that expressions (4.3.7) for the first two projectors are written as

S12 =
(σ2

1 − q−2)

(q2 − q−2)
, A12 =

(σ2
1 − q2)

(q−2 − q2)
,
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and therefore Eqs. (4.3.9) and (4.3.10) are valid for n = 2. We prove Eqs. (4.3.9) and (4.3.10)
by induction. Let Eqs. (4.3.9) and (4.3.10) be correct for some n = k. We need to prove these
equations for n = k + 1 or we have to show that

S1→k+1 = S1→k ·
(yk+1 − q−2)

(q2k − q−2)
, A1→k+1 = A1→k ·

(yk+1 − q2)

(q−2k − q2)
. (4.3.11)

We prove only the first equation in (4.3.11) (the proof of the second equation in (4.3.11) is
analogous). We substitute in (4.3.11) the last expression for Jucys–Murphy elements yk+1

(4.3.8) and take into account (4.3.6). As a result, we obtain for the first equation in (4.3.11):

S1→k+1 =
1

(q2k−q−2)
S1→k

(
λ(qk−1σk . . . σ1 + qk−2σk . . . σ2 + · · ·+ σk) + 1− q−2

)
=

= qk

[k+1]q
S1→k

(
qkσk . . . σ1 + qk−1σk . . . σ2 + · · ·+ q σk + 1

)
,

(4.3.12)

which coincides with the definition of symmetrizers (4.2.3), (4.3.5). This ends the proof of the
induction and hence this Proposition.

Note that the idempotents S1→M+1 and A1→M+1 are central in the algebra HM+1(q) and
represented as the polynomials ∼ (y2 − t)(y3 − t) · · · (yM+1 − t), where t = q∓2 (see (4.3.9),
(4.3.10)), which are symmetric functions in variables {yi} (i = 2, . . . ,M + 1). In view of this,
one can conjecture that all symmetric functions in yi generate the central subalgebra ZM+1 in
the Hecke algebra HM+1(q). Indeed, to prove this fact, we need only to check the relations:
[σk, yn + yn+1] = 0 = [σk, ynyn+1] for all k < n+ 1.

New identities for the elements yi follow from the representations (4.3.9) and (4.3.10) (if we
use Eqs. (4.3.6)):

(yi − q2(i−1))S1→n = 0 ⇒ (yi − q2(i−1))(y2 − q−2)(y3 − q−2) · · · (yn − q−2) = 0, (4.3.13)

(yi − q2(1−i))A1→n = 0 ⇒ (yi − q2(1−i))(y2 − q2)(y3 − q2) · · · (yn − q2) = 0, (4.3.14)

(i = 2, . . . , n). Then two new types of idempotents (which are primitive orthogonal idempotents
for the subalgebra Hn ∈MM+1) are obtained from these identities:

P

(
1 . . . n-1
n

)
=

(yn − q2(n−1))

(q−2 − q2(n−1))

n−1∏
k=1

(yk − q−2)

(q2(k−1) − q−2)
= (4.3.15)

= S1→n−1 − S1→n =
[n− 1]q
[n]q

S1→n−1 σn−1(q)S1→n−1,

P

 1 n
...

n-1

 =
(yn − q2(1−n))

(q2 − q2(1−n))

n−1∏
k=1

(yk − q2)

(q2(1−k) − q2)
= (4.3.16)

= A1→n−1 − A1→n =
[n− 1]q
[n]q

A1→n−1 σn−1(q
−1)A1→n−1,

where [113, 200]
σn(x) := λ−1 (x−1σn − xσ−1n )

are Baxterized elements for the algebra HM+1(q) (the R-matrix representations of these ele-
ments are given in (3.8.5)). We consider properties of these elements below; see Eq. (4.3.38)
and further discussion. The idempotents (4.3.15) and (4.3.16) are not central in HM+1 but they
are the elements of the commutative subalgebra YM+1.
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4.3.2. Primitive orthogonal idempotents in HM+1 and Young tableaux

Now we describe the general construction (see [208, 209] and references therein) of all
primitive orthogonal idempotents eα ∈ HM+1 which are elements of YM+1 (i.e., functions of the
elements yi). All these idempotents are common eigenidempotents of yi:

yieα = eαyi = a
(α)
i eα (i = 1, . . . ,M + 1),

where a
(α)
i are eigenvalues. We denote by Spec(y1, . . . , yM+1) the set of strings of (M + 1)

eigenvalues Λ(eα) := (a
(α)
1 , . . . , a

(α)
M+1) (∀α). The eigenidempotents eα define left (and right)

submodules HM+1 · eα (and eα ·HM+1) in the regular bimodule of HM+1.

Lemma 1. The eigenidempotents e and e′ with eigenvalues ai = a′i (∀i = 1, . . . ,M) and
aM+1 ̸= a′M+1 define different left (right) submodules in the regular bimodule of HM+1.
Proof. We proof this Lemma only for the left submodules HM+1 · e, HM+1 · e′. The case of
the right submodules can be considered analogously. Let v and v′ be, respectively, elements of
submodules HM+1 · e and HM+1 · e′. Consider central element Z = y1y2 · · · yM+1 (symmetric
function of yi). There are no elements X ∈ HM+1 such that v′ = X v, since the left action of
Z on elements X v and v′ produces different eigenvalues.

Now we introduce the important intertwining elements [84] (in another form these elements
appeared in [204]):

Un+1 = σnyn − ynσn = σnyn − σ−1n yn+1 = yn+1σ
−1
n − ynσn = (4.3.17)

= (yn+1 − yn)σn − λyn+1 = σn(yn − yn+1) + λyn+1 (1 ⩽ n ⩽M), (4.3.18)

subject to relations20

Un+1yn = yn+1Un+1, Un+1yn+1 = ynUn+1,

[Un+1, yk] = 0 (k ̸= n, n+ 1),
(4.3.19)

Un Un+1 Un = Un+1 Un Un+1, (4.3.20)

U2
n+1 = (qyn − q−1 yn+1) (q yn+1 − q−1 yn). (4.3.21)

Lemma 2. The eigenidempotents e and e′ with eigenvalues

ai = a′i (∀i = 1, . . . ,M − 1),

aM = a′M+1, aM+1 = a′M , aM ̸= q±2aM+1

(4.3.22)

belong to the same irreducible sub-bimodule in the regular bimodule of HM+1.
Proof. Since the algebra YM+1 generated by {y1, . . . , yM+1} is maximal commutative subalge-
bra in HM+1, we have e′ = e′′ if Λ(e′) = Λ(e′′). Then, using intertwining element UM+1 (4.3.17),
we construct the eigenidempotent

e′′ =
1

(q2aM − aM+1)(aM+1 − q−2aM)
UM+1 e UM+1, (e′′)2 = e′′,

20The definition (4.3.17) of intertwining elements is not unique. One can multiply Un+1 by a
function f(yn, yn+1): Un+1 → Un+1f(yn, yn+1). Then Eqs. (4.3.19)–(4.3.21) are valid if f satisfies
f(yn, yn+1)f(yn+1, yn) = 1.
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which is well defined in view of the last condition in (4.3.22). The element UM+1 eUM+1 is not
equal to zero, since U2

M+1 eU
2
M+1 = (q2aM − aM+1)

2(aM+1 − q−2aM)2e ̸= 0. This inequality
follows from the last condition in (4.3.22). For the element e′′ ∼ UM+1 eUM+1 we have Λ(e′′) =
Λ(e′) in view of (4.3.19). Thus, e′′ = e′ ⇒ e′ ∼ UM+1 eUM+1 and the eigenidempotents e and
e′ belong to the same irreducible sub-bimodule in the regular bimodule of HM+1.

Consider a Young diagram [ν]M+1 with (M +1) nodes. We place the numbers 1, . . . ,M +1
into the nodes of the diagram in such a way that these numbers are arranged along rows and
columns in ascending order in right and down directions. Such a diagram is called a standard
Young tableau T[ν]M+1

. Then we associate a number q2(n−m) (the “content”) to each node of the
standard Young tableau, where (n,m) are coordinates of the node. Example:

-

?

n

m

1
1

2
q2

4
q4

6
q6

3
q−2

5
1

8
q2

7
q−4

(4.3.23)

In general, for the tableau T[ν]M+1
, the ith node with coordinates (n,m) looks like i

q2(n−m) .
Thus, to each standard Young tableau [ν]n one can associate a string of numbers Λ = (a1, . . . , an)
with ai = q2(n−m). For example, a standard Young tableau (4.3.23) corresponds to a string

Λ = (1, q2, q−2, q4, 1, q6, q−4, q2).

Now we associate Young tableaux T[ν]M+1
(related to the primitive orthogonal idempo-

tents) with paths in Young–Ogievetsky graph. By definition Young–Ogievetsky graph is a
Young graph with vertices, which are Young diagrams, with edges, which indicate inclusions
of diagrams (or a branching of representations), and with numbers (colours) on the edges cor-
responding to the eigenvalues of the Jucys–Murphy elements21. For example, the coloured
Young–Ogievetsky graph for H4 is

S
S
S
SSw?










�

B
B
B
B
BN

�
�
�
�
��

J
J
JĴ

�
�
���

A
A
A
AU









�

A
A
AU

�
�

�/

?

s ss
�
�
�
��

q−2

q4 q−4

q−4

q−6q6

q4

1

= y1

= y2

= y3

= y4
q2

q−2

q2

q−2q2

1

S
S
S
Sws

∅

s

ssssssss
ssss

s
s sss sssss sssssss Figure 4.1. Young–Ogievetsky graph for

H4(q).

21To our knowledge, O. Ogievetsky was the first who proposed to associate the eigenvalues of the Jucys–
Murphy elements to the edges of the Young graph. Usually the indices on the edges of the graphs of Young type
correspond to the multiplicity of the branching. In this case, the Young graph is called the Bratelli diagram. In
our case, all multiplicities are equal to 1.
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The paths (associated to Young tableaux) start from the top vertex ∅ and finish at the vertex
labeled by the Young diagram of the same shape as the tableaux. The dimension of the
corresponding representation of the Hecke algebra is equal to the number of standard tableaux
of this shape or, as we see, the number of paths which lead to this Young diagram from top ∅.
For example, the path {∅ 1→ • q2→ •• q−2

→ •••
1→ ••• • } corresponds to the tableau 1 2

3 4
, i.e.,

the shape of the tableau (Young diagram) is given by the shape of the last vertex of the path,
while the numbers in nodes of the tableau show in which sequence the points • appear in the
vertices along the path. The edge colours of the path (or contents of the nodes of the standard
tableau, as it is explained in (4.3.23)) are the eigenvalues of the Jucys–Murphy elements y1 = 1,

y2 = q2, y3 = q−2, y4 = 1 obtained by their action on the idempotent P
(

1 2
3 4

)
. Then the

explicit formula for this idempotent can be constructed by induction. Namely, we take the

explicit form of the previous idempotent P
(

1 2
3

)
(related to the previous vertex of the

path) and multiply it by the factors (y4 − 1), (y4 − q4), and (y4 − q−4), which correspond to
possible colours of outgoing edges from vertex • •• , to obtain characteristic identity

P

(
1 2
3

)
(y4 − 1)(y4 − q4)(y4 − q−4) = 0. (4.3.24)

Then, to forbid the moving from the vertex • •• along the edges with labels q4 and q−4 and

move along the edge with the index 1 to the vertex • •• • , we remove from the left-hand side of
(4.3.24) the factor (y4 − 1). As a result, we obtain (after an obvious renormalization)

P

(
1 2
3 4

)
= P

(
1 2
3

)
(y4 − q4)(y4 − q−4)

(1− q4)(1− q−4)
. (4.3.25)

In the same way, one can deduce the chain of identities

P

(
1 2
3

)
= P

(
1 2

) (y3 − q4)

(q−2 − q4)
= P

(
1
) (y2 − q−2)(y3 − q4)

(q2 − q−2)(q−2 − q4)
, (4.3.26)

where we fix P
(

1
)
= 1 by definition. Using (4.3.26), the final formula for (4.3.25) can be

written as
P

(
1 2
3 4

)
=

(y2 − q−2)(y3 − q4)

(q2 − q−2)(q−2 − q4)

(y4 − q4)(y4 − q−4)

(1− q4)(1− q−4)
. (4.3.27)

We note that the described procedure leads automatically to the idempotents which are or-
thogonal to each other.

This example has demonstrated that all information about primitive orthogonal idempo-
tents for the A-type Hecke algebra is encoded in the Young–Ogievetsky (YO) graph given in
Figure 4.1. Thus, we need to justify this graph and its edge colours. First of all, we prove the
following statement.

Proposition 4.19. The spectrum of the Jucys–Murphy operators yj (possible edge indices of
the YO graph) for HM+1 is such that

Spec(yj) ⊂ {q2Zj} ∀j = 1, 2, . . . ,M + 1, (4.3.28)

where Zj denotes the set of integer numbers {1− j, . . . ,−2,−1, 0, 1, 2, . . . , j − 1}.
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Proof. We use the important intertwining elements (4.3.17), (4.3.18) and prove (4.3.28) by
induction. From the Hecke condition (4.3.1) we have

(y2 − q2)(y2 − q−2) = 0. (4.3.29)

Thus, Spec(y2) satisfies (4.3.28). Assume that the spectrum of yj−1 satisfies (4.3.28) for some
j ⩾ 3. Consider a characteristic equation for yj−1 (cf. (4.3.29)):

f(yj−1) :=
∏
α

(yj−1 − a
(α)
j−1) = 0 (a

(α)
j−1 ∈ Spec(yj−1)).

Using operators Uj and their properties (4.3.19), (4.3.21), we deduce

0 = Ujf(yj−1)Uj = f(yj)U
2
j = f(yj)(q

2yj−1 − yj)(yj − q−2yj−1), (4.3.30)

which means that
Spec(yj) ⊂

(
Spec(yj−1) ∪ q±2 · Spec(yj−1)

)
, (4.3.31)

and it justifies (4.3.28).

4.3.3. Irreducible representations of HM+1 and recurrence formula for primitive idempotents

In [231], A. Okounkov and A. Vershik developed new approach to the construction of the
irreducible representations of symmetric group (we review this approach in [139], Section 4.6).
Here we generalize (following [201], [202–205], [208, 209]) the Okounkov–Vershik approach to
the case of the Hecke algebra.

Consider a subalgebra Ĥ(i)
2 in HM+1 with generators yi, yi+1 and σi (for fixed i ⩽ M). We

investigate (see [208, 209]) representations of Ĥ(i)
2 in the case when the elements yi, yi+1 are

diagonalizable. Let e be a common eigenidempotent of yi, yi+1: yie = aie, yi+1e = ai+1e. Then
the left action of Ĥ(i)

2 closes on elements v1 = e, v2 = σie and is given by matrices

σi =

(
0 1
1 λ

)
, yi =

(
ai −λai+1

0 ai+1

)
, yi+1 =

(
ai+1 λai+1

0 ai

)
, (4.3.32)

where we have used the standard convention yvi = vj yji to produce matrix representations
||yji|| for operators y.

The operators yi, yi+1 (4.3.32) can be simultaneously diagonalized by the transformation
y → V −1yV , where

V =

(
1 λai+1

ai−ai+1

0 1

)
, V −1 =

(
1 − λai+1

ai−ai+1

0 1

)
.

As a result, we obtain the following matrix representation:

σi =

− λai+1

ai−ai+1

(ai−q2 ai+1)(ai−q−2 ai+1)
(ai−ai+1)2

1 λai
ai−ai+1

 , yi =

(
ai 0
0 ai+1

)
, yi+1 =

(
ai+1 0
0 ai

)
, (4.3.33)

where ai ̸= ai+1, otherwise yi, yi+1 are not diagonalizable. We note that the form of matrix σi
in (4.3.33) is not unique, since one can multiply V by any diagonal matrix D from the right.
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For ai+1 ̸= q±2ai one can perform additional similarity transformation of operators (4.3.33)
with diagonal matrix D = diag(d1, d2) to make the matrix σi symmetric:

σi → D−1 σiD =

 − λai+1

ai−ai+1

d1
d2

d1
d2

λai
ai−ai+1

 ,
d1
d2

= ±
√

(ai − q2 ai+1)(ai − q−2 ai+1)

(ai − ai+1)
.

When ai+1 = q±2ai, the 2-dimensional representation (4.3.33) is reduced into the 1-dimensional
representation with σi = ±q±1, respectively. We summarize the above results as following.

Proposition 4.20 (q-Vershik–Okounkov [208, 209, 231]). Let

Λ = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec(y1, . . . , yM+1)

be a possible spectrum of the commutative set (y1, . . . , yM+1), which corresponds to a primitive
eigenidempotent eΛ ∈ HM+1. Then ai = q2mi, where mi ∈ Zi (4.3.28) and
(1) ai ̸= ai+1 for all i < M + 1;
(2) if ai+1 = q±2ai, then σi · eΛ = ±q±1eΛ;
(3) if ai ̸= q±2ai+1, then

Λ′ = (a1, . . . , ai+1, ai, . . . , aM+1) ∈ Spec(y1, . . . , yM+1),

and the left action of the elements σi, yi, yi+1 in the linear span of vΛ = eΛ and

vΛ′ = σi eΛ +
λai+1

ai − ai+1

eΛ

is given by (4.3.33).

From this Proposition we conclude that the only admissible subgraphs in the Young–
Ogievetsky (YO) graph (subgraphs which show all possible two-edges paths with fixed initial
and final vertices) are

?

?⋆

⋆

⋆ (σi = ±q±1)

yi+1 = aq±2

yi = a

b

a b

a

(b ̸= q±2a)⋆ ⋆

⋆

⋆

�
�

�
��

A
A
A
AU

A
A
A
AU

�
�
�
��

Figure 4.2 Figure 4.3

where stars in the vertices denote Young diagrams. These subgraphs are related to the 1-
dimensional and 2-dimensional (it corresponds to the number of paths from the top vertex to
the bottom one in Figure 4.2 and Figure 4.3) representations of the subalgebra generated by
{yi, yi+1, σi}. In view of the braid relations σiσi±1σi = σi±1σiσi±1 and possible values of σ’s
presented in Figure 4.2 for 1-dimensional (1D) representation subgraphs, we conclude that the

chains ⋆
a→ ⋆

q±2a→ ⋆
a→ ⋆ of the 1D representation subgraphs in the YO graph in Figure 4.1 are

forbidden. While admissible chains of 1D representation subgraphs are ⋆
a→ ⋆

q±2a→ ⋆
q±4a→ ⋆.

These statements and the form of only admissible subgraphs in Figures 4.2 and 4.3 justify (for
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the A-type Hecke algebra) the YO graph presented in Figure 4.1. Indeed, we know the top of
the YO graph which consists of 3 edges with indices 1, q2, q−2 (see Figure 4.1). Then one can
explicitly construct “step by step” moving down the whole YO graph (with all indices on edges)
by using (4.3.31), the form of only admissible subgraphs in Figures 4.2, 4.3 and rules for the
chains of 1-dimensional representations. We also stress here two important properties of the
YO graph:
1) to each vertex of the graph the number of incoming edges Ein is less than the number of
outgoing edges Eout on 1: Eout = Ein + 1;
2) to each vertex of the graph the products of indices ain for incoming and aout for outgoing
edges are equal to each other:

∏Ein

α=1 ain(α) =
∏Eout

β=1 aout(β).
Finally, we summarize all results about the spectrum Spec(y1, . . . , yM+1) of the Jucys–

Murphy elements yi ∈ HM+1(q) and YO graph for the Hecke algebra HM+1(q) as following.

Proposition 4.21 ([208, 209, 231]). There is a bijection between the set of the standard Young
tableaux T[ν]n with n nodes, the set Spec(y1, . . . , yn) and the set of paths Xa⃗ in coloured YO
graph which connect the top diagram ∅ and the diagram [ν]n.

Since the YO graph is explicitly known, we can deduce the expressions (in terms of the
elements yk) of all orthogonal primitive idempotents for the Hecke algebra (in the same way as
it has been done in (4.3.25)–(4.3.27)). We stress once again that the method of construction
of explicit expressions for such primitive orthogonal idempotents is known and was discussed,
e.g., in [202, 205, 208, 209]. Now we explain the operation of this method by using an arbitrary
standard Young tableau as an example.

Let Λ be a Young diagram with n = nk rows: λ1 ⩾ λ2 ⩾ . . . ⩾ λn and |Λ| :=
∑n

i=1 λi be the
number of its nodes. Consider the case when λ1 = · · · = λn1 = λ(1) > λn1+1 = λn1+2 = · · · =
λn2 = λ(2) > · · · > λnk−nk−1+1 = · · · = λ|Λ| = λ(nk):

Λ =

. . .

λ
(1)

n1

n2−n1

nk−nk−1

n1 ,λ(1)

n2 ,λ(2)

n3 ,λ(3)

n
k
,λ

(k)

(4.3.34)

Here (ni, λ(i)) are coordinates of the nodes corresponding to the inner corners of the diagram
Λ. Consider any standard Young tableau TΛM

of shape (4.3.34) with M = |Λ| nodes. Let
e(TΛM

) ∈ HM be a primitive idempotent corresponding to the tableau TΛM
. Taking into

account the branching rule implied by the coloured Young–Ogievetsky graph for HM+1, we fix
all possible eigenvalues q2(λ(r)−nr−1) (r = 1, . . . , k + 1) of the element yM+1. Then we conclude
that the following identity holds:

e(TΛM
)
k+1∏
r=1

(
yM+1 − q2(λ(r)−nr−1)

)
= 0,

where λ(k+1) = n0 = 0. Thus, for a new tableau TΛj
M+1

, which is obtained by adding to the
tableau TΛM

of the shape (4.3.34) a new node with coordinates (nj−1 + 1, λ(j) + 1), we obtain
the following primitive idempotent (after a normalization):

e(TΛj
M+1

) := e(TΛM
)
k+1∏
r=1
r ̸=j

(
y|Λ|+1

− q2(λ(r)−nr−1)
)

(
q2(λ(j)−nj−1) − q2(λ(r)−nr−1)

) = e(TΛM
) Πj . (4.3.35)
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With the help of this formula and “initial data” e
(

1
)
= 1, one can deduce step by step explicit

expressions for all primitive orthogonal idempotents for Hecke algebras.

Remark. The elements found by inductive formula (4.3.35) give by construction a com-
plete system of mutually orthogonal idempotents in the Hecke algebra HM(q). Let Ta,Λ

(a = 1, . . . , fΛ) be standard Young tableaux of the shape of the Young diagram Λ ⊢M and fΛ —
the number of such Young tableaux of the shape Λ. A primitive idempotent e(Ta,Λ) ∈ HM(q)
corresponds to such tableau. Central idempotents e(Λ) correspond to the Young diagrams
Λ ⊢M and are expressed as the sum e(Λ) =

∑fΛ
a=1 e(Ta,Λ). Then the completeness of the prim-

itive orthogonal idempotents e(Ta,Λ) is written as the resolution of unit operator 1 via central
idempotents e(Λ) ∈ HM(q):

1 =
∑
Λ⊢M

fΛ∑
a=1

e(Ta,Λ) =
∑
Λ⊢M

e(Λ).

One can find explicit formula for the number fΛ in [139], Subsection 4.3.2 (see also references
therein).

4.3.4. Idempotents in HM+1(q) and Baxterized elements. Matrix units in HM+1

Another convenient recurrent relations for Hecke symmetrizers and antisymmetrizers (4.3.5),
(4.3.9), (4.3.10) are (see, e.g., [111, 113, 232]):

S1→n = S1→n−1
σn−1(q

1−n)

[n]q
S1→n−1, S1→n = S2→n

σ1(q
1−n)

[n]q
S2→n, (4.3.36)

A1→n = A1→n−1
σn−1(q

n−1)

[n]q
A1→n−1, A1→n = A2→n

σ1(q
n−1)

[n]q
A2→n, (4.3.37)

where σn(x) are Baxterized elements [113, 200] (cf. (3.8.5)):

σn(x) := λ−1 (x−1σn − xσ−1n ), (4.3.38)

for the algebra HM+1(q). We have already used these elements in definitions of the idempotents
(4.3.15) and (4.3.16). The elements σn(x) obey the Yang–Baxter equation (the proof of this
statement is the same as in (3.8.1)–(3.8.4)):

σn(x)σn−1(xy)σn(y) = σn−1(y)σn(xy)σn−1(x). (4.3.39)

These elements are also normalized by the conditions σn(±1) = ±1 and satisfy

σi(x) =
x− x−1

y − y−1
σi(y) +

yx−1 − xy−1

y − y−1
, ∀x, y ̸= ±1,

σi(x)σi(y) = σi(xy) + (x− x−1)(y − y−1)λ−2. (4.3.40)

The special case y = x−1 of (4.3.40) gives the “unitarity condition”

σi(x)σi(x
−1) =

(
1− (x− x−1)2

λ2

)
≡ (qx−1 − q−1x)(qx− q−1x−1)

λ2
. (4.3.41)

One can write the Baxterized elements (4.3.38) as rational function of σi (cf. (3.8.6)):

σi(x) =

(
a−1x− ax−1

λx2

)
σi − ax2

σi − ax−2
, σ

(a)
i (x) : =

σi − ax2

σi − ax−2
, (4.3.42)
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where a = −q, or a = q−1, and it becomes clear, for both choices of a, that the normalized
elements σ(a)

i (x) obey σ(a)
i (x)σ

(a)
i (x−1) = 1.

Equations (4.3.40), (4.3.41), and (4.3.42) follow from the Hecke relation (4.3.1). The equiv-
alence of both representations for (anti)symmetrizers given in the first and second equations
of (4.3.36) and (4.3.37) is demonstrated by means of the Yang–Baxter equation (4.3.39), or
by means of the obvious mirror automorphism σk → σM−k for the Hecke algebra HM(q). The
equivalence of (4.3.36), (4.3.37), and (4.3.5) can be easily demonstrated if one writes the first
representations of (4.3.36), (4.3.37) in the form

S1→n = 1
[n]q !

σ1(q
−1)σ2(q

−2) . . . σn−1(q
1−n)S1→n−1,

A1→n = 1
[n]q !

σ1(q)σ2(q
2) . . . σn−1(q

n−1)A1→n−1,
(4.3.43)

and then we should use (4.3.6) to compare (4.3.43) with (4.3.5) and (4.2.1). According to
(4.3.36), (4.3.37), the first two projectors are (cf. (3.4.22), (4.3.7)):

P
(

1 2
)
= S12 =

1

[2]q
σ1(q

−1), P

(
1
2

)
= A12 =

1

[2]q
σ1(q),

and their orthogonality readily follows from the Hecke condition (4.3.1), or from (4.3.41). One
can also express another types of the orthogonal idempotents (not only symmetrizers and
antisymmetrizers) in terms of the Baxterized elements:

P

(
1 2
3

)
=

1

[3]q!
σ1(q

−1)σ2(q)σ1(q
−1), P

(
1 3
2

)
=

1

[3]q!
σ1(q)σ2(q

−1)σ1(q),

P

(
1 2 3
4

)
∼ σ1(q

−1)σ2(q
−2)σ1(q

−1)σ3(q)σ2(q
−2)σ1(q

−1),

P

(
1 3 4
2

)
∼ σ1(q)σ2(q

−1)σ3(q
−2)σ2(q

−1)σ1(q),

P

(
1 2 4
3

)
∼ σ1(q

−1)σ2(q)σ1(q
−1)σ3(q)σ2(q

−2)σ1(q
−1)σ3(q

−3),

P

(
1 2
3 4

)
∼ σ1(q

−1)σ2(q)σ1(q
−1)σ3(q

3)σ2(q)σ1(q
−1)σ3(q

−1).

The method of presentation of all primitive orthogonal idempotents for the Hecke algebra in
terms of the Baxterized elements was developed in [230] (see also references therein) by means
of the fusion procedure.
Remark 1. Consider the quotients of the Hecke algebraHM+1(q) with respect to the additional
relations A1→n = 0 (n ⩽M + 1), which are equivalent (see (4.3.37)) to the identities

A1→n−1 σn−1A1→n−1 =
qn−1

[n− 1]q
A1→n−1. (4.3.44)

This is the way how the generalized Temperley–Lieb–Martin algebras [206] are defined. As
it was mentioned in [113], the quotient of HM+1(q) with respect to the identity A1→3 = 0 is
isomorphic to the Temperley–Lieb algebra.
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Remark 2. By using intertwining elements (4.3.17) and Baxterized elements (4.3.38), one
can immediately construct off-diagonal matrix units22 (see Subsection 4.3.1) in a double-sided
Peirce decomposition of the Hecke algebra HM+1 =

⊕
α,β eαHM+1eβ. Let P (Xa⃗) := e(TΛM+1

)
be orthogonal primitive idempotent which corresponds to the Young tableau TΛM+1

or to the
path Xa⃗ on the coloured Young–Ogievetsky graph labeled by the eigenvalues

a⃗ = (1, a2, . . . , aM+1) ∈ Spec(y1, . . . , yM+1),

yi P (Xa⃗) = P (Xa⃗) yi = ai P (Xa⃗) (∀i = 1, . . . ,M + 1).
(4.3.45)

In the case aj ̸= q±2aj+1 (see the proof of Lemma 2 in Subsection 4.3.2), we introduce the
element P (Xsj ·⃗a) ∈ HM+1:

P (Xsj ·⃗a) :=
1

(q2aj − aj+1)(aj+1 − q−2aj)
Uj+1 P (Xa⃗)Uj+1 (∀j = 1, . . . ,M) (4.3.46)

such that
P (Xsj ·⃗a)

2 = P (Xsj ·⃗a), y⃗ P (Xsj ·⃗a) = P (Xsj ·⃗a) y⃗ = (sj · a⃗)P (Xsj ·⃗a),

P (Xsj ·⃗a) =
(q2yj − yj+1)(yj+1 − q−2yj)

(q2aj − aj+1)(aj+1 − q−2aj)
(sj ·P )(Xa⃗),

P (Xsj ·⃗a)P (Xa⃗) = P (Xa⃗)P (Xsj ·⃗a) = 0, (4.3.47)

where sj · a⃗ = (a1, . . . , aj+1, aj, . . . aM+1) ∈ Spec(y1, . . . , yM+1) is the vector with permuted
coordinates aj and aj+1; (sj ·P )(Xa⃗) denotes the function P (Xa⃗) with permuted variables yi
and yi+1. The identity (4.3.47) follows from the fact that P := P (Xa⃗) P (Xa⃗ ′) = 0 for all
a⃗ ̸= a⃗ ′ (i.e., ∃ j: aj ̸= a′j) in view of the equations yjP = ajP = a′jP which follow from
yj P (Xa⃗) = P (Xa⃗) yj.

According to (4.3.21) and (4.3.46), we obtain

Uj+1 P (Xa⃗) = P (Xsj ·⃗a)Uj+1 =: P (Xsj ·⃗a|Xa⃗) (j = 1, . . . ,M),

P (Xa⃗)Uj+1 = Uj+1 P (Xsj ·⃗a) =: P (Xa⃗|Xsj ·⃗a) (j = 1, . . . ,M).
(4.3.48)

In the case aj ̸= q±2aj+1, in view of Lemma 2, we have sj · a⃗ ∈ Spec(y1, . . . , yM+1) (the path
Xsj ·⃗a exists in the Young–Ogievetsky graph and corresponds to the standard Young tableau).
Then, taking into account (4.3.17), (4.3.18), we deduce

σj(aj, aj+1) P (Xa⃗) = −P (Xsj ·⃗a) σj(aj+1, aj) = P (Xsj ·⃗a|Xa⃗),

−P (Xa⃗) σj(aj, aj+1) = σj(aj+1, aj) P (Xsj ·⃗a) = P (Xa⃗|Xsj ·⃗a),

}
⇒ (4.3.49)

(σj +
λaj+1

(aj−aj+1)
)P (Xa⃗) = P (Xsj ·⃗a) (σj −

λaj
(aj−aj+1)

) =
P (Xsj ·⃗a|Xa⃗)

(aj−aj+1)
,

P (Xa⃗) (σj +
λaj+1

(aj−aj+1)
) = (σj − λaj

(aj−aj+1)
)P (Xsj ·⃗a) =

P (Xa⃗|Xsj ·⃗a)

(aj+1−aj) ,
(4.3.50)

where we used the Baxterized elements (cf. (4.3.38))

σn(x, y) = x σn − y σ−1n = (x− y)σn + y λ (4.3.51)

22Recall that the orthogonal primitive idempotents are diagonal matrix units.
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subject to the Yang–Baxter equation (4.3.39) written in the form

σn(x, y)σn+1(x, z)σn(y, z) = σn+1(y, z)σn(x, z)σn+1(x, y).

It was shown in [205] that the elements P (Xsj ·⃗a|Xa⃗) play the role of the off-diagonal matrix
elements in the Peirce decomposition (see Subsection 4.3.1). In the case aj = q±2aj+1, we have

Uj+1 P (Xa⃗) = 0 = P (Xa⃗)Uj+1 ⇒

(σj ± q∓1)P (Xa⃗) = 0 = −P (Xa⃗) (σj ± q∓1),
(4.3.52)

where the second line in (4.3.52) follows from (4.3.50) and defines the 1-dimensional represen-
tation for the generator σj corresponding to Figure 4.2 in Subsection 4.3.3.

Since the Hecke algebras HM+1 are semisimple, we have the following identity:

P (Xa⃗)B P (Xa⃗) = Ca⃗(B)P (Xa⃗), ∀B ∈ HM+1, (4.3.53)

where P (Xa⃗) is any primitive idempotent in HM+1 and Ca⃗(B) is a constant which depends on
the element B and the path Xa⃗ in the coloured Young–Ogievetsky graph (i.e., it depends on the
vector a⃗ from the spectrum (4.3.45)). To justify identity (4.3.53), we check it for any monomial
B = σi1 σi2 . . . σir in generators σi ∈ HM+1 of any order r. We require that the monomial B can
not be reduced to the polynomial of order less than r by means of relations (4.1.1) and (4.3.1).
Then we use the induction to prove (4.3.53). We note that by using the definition (4.3.17) of
Ui+1 and then (4.3.18), we obtain the base of the induction:

0 = P (Xa⃗)Ui+1 P (Xa⃗) = P (Xa⃗) ((yi+1 − yi)σi − λyi+1)P (Xa⃗) =

= (ai+1 − ai)P (Xa⃗)σi P (Xa⃗)− λai+1 P (Xa⃗) ⇒ P (Xa⃗)σi P (Xa⃗) =
λai+1

(ai+1 − ai)
P (Xa⃗).

Let the identity (4.3.53) be correct for all monomials B = σi1 · · ·σik when k ⩽ r. We need
to prove (4.3.53) for monomials B = σi1 · · ·σir+1 of order (r + 1). Consider the element
P (Xa⃗)Ui1+1 · · ·Uir+1+1 P (Xa⃗) and start to commute left idempotent P (Xa⃗) to the right with
the help of (4.3.48). We have two possibilities.
1. The first one is

P (Xa⃗)Ui1+1 · · ·Uir+1+1 P (Xa⃗) = Ui1+1 · · ·Uik+1P (Xa⃗(k))Uik+1+1 · · · P (Xa⃗) =

= · · · = Ui1+1 · · · · · ·Uir+1+1 P (Xa⃗(r+1)) P (Xa⃗) = 0,
(4.3.54)

a⃗(k) := sik · a⃗(k−1), a⃗(0) := a⃗, si · (v1, . . . , vi, vi+1, . . .) = (v1, . . . , vi+1, vi, . . . .),

where (⃗a(k))ik+1
̸= q±2(⃗a(k))ik+1+1 (∀k = 0, . . . , r) and we used the orthogonality P (Xa⃗′) ·

P (Xa⃗) = 0 for a⃗ ′ ̸= a⃗ in the last equality in (4.3.54). In this case, by using (4.3.49), we deduce

0 = P (Xa⃗)Ui1+1 · · ·Uir+1+1 P (Xa⃗) = Ui1+1 · · ·Uir+1 P (Xa⃗(r)) Uir+1+1 P (Xa⃗) =

= (−1) Ui1+1 · · ·Uir−1+1 P (Xa⃗(r−1)) Uirσir+1(a
(r)
ir+1

, a
(r)
ir+1+1) P (Xa⃗) = · · · =

= (−1)r+1P (Xa⃗) σi1(a
(0)
i1
, a

(0)
i1+1) · · ·σir(a

(r−1)
ir

, a
(r−1)
ir+1 ) σir+1(a

(r)
ir+1

, a
(r)
ir+1+1) P (Xa⃗), (4.3.55)

where σi(x, y) are Baxterized elements (4.3.51). The substitution of the r.h.s. of (4.3.51) gives

P (Xa⃗) σi1 · · ·σir+1 P (Xa⃗) =
1

(a
(0)
i1+1 − a

(0)
i1
) · · · (a(r)ir+1+1 − a

(r)
ir+1

)
P (Xa⃗) B P (Xa⃗), (4.3.56)
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where B is a polynomial in σi ∈ HM+1 of order less than (r + 1) and, therefore, in view of the
induction conjecture, we obtain (4.3.53).
2. The second possibility occurs if at some step k in (4.3.54) the condition (⃗a(k))ik+1

=
q±2(⃗a(k))ik+1+1 arises. In this case, in view of (4.3.52), we obtain for any element A ∈ HM+1:

P (Xa⃗)Ui1+1 · · ·Uik+1+1AP (Xa⃗) = Ui1+1 · · ·Uik+1P (Xa⃗(k))Uik+1+1AP (Xa⃗) = 0. (4.3.57)

We take here A = σik+1+1 · · ·σir+1 and write (4.3.57) with the help of (4.3.49) and (4.3.52) (in
the same way as in (4.3.55)) in the form

0 = P (Xa⃗)Ui1+1 · · ·Uik+1+1 σik+1+1 · · ·σir+1 P (Xa⃗) =

= (−1)k−1P (Xa⃗)σi1(a
(0)
i1
, a

(0)
i1+1) · · ·σik−1

(a
(k−2)
ik−1

, a
(k−2)
i
k−1

+1)(σik ± q∓1)σik+1+1 · · ·σir+1 P (Xa⃗) ⇒

P (Xa⃗) σi1 · · ·σir+1 P (Xa⃗) =
1

(a
(0)
i1+1 − a

(0)
i1
) · · · (a(k−1)i

k
+1 − a

(k−1)
ik

)
P (Xa⃗) B± P (Xa⃗), (4.3.58)

where B± are polynomials in σi ∈ HM+1 of order less than (r + 1) and, thus, in view of the
induction conjecture, we again prove (4.3.53).

Finally, we note that equations (4.3.55), (4.3.56), and (4.3.58) give us the possibility to
calculate explicitly the constant Ca⃗(B) in (4.3.53).

4.3.5. Affine Hecke algebras and reflection equation

1. In this subsection, we consider the infinite-dimensional Hecke algebra, which corresponds
to the affine A(1)-type Coxeter graph (4.1.8), with generators σi (i = 1, . . . ,M) subject to
relations (4.3.1), (4.1.6). Thus, this algebra is the quotient of the algebra C[BM+1(A

(1))] with
respect to additional Hecke relations (4.3.1). We call this algebra a periodic A-type Hecke
algebra23 and denote it as AHM+1. For the algebra AHM+1 one can construct the set of
(M − 1) commuting elements

Ik =
M∑
i=1

σiσi+1 . . . σi+k (k = 0, . . . ,M − 2), (4.3.59)

where we have identified σM+i = σi. The first element in (4.3.59) is I0 =
∑M

i=1 σi and, in the
R-matrix representation, this element gives a Hamiltonian for periodic spin chain (see (5.1.14)
in Subsection 5.1).

Let {σ1, . . . , σM−1} be generators of the braid group BM . We extend the group BM by the
element X such that

X σkX
−1 = σk−1 (∀k = 2, . . . ,M − 1), (4.3.60)

X σ1X
−1 = X−1 σM−1X =: σM . (4.3.61)

It is not hard to check that the new element σM satisfies Eqs. (4.1.3) and, therefore, the
elements {σ1, . . . , σM} (where σM has been defined in (4.3.61)) generate the periodic braid
group BM = BM(A(1)).

Note that X (4.3.60), (4.3.61) can be realized as the inner element of BM ⊂ BM(A(1)).
Indeed, the operator X which solves Eqs. (4.3.60), (4.3.61) can be taken in the form X =

23As we will see below, in Subsection 5.1, this algebra appears in a formulation of the integrable periodic
spin chain models.
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σM−1←1 ∈ BM , where the notation σM−1←m := σM−1 . . . σm+1 σm has been used. Then we
define the additional generator σM (4.3.61) as

σM := X σ1X
−1 = σM−1←1 σ1 σ

−1
M−1←1 = σM−1←1 σ

−1
M−1←2 (4.3.62)

and its graphical representation is

σM =

• • . . . • •. . . •

• • . . . • •. . . •1 2 i M−1 MXXXX XXXX XXXXXX XXXXz

��������
���������9 ? ? ?

(4.3.63)

It is evident that σM satisfies (4.1.3) in view of its graphical representation (4.3.63). According
to Eqs. (4.1.1) and (4.1.3), the elements {σ1, . . . , σM} of the group BM (where σM has been
defined in (4.3.62)) generate the periodic braid group BM and, therefore, Eq. (4.3.62) defines
the homomorphism: BM → BM .
2. Another infinite-dimensional Hecke algebra is an affine Hecke algebra ĤM+1(q). We recall
that the affine Hecke algebra ĤM+1(q) is defined24 (see, e.g., [207], Chapter 12.3) as algebra gen-
erated by elements σi (i = 1, . . . ,M) ofHM+1(q) and additional generators yk (k = 1, . . . ,M+1)
subject to relations (cf. (4.1.11), (4.1.12)):

yk+1 = σk yk σk, yk yj = yj yk, yj σi = σi yj (j ̸= i, i+ 1) (4.3.64)

(the generators {yk} form a commutative subalgebra in ĤM+1(q)). We note that, in view
of the first relation in (4.3.64), the minimal set of generators of ĤM+1(q) is {σ1, . . . , σM , y1}.
Symmetric functions of the elements yk generate the center of the algebra ĤM+1(q). Below,
to be short, we omit the parameter q in the notation HM+1(q) and ĤM+1(q). The interesting
property of the algebra ĤM+1 is the existence of the important intertwining elements [84] (cf.
(4.3.17) and elements ϕi in [204], Proposition 3.1):

Ui+1 = (σiyi − yiσi) f(yi, yi+1), (1 ⩽ i ⩽M),

where function f satisfies: f(yi, yi+1)f(yi+1, yi) = 1. The elements Ui obey the same relations
(4.3.19)–(4.3.21) as in the case of the non-affine A-type Hecke algebra HM+1.

Now we describe the procedure how one can construct (M + 1)-dimensional representation
for the Hecke subalgebra HM+1 ⊂ ĤM+1. Let v be a vector in the space of 1-dimensional
representation of HM+1 such that σi v = q v (∀i = 1, . . . ,M). Consider the induced (M + 1)-
dimensional space with the basis {v1, v2, . . . , vM+1}, where vk := ykv. Then, according to
(4.3.64) and the Hecke condition (4.3.1), we obtain (M + 1)-dimensional representation for
generators σi:

σi vk = q vk (k ̸= i, i+ 1), σi vi = q−1 vi+1, σi vi+1 = λ vi+1 + q vi,

which is called the Burau representation of HM+1. The matrix form of this representation is

σi = diag
(
q, . . . , q,︸ ︷︷ ︸

i−1

(
0 q
1/q λ

)
, q, . . . , q︸ ︷︷ ︸

M−i

)
. (4.3.65)

24This algebra is isomorphic to the quotient of the braid group algebra C[BM+1(C)], where the generators
σi ∈ BM+1(C) (i = 1, . . . ,M , i ̸= 0) are constrained by additional Hecke conditions (4.3.1). The definition of
BM+1(C) is given in Subsection 4.1 and is related to the Coxeter graph (4.1.9).
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One can start from another possible one-dimensional representation σi v = −q−1 v (∀i) ofHM+1,
which leads to a new Burau representation resulting from (4.3.65) by replacing q → (−1/q).

The affine Hecke algebra ĤM+1 makes it possible to formulate the universal Baxterized
solution of the reflection equation (see (4.4.48), (5.2.3) below):

σn(x z
−1)Kn(x)σn(x z)Kn(z) = Kn(z)σn(x z)Kn(x)σn(x z

−1), (4.3.66)

where x, z are spectral parameters and Baxterized elements σn(x) ∈ HM+1 are defined in
(4.3.38). The reflection equation (4.3.66) appears, e.g., in the theory of integrable spin chains
with boundaries [263] and in 2D quantum integrable field theories [262] (see also Subsection 5.2
below). Taking the reflection operator Kn(x) in the form

Kn(x) =
yn − ξ x2

yn − ξ x−2
, (4.3.67)

where ξ is any constant, we find [211] that this Kn(x) is a solution of (4.3.66) if yn are the affine
generators of ĤM+1. In particular, one can easily reduce (4.3.67) to the solution

Kn(x) = yn +
β0/ξ + ξ + β1x

2

x2 − x−2
(4.3.68)

of the reflection equation (4.3.66) if, in addition, we require that yn satisfies a quadratic charac-
teristic equation y2n+β1yn+β0 = 0 (∀β0, β1 ∈ C\0). The solution (4.3.67) is obviously regular:
Kn(1) = 1, and obeys a “unitary condition”:

Kn(x)Kn(x
−1) = 1.

We stress that the simplest solution (4.3.68) of the reflection equation (4.3.66) was considered
in [217–219] (another special solutions were found in [220]).

If one has a solution of Eq. (4.3.66) for n = m, then a solution for n = m + 1 can be
constructed by means of the formula

Km+1(x) = (λx)2 σm(x)Km(x)σm(x).

In particular, one can take Kn−1(x) = 1 and, using (4.3.39) and (4.3.40), directly check that
(cf. (4.3.68))

Kn(x)

x2
= λ2 σ2

n−1(x) = λ2
(
σn−1(x

2) +
(x− x−1)2

λ2

)
= σ2

n−1 +
2− (2 + λ2)x2

x2 − x−2

solves Eq. (4.3.66).
Remark 1. Consider the following inclusions of the subalgebras Ĥ1 ⊂ Ĥ2 ⊂ · · · ⊂ ĤM+1:

{y1;σ1, . . . , σn−1} = Ĥn ⊂ Ĥn+1 = {y1;σ1, . . . , σn−1, σn}.

Then, following [211, 212], we equip the algebra ĤM+1 by linear mappings

TrD(n+1) : Ĥn+1 → Ĥn,

from the algebra Ĥn+1 to its subalgebras Ĥn, such that for all X,X ′ ∈ Ĥn and Y ∈ Ĥn+1 we
have

TrD(n+1)(X) = Z(0)X, TrD(n+1)(X Y X ′) = X TrD(n+1)(Y )X ′ ,

TrD(n+1)(σ
±1
n Xσ∓1n ) = TrD(n)(X), TrD(n+1)(XσnX

′) = X X ′,

TrD(1)(y
k
1) = Z(k), TrD(n)TrD(n+1)(σnY ) = TrD(n)TrD(n+1)(Y σn),

(4.3.69)
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where Z(k) ∈ C\{0} (k ∈ Z) are constants. We stress that Z(k) could be considered as additional
generators of an Abelian subalgebra Ĥ0 which extends ĤM+1 and are central in ĤM+1, but for
us it is enough to put Z(k) to constants.

Using the maps TrD(n+1), one can construct the elements

τn(x) = Tr
D(n+1)

(
σn(x) · · ·σ1(x)K1(x)σ1(x) · · ·σn(x)

)
∈ Ĥn, (4.3.70)

where σi(x) are Baxterized elements (4.3.38) and K1(x) is a solution (4.3.67) of the reflection
equation (4.3.66) for n = 1. The elements (4.3.70) are generating functions for a commutative
family of elements in Ĥn, since we have (see [211, 212])

[τn(x), τn(z)] = 0 (∀x, z).

Moreover, the elements (4.3.70) are analogs of Sklyanin’s transfer-matrices [263] and, making
use of the elements τn(x), one can formulate [212] the integrable open Hecke chain models with
nontrivial boundary conditions. These models generalize the quantum integrable spin models
of the Heisenberg type. The local Hamiltonian of the open Hecke chain is

Hn =
n−1∑
m=1

σm − λ

2
y′1(1). (4.3.71)

This Hamiltonian (up to a normalization factor and additional constant) can be obtained by
differentiating τn(x) with respect to spectral parameter x at the point x = 1. The Hamiltonian
(4.3.71) describes the open chain model with nontrivial boundary condition on the first site
(given by the second term in (4.3.71)) and free boundary condition on the last site of the
chain. In [212], we show that the transfer matrix elements τn(x) satisfy functional relations
generalizing functional relations (T − Q relations) for transfer matrices in solvable open spin
chain models (see, e.g., [215, 216] and references therein).
Remark 2. Interrelations of periodic AHM (see point 1. above) and affine ĤM (see point
2. above) Hecke algebras has been discussed in [205]. Here we present more explicit construc-
tion [210] of these interrelations which is valid even for the braid group case (when the Hecke
condition (4.3.1) is relaxed).

Consider the affine braid group B̂M = BM(C) (see Definition 14 in Subsection 4.1) with
generators {σ1, . . . , σM−1, y1}. The generator y1 satisfies reflection equation and locality condi-
tions

σ1 y1 σ1 y1 = y1 σ1 y1 σ1, [y1, σk] = 0 (k = 2, . . . ,M − 1).

Then the operator
X = σM−1←1 y1 ∈ B̂M

solves Eqs. (4.3.60), (4.3.61) and one can introduce new generator σM ∈ B̂M according to
(4.3.61):

σM = σM−1←1 y1 σ1 y
−1
1 σ−1M−1←1, (4.3.72)

which satisfies (4.1.3). Thus, Eq. (4.3.72) defines the homomorphism BM → B̂M .
This homomorphism of affine braid groups is readily carried over to the Hecke algebra case.

Indeed, the definition (4.3.61) of the additional generator σM (needed to close the set of the
generators σk ∈ HM(q) to the periodic chain) looks like the similarity transformation of σ1.
Thus, the characteristic Hecke identity (4.3.1) for the elements σ1 and σM coincides.
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4.3.6. q-Dimensions of idempotents in HM(q) and knot/link polynomials

Here we follow the approach presented in [208, 209]. Consider a linear map Tr
D(n+1)

:
Hn+1(q) → Hn(q) from the Hecke algebra Hn+1(q) to its subalgebra Hn(q) which is defined
by formulas (4.3.69), where we take y1 = 1 (it means that Z(k) = Z(0), ∀k) and fix the constant

Z(0) =
1− q−2d

q − q−1
, Z(0) ≡ Tr

D(n)
(1), (4.3.73)

for later convenience. Then one can define an Ocneanu’s trace T r(M): HM(q) → C as a sequence
of maps

T r(M) := TrD(1)TrD(2) · · ·TrD(M). (4.3.74)

Proposition 4.22. The Jucys–Murphy elements yk ∈ HM+1 satisfy the following identity [208,
209]:

1 + λTr
D(M+1)

(
yM+1

t− yM+1

)
=

(t− q−2d)

(t− 1)

M∏
k=1

(t− yk)
2

(t− q2yk)(t− q−2yk)
, (4.3.75)

where λ = q − q−1 and t is a parameter.

Proof. Taking into account the definition (4.3.8) of the generators yM , we have the equations

1

(t− yM+1)
σ−1M = σ−1M

1

(t− yM)
+

λ yM
(t− yM)

1

(t− yM+1)
, (4.3.76)

1

(t− yM+1)
σM = σ−1M

1

(t− yM)
+

λ t

(t− yM)

1

(t− yM+1)
. (4.3.77)

We multiply the both sides of Eq. (4.3.76) from the right by σM . Then, in the r.h.s. of the
result, we substitute Eq. (4.3.77) and apply the map TrD(M+1) (4.3.69). Finally, we obtain a
recurrence relation

(t− q2yM)(t− q−2yM)

(t− yM)2
ZM+1 = ZM +

λ yM (1− λZ(0))

(t− yM)2
, ZM := Tr

D(M)

( 1

t− yM

)
, (4.3.78)

where the parameter Z(0) is introduced in (4.3.69), (4.3.73). Equation (4.3.78) is simplified by
the substitution ZM = Z̃M − (1− λZ(0))/(λ t) and we have

(t− q2yM)(t− q−2yM)

(t− yM)2
Z̃M+1 = Z̃M , Z̃1 =

1

λ t

(
1 +

λZ(0)

(t− 1)

)
.

This equation can be easily solved and finally we obtain the formula

ZM+1 =
1

λ t

(
1 +

λZ(0)

(t− 1)

) M∏
k=1

(t− yk)
2

(t− q2yk)(t− q−2yk)
− 1

λ t

[
1− λZ(0)

]
,

which is equivalent to (4.3.75).

We note that the r.h.s. of (4.3.75) is the symmetric function in yk (k = 1, . . . ,M). It means
that the element (4.3.75) belongs to the center of the Hecke algebra HM ⊂ HM+1.
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Proposition 4.23. Ocneanu’s traces of idempotents e(TΛ) and e(T ′Λ), corresponding to differ-
ent Young tableaux TΛ and T ′Λ of the same shape Λ ⊢M , coincide. Thus, characteristics

qdim(Λ) := T r(M)e(TΛ) = T r(M)e(T ′Λ), (4.3.79)

depending only on the Young diagram Λ, are called q-dimension of Λ ⊢M and we have [203]

qdim(Λ) = q−M d
∏

n,m∈Λ

[d+m− n]q
[hn,m]q

, [h]q :=
qh − q−h

q − q−1
. (4.3.80)

Here hn,m are hook lengths of nodes (n,m) of the diagrams Λ, the product runs over all nodes
of Λ and the constant d is defined in (4.3.73).

Proof. We follow the proof presented in [208, 209]. Idempotents e(TΛ) and e(T ′Λ), corresponding
to two different tableaux TΛ and T ′Λ having the same shape Λ, are related by several similarity
transformations with operators Uj (see the l.h.s of (4.3.48)). This implies (4.3.79).

To calculate the characteristic “qdim” (4.3.79) for the diagram (4.3.34) with M nodes and
n rows, we find the right action to the both sides of (4.3.75) by the idempotent e(TΛ), where
TΛ is any Young tableau of the shape of Young diagram (4.3.34). We take the “row-standard”
tableau TΛ corresponding to the eigenvalues of yk arranged along the rows from left to right
and from top to bottom:

y1 = 1, y2 = q2, y3 = q4, . . . , yλ1−1 = q2(λ1−2), yλ1 = q2(λ1−1),
yλ1+1 = q−2, yλ1+1 = 1, . . . , yλ1+λ2 = q2(λ2−2),
. . . . . . . . . . . . . . . . . . ,
y
M−λn+1

= q−2(n−1), . . . , y
M
= q2(λn−n),

(4.3.81)

where n is the number of rows in Λ. After substitution of the eigenvalues (4.3.81) into the
r.h.s. of (4.3.75), which is the product over all M nods of the Young diagram (4.3.34), and
cancelation of many factors, we obtain the result (nk = n, n0 := 0):

Tr
D(M+1)

(∑
j

Pj
(q − q−1)µj

t− µj

)
= e(TΛ)

(
t− q−2d

t− q−2n

k∏
r=1

t− q2(λ(r)−nr)

t− q2(λ(r)−nr−1)
− 1

)
. (4.3.82)

We inserted into the l.h.s. of (4.3.75) the spectral decomposition of the idempotent e(TΛ) (see
(4.3.35)):

e(TΛ) = e(TΛ)
∑
j

Πj =
∑
j

Pj, Pj yM+1
= Pj µj, µj := q2(λ(j)−nj−1).

The idempotent Pj = e(TΛ(j)) ∈ HM+1 projects yM+1 on its eigenvalue µj which also appeared
in the denominator in the r.h.s. of (4.3.82) for r = j.

Let us discuss in more detail how one can deduce the expression in the r.h.s. of (4.3.82).
It is obtained if we evaluate the action of the idempotent e(Tλ) on the element in the r.h.s.
of (4.3.75) for each rectangular block in the diagram Λ (4.3.34) with all rows having the same
length λ(m) and the number of rows equal to (nm −nm−1). The result of such evaluation, given
in the r.h.s. of (4.3.82), is the product of the factor t−q−2d

t−q−2n and all factors which are visualized
as figure in (4.3.83) and correspond to all rectangular blocks in the diagram (4.3.34)):
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λ
(m)nm−1

nm

(nm−1+1, λ
(m)

+1)

(nm , λ
(m)

)−1

+1 −1

+1

=
4∏

i=1

(t− µ′i)
αi =

= (t−q−2nm−1 )(t−q2(λ(m)−nm)
)

(t−q−2nm )(t−q2(λ(m)−nm−1))

(4.3.83)

Each rectangular block contributes to the r.h.s. of (4.3.82) four factors which correspond to
four cells indicated in (4.3.83) by indices αi = ±1 and having contents µ′i (i = 1, . . . , 4). Indices
αi = ±1 are powers of the factors (t − µ′i)

αi , in the r.h.s. of (4.3.83). Two factors which
correspond to sells with contents (−nm−1) and (−nm) are canceled in the r.h.s. of (4.3.82) by
neighboring blocks from top and bottom if any. The other cells of the block (4.3.83) have the
powers equal to zero, the corresponding factors are canceled and do not contribute to the r.h.s.
of (4.3.82).

Now we compare the residues at t = µj in both sides of Eq. (4.3.82) and deduce

Tr
D(M+1)

(
e(TΛ(j))

)
=

µ−1j

(q − q−1)
e(TΛ)

(t− q−2d)
k∏

r=1

(t− q2(λ(r)−nr))

(t− q−2n)
k∏

r ̸=j
r=1

(t− q2(λ(r)−nr−1))

∣∣∣∣∣∣∣∣∣∣
t=µj≡q

2(λ(j)−nj−1)

=

= e(TΛ) · q−d [q(λ(j)−nj−1+d)]q

∏
n,m∈Λ [hn,m]q∏

n,m∈Λ(j) [h′n,m]q
, (4.3.84)

where hn,m and h′n,m are hook lengths25 of nodes (n,m) of the diagrams Λ ⊢ M and Λ(j) ⊢
(M + 1). The diagram Λ(j) is obtained by adding to Λ (shown in (4.3.34)) a new node with
coordinates (nj−1 + 1, λ(j) + 1), as it is shown in the picture:

Λ(j) =

. . .

. . .

M+1

(nj−1+1,λ(j)+1)

λ
(1)

n1

nj−1−nj−2

nj−nj−1

nk−nk−1

n1 ,λ(1)

nj−1 ,λ(j−1)

nj ,λ(j)

n
k
,λ

(k)

(4.3.85)

To deduce the last formula in (4.3.84), we need to check the identity

q(nj−1−λ(j))
(q2(λ(j)−nj−1) − q2(λ(j)−nj))

(q2(λ(j)−nj−1) − q−2nk)

k∏
r=1
r ̸=j

(q2(λ(j)−nj−1) − q2(λ(r)−nr))

(q2(λ(j)−nj−1) − q2(λ(r)−nr−1))
=

∏
(r,m)∈Λ

[hr,m]q∏
(r,m)∈Λ(j)

[h′r,m]q
,

(4.3.86)
where n0 ≡ 0, nk ≡ n, while hr,m and h′r,m are hook lengths for cells with coordinates (r,m) in
the diagrams Λ and Λ(j), respectively. The products in the r.h.s. of (4.3.86) run over all cells

25The hook length of the node (n,m) of the diagram Λ = [λ1, λ2, . . .] is defined as hn,m = (λn+λ
∨
m−n−m+1),

where Λ∨ = [λ∨1 , λ
∨
2 , . . .] is the transpose partition of the partition Λ.
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of Λ and Λ(j). To prove (4.3.86), we note that the lengths of hooks hr,m and h′r,m for diagrams
Λ and Λ(j) differ only for cells, for which r = nj−1 + 1, or m = λ(j) + 1, i.e., for cells located in
the same row, or in the same column with additional cell (nj−1 + 1, λ(j) + 1). Thus, we have∏

r,m∈λn

[hr,m]q∏
r,m∈λn+1

[h′r,m]q
=

nj−1∏
r=1

[hr,λ(j)+1]q

[h′r,λ(j)+1]q

λ(j)∏
m=1

[hnj−1+1,m]q

[h′nj−1+1,m]q
. (4.3.87)

Further, if rows with numbers r and r + 1 in the diagram Λ have the same length, then we
obviously have hr,λ(j)+1 = h′r+1,λ(j)+1. And analogously, if the columns with numbers m and
m + 1 in the diagram Λ have the same height, then we have hnj−1+1,m = h′nj−1+1,m+1. That is
why a lot of factors in the r.h.s. of (4.3.87) are canceled, according to the block form of diagram
(4.3.34), and we obtain contributions only from the first and the last row in the blocks (located
above the additional cell in Λ(j)) of the diagram Λ:

nj−1∏
r=1

[hr,λ(j)+1]q

[h′r,λ(j)+1]q
=

j−1∏
p=1

[hnp,λ(j)+1]q

[h′np−1+1,λ(j)+1]q
= qnj−1

j−1∏
p=1

(q2(λ(p)−np) − q2(λ(j)−nj−1))

(q2(λ(p)−np−1) − q2(λ(j)−nj−1))
, (4.3.88)

and contributions only from the first and the last column in the blocks (located to the left of
the additional cell) of the diagram λn:

λ(j)∏
m=1

[hnj−1+1,m]q

[h′nj−1+1,m]q
=

k∏
p=j

[hnj−1+1,λ(p)
]q

[h′nj−1+1,λ(p+1)+1]q
= q−λ(j)

k∏
p=j

(q2(λ(j)−nj−1) − q2(λ(p)−np))

(q2(λ(j)−nj−1) − q2(λ(p+1)−np)
. (4.3.89)

The substitution of (4.3.88) and (4.3.89) into (4.3.87) gives (4.3.86). Finally, we apply Oc-
neanu’s trace T r(M) to both sides of Eq. (4.3.84) and find the recurrence relation

qdim(Λ(j)) = qdim(Λ) q−d [λ(j) − nj−1 + d]q

∏
n,m∈Λ

[hn,m]q∏
n,m∈Λ(j)

[h′n,m]q
,

which is uniquely solved (up to a constant multiplier26) as in (4.3.80).

The R-matrix representations (see [42, 113]) of the Hecke algebra HM+1(q) were discussed
in Subsection 3.4 in the context of the quantum group GLq(N) and in Subsection 3.7 in
the context of the quantum supergroup GLq(N |K). For the R-matrices (3.7.1) related to the
quantum supergroup GLq(N |K), the parameter d is equal to (N −K). This fact follows from
Eqs. (4.3.69) and (4.3.73) in the limit q → 1. It also justifies our choice of the parametrization
of Z0 in (4.3.73).

The statement (4.3.79) in Proposition 4.23 can be generalized. Let T be a quantum matrix
satisfying

R̂12 T1 T2 = T1 T2 R̂12, (4.3.90)

where R̂12 = ρ(σ1) is the R-matrix representation of the Hecke algebra.

26We fix this multiplier by the condition qdim(□) = q−d[d]q = Z(0); see (4.3.73).
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Proposition 4.24. The quantum traces (for the definition of the quantum traces see Subsec-
tion 3.1.2) of the matrices [T1 · · ·TM

ρ(e(TΛ))] and [T1 · · ·TM
ρ(e(T ′Λ))], where different tableaux

TΛ and T ′Λ are of the same shape Λ ⊢M , coincide:

χΛ(T ) := TrD(1...M) (T1 · · ·TM ρ(e(TΛ))) = TrD(1...M) (T1 · · ·TM ρ(e(T ′Λ))) . (4.3.91)

Thus, the element χΛ(T ) depends only on the shape of the diagram Λ.

According to Proposition 3.8 (see Subsection 3.2.4), the elements χΛ(T ) for all Young diagrams
Λ ⊢M (M = 1, 2, 3, . . .) generate the commutative subalgebra in the RTT algebra (4.3.90).

Consider the GLq(N) quantum group (4.3.90) with the standard GLq(N) Drinfeld–Jimbo
R̂12-matrix (3.4.9). As we mentioned above (see Subsection 3.4 and [42, 113]), this standard
GLq(N) matrix R̂12 (R-matrix in the defining representation) gives the representation of the
Hecke algebra. We note that the GLq(N) quantum matrix T can be realized by arbitrary
numerical diagonal (N ×N) matrix Y = diag(x1, . . . , xN). Then χΛ(Y ) is a numerical function
of the deformation parameter q and the entries {xi} of Y . In the classical limit q → 1,
the operator ρ(e(TΛ)) tends to the Young projector, and the function χΛ(Y ) coincides with a
character of the element Y ∈ GL(N) in the representation corresponding to the diagram Λ;
i.e., χΛ(Y )|q→1 coincides with the Schur polynomial SΛ(x1, . . . , xN).
Remark 1. The hook formula (4.3.80) for the q-dimension of Λ ⊢M is written in the remark-
able form (which is more convenient for calculations):

qdim(Λ) = q−M d

k∏
i=1

[d+ i− 1]q!

[d− λ∨i + i− 1]q![λ∨i + k − i]q!

∏
i<j

[λ∨i − λ∨j + (j − i)]q, (4.3.92)

where Λ∨ = (λ∨1 , λ
∨
2 , . . . , λ

∨
k ) is the transpose partition of Λ and [h]q :=

qh−q−h

q−q−1 .
Remark 2. At the end of this subsection, we derive a universal analogue (in terms of Hecke
algebra generators) of the formula (3.1.57) for knot/link invariants. Let B1→M be monomial
written as a product of generators σi ∈ HM . It is clear that B1→M is visualized as a braid with
M strands. Then, by means of the Ocneanu’s trace (4.3.74), we construct the Hecke algebraic
analog of (3.1.57) in the form

Q(B1→M) := T r(M)
(
B1→M

)
. (4.3.93)

Insert in the right-hand side of (4.3.93) the resolution of the unit operator (see the second
equation in (4.3.2))

1 =
∑
Λ⊢M

∑
T
a⃗
Λ

e(T
a⃗

Λ) =
∑
a⃗

P (Xa⃗), (4.3.94)

where e(T
a⃗

Λ) = P (Xa⃗) are mutually orthogonal idempotents related to the standard Young
tableau T

a⃗

Λ (with a content a⃗ = (a1, . . . , aM)) having the shape of the Young diagram Λ ⊢ M
(or related to the path Xa⃗ in the coloured Young graph for HM). The sum in the r.h.s. of
(4.3.94) is going over all standard tableaux with M nodes, or equivalently over all their contents
a⃗ ∈ Spec(y1, . . . , yM). As a result, we obtain for knot/link invariants (4.3.93) the expressions

Q(B1→M) =
∑⃗
a

T r(M)
(
B1→M P (Xa⃗)

)
=
∑⃗
a

T r(M)
(
P (Xa⃗)B1→M P (Xa⃗)

)
=

=
∑⃗
a

Ca⃗(B1→M)T r(M)
(
P (Xa⃗))

)
=
∑
Λ⊢M

qdim(Λ)
∑⃗
a(Λ)

Ca⃗(Λ)(B1→M),
(4.3.95)
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where we used relation P (Xa⃗)
2 = P (Xa⃗), cyclic property of T r(M), the identity (4.3.53) for

the diagonal matrix units of HM and substitute T r(M)
(
P (Xa⃗(Λ))) = qdim(Λ) for the Young

diagrams Λ ⊢ M . In the last equality of (4.3.95), we split the sum over all contents a⃗ of the
standard Young tableaux with M nodes into the sum over Young diagrams Λ ⊢ M and the
sum over all contents a⃗(Λ) of the Young tableaux TΛ having the fixed shape Λ ⊢ M . We note
that in (4.3.95) the q-dimensions qdim(Λ) (given by formula (4.3.80)) are independent of the
braid B1→M and all dependence on B1→M is contained in the coefficients Ca⃗(Λ)(B1→M). As
was indicated in Subsection 4.3.4, the coefficients Ca⃗(Λ)(B1→M) can be explicitly calculated
with the help of Eqs. (4.3.55), (4.3.56), and (4.3.58). The R-matrix version [221] of the formula
(4.3.95) is extensively used in [222–227] (see also references therein) for calculations of HOMFLY
(GLq(N), N = d) knot/link polynomials.

4.4. Birman–Murakami–Wenzl algebras BMWM+1(q, ν)

4.4.1. Definition
The Birman–Murakami–Wenzl algebra BMW

M+1
(q, ν) is generated by the elements κi|i=1,...,M

and invertible elements σi|i=1,...,M which satisfy (4.1.1) and the following relations [228, 229, 244]:

κi σi = σi κi = ν κi, (4.4.1)

κi σ
±1
i−1 κi = ν∓1 κi, (4.4.2)

σi − σ−1i = λ (1− κi), (4.4.3)

where ν ∈ C\{0,±q±1} is an additional parameter of the algebra; λ = q − q−1. The following
relations can be derived from (4.1.1), (4.4.1)–(4.4.3):

κi κi = µκi, (4.4.4)
( µ = (λ+ ν−1 − ν)/λ = −(ν + q−1)(ν − q) (λν)−1 ), (4.4.5)
κi σi±1 σi = σi±1 σi κi±1, (4.4.6)
κi σi±1 σi = κi κi±1, (4.4.7)
κi σ

−1
i±1 σ

−1
i = κi κi±1, (4.4.8)

σi±1 κi σi±1 = σ−1i κi±1 σ
−1
i , (4.4.9)

κi κi±1 κi = κi, (4.4.10)
κi±1 κi (σi±1 − λ) = κi±1 (σi − λ), (4.4.11)
(σi − λ)κi−1 (σi − λ) = (σi−1 − λ)κi (σi−1 − λ). (4.4.12)

Equation (4.4.4) is deduced by the action of the element κi on (4.4.3) and using (4.4.1). Re-
lations (4.4.6) follow from (4.1.1) and (4.4.3). Relations (4.4.7) and (4.4.8) with lower signs
are obtained by multiplying (4.4.2) with σ∓1i−1σ

∓1
i from the right and using (4.4.1) and (4.4.6).

Equation (4.4.9) follows from (4.4.7), (4.4.8). Combining the pair of relations (4.4.2) in the
form: κi (σi+1 − σ−1i+1)κi = (ν−1 − ν)κi and using (4.4.3) and (4.4.4), we derive (4.4.10). Equa-
tion (4.4.11) is proved as follows:

κi±1 κi (σi±1 − λ) = κi±1 κi (σ
−1
i±1 − λκi±1) = κi±1 (σi − λ),

where we have used (4.4.3), (4.4.7), and (4.4.10). Equation (4.4.12) is deduced by means of
Eq. (4.4.11), its mirror counterpart, and Eq. (4.4.10). The pairs of equations in (4.4.6)–(4.4.10)
(with upper and lower signs) are related to each other by the similarity transformations

σi+1 = Viσi−1V
−1
i , σi = ViσiV

−1
i ,
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where Vi = σi−1σiσi+1σiσi−1σi (the only braid relations (4.1.1) should be used). We also present
the relations

κi±1 κi (σ
−1
i±1 + λ) = κi±1 (σ

−1
i + λ), (4.4.13)

(σ−1i + λ)κi−1 (σ
−1
i + λ) = (σ−1i−1 + λ)κi (σ

−1
i−1 + λ), (4.4.14)

which are related to (4.4.11), (4.4.12) via the obvious isomorphism (σi, q, ν) ↔ (σ−1i , q−1, ν−1)
of the algebras BMW

M+1
(q, ν) ≃ BMW

M+1
(q−1, ν−1). This isomorphism can be checked by the

substitution σi → σ−1i in (4.1.1), (4.4.1)–(4.4.3).
In fact, the pair of relations (4.4.2) (in the definition of the Birman–Murakami–Wenzl alge-

bra) is not independent for the case ν ̸= λ [136]. Indeed, using κi σi−1 κi = ν−1 κi and (4.1.1),
one can deduce σi−1σiκi−1κi = νκiσi−1κi = κi, which is written in the form σ−1i−1κi = σiκi−1κi.
Acting to this relation by λκi from the left, we deduce

λκiσ
−1
i−1κi = λνκiκi−1κi = νκi(σ

−1
i−1 − σi−1 + λ)κi = νκiσ

−1
i−1κi + ν(λµ− ν−1)κi,

which is equivalent to (λ− ν)(κiσ
−1
i−1κi − νκi) = 0 and, thus, to the above statement.

The BMW
M
(q, ν) algebras are q-deformations of the Brauer algebras Br

M
(ω) (for the defini-

tion of the Brauer algebras see, e.g., [102, 139] and references therein) and dimBMW
M
(q, ν) =

(2M − 1)!! (for general parameters q, ν).

4.4.2. Symmetrizers, antisymmetrizers and Baxterized elements in BMWM+1

Below, for brevity, we often omit in the notation BMW
M+1

(q, ν) the dependence on the
parameters q, ν. One can construct the analogs of the symmetrizers and antisymmetrizers for
the algebra BMW

M+1
using the inductive relations similar to that we have considered in the

Hecke case (4.3.43):
S1→n = f

(−)
1→n S1→n−1 = S1→n−1 f

(−)
1→n, (4.4.15)

A1→n = f
(+)
1→nA1→n−1 = A1→n−1 f

(+)

1→n, (4.4.16)

where 1-shuffles are

f
(±)
1→n =

1

[n]q!
σ
(±)
1 (q±1) · · ·σ(±)

n−2(q
±(n−2))σ

(±)
n−1(q

±(n−1)),

f
(±)
1→n =

1

[n]q!
σ
(±)
n−1(q

±(n−1))σ
(±)
n−2(q

±(n−2)) · · ·σ(±)
1 (q±1),

and σ
(±)
i (x) are Baxterized elements (cf. (3.12.14), (3.12.15), (3.12.16)) for the algebra

BMW
M+1

(q, ν) (see [200, 237–239], [46]):

σ
(±)
i (x) =

1

λ
(x−1 σi − x σ−1i ) +

(ν ± q±1)

(νx± q±1x−1)
κi = (4.4.17)

=
x−1 − x

λ

(
σi +

λ

(x−2 − 1)
1+

νλ

(ν − ax−2)
κi

)∣∣∣∣
a=∓q±1

= (4.4.18)

= x

(
1+

1

λ
(x−2 − 1)σi

)(
1 +

λ(x−2 − 1)

(λ− ν(1− x−2))(1± q±1ν−1x−2)
κi

)
.
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These elements are normalized by the conditions σ(±)(±1) = ±1, satisfy the Yang–Baxter
equations

σ(±)
n (x)σ

(±)
n−1(xy)σ

(±)
n (y) = σ

(±)
n−1(y)σ

(±)
n (xy)σ

(±)
n−1(x) (4.4.19)

and obey
σ
(±)
i (x)σ

(±)
i (x−1) =

(
1− λ−2 (x− x−1)2

)
1. (4.4.20)

Let parameter a be (−q), or q−1 (see (4.4.18)), and we respectively denote σ(a)
i (x) = σ

(±)
i (x).

Then the Baxterized elements (4.4.18) are written after an additional normalization in the form
(cf. (4.3.42))

σ
(a)′
i (x) =

λx2

(a−1x− ax−1)
σ
(a)
i (x) =

(σi − a x2)

(σi − a x−2)
. (4.4.21)

New normalized elements (4.4.21) obviously satisfy “unitarity conditions”: σ(a)′
i (x) σ

(a)′
i (x−1) =

1 and σ(a)′(±1) = 1. Identities (4.4.17)–(4.4.21) are checked with the help of relations (4.4.1)–
(4.4.12).

Note that the elements σ(+)
i (x) and σ(−)

i (x) (4.4.17) are related to each other by the trans-
formation q ↔ −q−1, which corresponds to the isomorphism of algebras BMW

M+1
(q, ν) ≃

BMW
M+1

(−q−1, ν) and we also have

σ
(+)
i (x)− σ

(−)
i (x) =

ν(q + q−1)(x− x−1)

(xν + qx−1)(xν − q−1x−1)
κi.

We also stress that the both inequivalent sets (±) of the Baxterized elements (4.4.17) are
important for explicit constructions of (anti)symmetrizers (4.4.15), (4.4.16). To our knowledge,
these both sets (4.4.17) were firstly presented in paper [237] (see also the very first version [46]
of these lectures). The only one of these sets was presented in [200, 238] and in [239].

It follows from Eqs. (4.4.1)–(4.4.3) that the algebra BMW
M+1

(q, ν) (ν ̸= λ) is a quotient of
the braid group algebra (4.1.1) if the additional relations on σi are imposed:

(σi − q)(σi + q−1)(σi − ν) = 0, (4.4.22)

(σ−1i + λ− σi)
(
σ±1i+1 (σ

−1
i + λ− σi)− λν∓1

)
= 0.

This quotient is finite-dimensional and the dimension of BMW
M+1

(q, ν) is (2M + 1)!! = 1 ·
3 · · · (2M + 1) (this dimension evidently follows from the graphical representation (3.10.36) of
the BMW

M+1
(q, ν) elements). The whole set of basis elements for the algebra BMW

M+1
(q, ν)

appears in the expansion of the symmetrizer SM+1 (4.4.15) (or antisymmetrizer AM+1 (4.4.16)).
Note that the quotient of the Birman–Murakami–Wenzl algebra BMW

M+1
(q, ν) (4.4.1)–(4.4.3)

by an ideal generated by κi is isomorphic to the A-type Hecke algebra HM+1(q).
The first symmetrizer and antisymmetrizer for the algebra BMW

M+1
(q, ν) are

(cf. Eqs. (3.10.5), (3.12.17)):

S1→2 =
1

[2]q
σ
(−)
1 (q−1) =

(σ2
1−q−2)(σ2

1−ν2)
(q2−q−2)(q2−ν2) =

= 1
[2]q

(q−1 + σ1 +
λ

1−qν−1κ1) =
1

q2−q−2 (σ
2
1 − q−2)(1− µ−1 κ1),

(4.4.23)

A1→2 =
1

[2]q
σ
(+)
1 (q) =

(σ2
1−q2)(σ2

1−ν2)
(q−2−q2)(q−2−ν2) =

= 1
[2]q

(q − σ1 − λ
1+q−1ν−1κ1) =

1
q−2−q2 (σ

2
1 − q2)(1− µ−1 κ1).

(4.4.24)
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They are obviously orthogonal to each other and to the element κ1 in view of the characteristic
equation (4.4.22). The following equations also hold:

σ
(−)
1 (q)S1→2 = 0 = κ1 S1→2, σ

(+)
1 (q−1)A1→2 = 0 = κ1A1→2,

which can be deduced from the “unitarity conditions” (4.4.20) and first equalities in (4.4.23),
(4.4.24). In fact, these equations are special cases of the more general relations (for i =
1, . . . , n− 1):

σ
(−)
i (q)S1→n = S1→n σ

(−)
i (q) = 0,

σ
(+)
i (q−1)A1→n = A1→n σ

(+)
i (q−1) = 0,

which equivalent to the equations (i = 1, . . . n− 1):

(σi − q)S1→n = 0 = S1→n (σi − q), κi S1→n = 0 = S1→n κi,

(σi + q−1)A1→n = 0 = A1→n (σi + q−1), κiA1→n = 0 = A1→n κi,
(4.4.25)

and demonstrate that S1→M+1, A1→M+1 are central idempotents. Equations (4.4.25) can be
readily proved by means of the analogs of the factorization relations (4.2.6), (4.2.11) or by the
induction using (4.4.15), (4.4.16) and the Yang–Baxter equations (4.4.19).

We note that the idempotents (4.4.15), (4.4.16) can be easily written in the form (cf.
(4.3.36), (4.3.37))

S1→n = S1→n−1
σ
(−)
n−1(q

−(n−1))

[n]q
S1→n−1, (4.4.26)

A1→n = A1→n−1
σ
(+)
n−1(q

n−1)

[n]q
A1→n−1. (4.4.27)

This inductive definition of the idempotents (4.4.15), (4.4.16) was also used in [131] and in [241]
(see Lemma 7.6). Note that, in view of the definitions (4.4.17) of Baxterized elements σ(±)

k (x),
expressions (4.4.26) and (4.4.27) have singularities for q2k = 1, ν = q2k−3 and q2k = 1, ν =
−q−2k+3 (k = 2, . . . , n), respectively. It means that the representation theory of the BMW
algebras has to be modified for q2k = 1 and ν = ±q±2k−3.

Using the representations (4.4.26), (4.4.27), we prove the analog of Proposition 4.18 about
symmetrizers and antisymmetrizers for the case of the Birman–Murakami–Wenzl algebra.

Proposition 4.25. The idempotents S1→n and A1→n (n = 2, . . .M + 1) (4.4.26), (4.4.27) for
the Birman–Murakami–Wenzl algebra are expressed in terms of the Jucys–Murphy elements yk
(k = 2, . . . ,M):

y1 = 1, yk+1 = σkykσk, [yk, ym] = 0, (4.4.28)

as follows:

S1→n =
n∏

i=2

(
(yi − q−2)

(q2(i−1) − q−2)

(yi − ν2q−2(i−2))

(q2(i−1) − ν2q−2(i−2))

)
, (4.4.29)

A1→n =
n∏

i=2

(
(yi − q2)

(q−2(i−1) − q2)

(yi − ν2q2(i−2))

(q−2(i−1) − ν2q2(i−2))

)
. (4.4.30)
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Proof. To prove the identity (4.4.30), we show that it is equivalent to (4.4.27). The identity
(4.4.29) for the symmetrizers (4.4.26) can be justified analogously. The equations (4.4.24)
demonstrate that (4.4.30) coincide with (4.4.27) for n = 2. Then we use the induction. Let
(4.4.30) coincide with the formula (4.4.27) for A1→n for some fixed n ⩾ 2 and, thus, it is the
element which satisfies (4.4.25). We prove that the formulas (4.4.27) and (4.4.30) are equivalent
for A1→n+1. In view of the induction conjecture and obvious properties [A1→n, yn+1] = 0 (since
A1→n is a function of yi) we obtain from (4.4.30):

A1→n+1 = A1→n
(yn+1 − q2)

(q−2n − q2)

(yn+1 − ν2q2(n−1))

(q−2n − ν2q2(n−1))
A1→n. (4.4.31)

We need the identities

σn . . . σ2σ
2
1σ2 . . . σn κn = ν2 σ−1n−1 . . . σ

−1
2 σ−21 σ−12 . . . σ−1n−1 κn ⇒

yn σn yn κn = ν κn ⇒ yn+1 yn κn = ν2 κn, (4.4.32)

which follow from equation σkκk+1 = σ−1k+1κkκk+1. We also deduce the analogs of the identities
(4.3.8) for the Birman–Murakami–Wenzl algebra case:

yn+1 = σn . . . σ2σ
2
1σ2 . . . σn = 1 + λ

(
n−1∑
i=1

σi . . . σn−1σnσn−1 . . . σi + σn

)
−

−λν
(

n−1∑
i=1

σ−1i . . . σ−1n−1κnσ
−1
n−1 . . . σ

−1
i + κn

)
.

(4.4.33)

Using Eqs. (4.4.32), (4.4.33) and A1→nyn = q2(1−n)A1→n (see Eqs. (4.4.25) for A1→n), we obtain

A1→n yn+1A1→n = A1→n

(
1 + q (1− q−2n)σn +

ν

q
(1− q2n)κn

)
A1→n, (4.4.34)

A1→n y
2
n+1A1→n = A1→nyn+1

(
1 + q (1− q−2n)σn +

ν

q
(1− q2n)κn

)
A1→n =

= A1→n[(1 + λq(1− q−2n)) + q(1− q−2n)(q2 + q−2n)σn+

+ν
q
(1− q2n)(q2 − q−2(n−1) + q−2n + ν(λ+ νq2(n−1))κn)]A1→n.

(4.4.35)

Then we substitute (4.4.34) and (4.4.35) into (4.4.31) and finally deduce

A1→n+1 =
q−1λ

(1− q−2(n+1))
A1→n

(
1 +

(q−2n − 1)σn
λ

+
ν(q−2n − 1)κn
(q−2n+1 + ν)

)
A1→n, (4.4.36)

which coincides with (4.4.27).

One can prove directly the identities (4.4.25) for elements (4.4.29), (4.4.30). We again use
the induction. Let (4.4.25) be valid for (4.4.30) for some fixed n ⩾ 2 (it is obviously correct for
n = 2). Then we have to prove the identities (4.4.25) only for n → n + 1 and i = n. One can
deduce

A1→n (yn+1 − ν2q2(n−1))κn = A1→n (yn+1 − ν2 y−1n )κn = 0, (4.4.37)
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where we have applied identities (4.4.32) and A1→nyn = A1→nq
−2(n−1). Using Eq. (4.4.37) and

the relation [A1→n, yn+1] = 0, we prove that A1→n+1κn = 0 for (4.4.31). Now consider the
following chain of relations:

A1→n (yn+1 − q2)(σn + q−1) = A1→n (σnynσn − q2)(σn + q−1) =
= A1→n (q σnynσn + σnyn − λνσnynκn − q2σn − q) =

= A1→n (−λν)κn
(

n−1∑
i=1

(−1)n−i qi+1−nσ−1n−1 . . . σ
−1
i + q+

+
n−2∑
i=1

(−1)n−i qi−nκn−1σ
−1
n−2 . . . σ

−1
i + q κn−1 + νq2(1−n)

)
,

(4.4.38)

where we have used Eqs. (4.4.25), (4.4.32), and (4.4.33). Multiplying Eq. (4.4.38) by the factor
(yn+1−ν2q2(n−1)) from the left and taking into account (4.4.37), we obtain A1→n+1(σn+q

−1) = 0.

Remark 1. The idempotents S1→n and A1→n for the Birman–Murakami–Wenzl algebra have
been also constructed in another form in [240]. The authors of [240] (as well as the authors
of [241]) have not used the Baxterized or Jucys–Murphy elements and, thus, their expressions
for S1→n and A1→n look rather cumbersome. The construction of the primitive idempotents
S1→n and A1→n in terms of the Baxterized elements (4.4.17) has been proposed by P. Pyatov
in fall of 2001 and used, e.g., in [131]. After the substitution of (4.4.17) to (4.4.15), (4.4.16)
and direct calculations one can derive the formulas for S1→n and A1→n presented in [240].

Remark 2. Assume that the projectors A1→n+1 (or S1→n+1) are equal to zero for some n, while
A1→n ̸= 0 ̸= S1→n. It leads to certain constraints on the parameter ν. Indeed, from conditions
κn+1A1→n+1κn+1 = 0 and κn+1S1→n+1κn+1 = 0 we obtain constraints κn+1σ

(+)
n (qn)κn+1 = 0 and

κn+1σ
(−)
n (q−n)κn+1 = 0, respectively. These constraints are equivalent to equations (n > 0):

(ν + q−(2n+1))(ν − q−(n−1))(ν + q−(n−1)) = 0,

(ν − q(2n+1))(ν − q(n−1))(ν + q(n−1)) = 0.

It means that for k > n all antisymmetrizers A1→k could be equal to zero only if ν takes
one of the values ν = −q−(2n+1),±q1−n, and, respectively, for k > n all symmetrizers S1→k

could be equal to zero only if ν = q(2n+1),±qn−1. Recall (see Subsection 3.9) that ν = q1−n

and ν = −q−1−2n specify Birman–Murakami–Wenzl R-matrices for SOq(n) and Spq(2(n + 1))
groups, respectively. The parameter ν = qn−1 could be related to the Ospq(2(m + 1) − n|2m)
R-matrix (3.11.52) with the choice (3.11.49), (3.11.50).
4.4.3. Affine algebras αBMWM+1 and their central elements. Baxterized solution of reflection

equation
In Subsections 4.4.3 and 4.4.4, we follow the presentation of the paper [242].
Affine Birman–Murakami–Wenzl algebras αBMWM+1(q, ν) are extensions of the algebras

BMWM+1(q, ν). The algebras αBMWM+1 are generated by the elements {σi, κi} (i = 1, . . . ,M)
with relations (4.1.1), (4.4.1)–(4.4.3) and the affine element y1 which satisfies

σ1 y1 σ1 y1 = y1 σ1 y1 σ1, [σk, y1] = 0 for k > 1,
κ1 y1 σ1 y1 σ1 = c κ1 = σ1 y1 σ1 y1 κ1,
κ1 y

n
1 κ1 = ẑ(n)κ1, n = 1, 2, 3, . . . ,

(4.4.39)

where c, ẑ(n) are central elements. Initially, for the Brauer algebras, the affine version was
introduced by M. Nazarov [245]. Below we use the set of affine elements

y1, yk+1 = σk yk σk ∈ αBMWM+1, k = 1, 2, . . . ,M. (4.4.40)

These elements generate a commutative subalgebra YM+1 in αBMWM+1.
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We need some information about the center of αBMW .

Proposition 4.26. The elements

Ẑ = y1 · y2 · · · yM , Ẑ(n)
M =

M∑
k=1

(
ynk − cn y−nk

)
, n ∈ N (4.4.41)

are central in the αBMWM algebra.

Proof. One can directly check the centrality of (4.4.41) by making use of the relations (4.4.39)
and (4.4.40).
Remark 1. The set of central “power sums” Ẑ(n) =

∑
k(y

n
k − cn y−nk ) is produced by the

generating function

Z(t) =
∑
n=1

Ẑ(n)tn−1 =
d

dt
log

(∏
k=1

yk − c t

1− ykt

)
.

Consider an ascending chain of subalgebras

αBMW0 ⊂ αBMW1 ⊂ αBMW2 ⊂ · · · ⊂ αBMWM ⊂ αBMWM+1,

where αBMW0, αBMW1, and αBMWj (j > 1) are, respectively, generated by {c, ẑ(n)},
{c, ẑ(n), y1}, and {c, ẑ(n), y1, σ1, σ2, . . . , σj−1}. For the corresponding commutative subalgebras
we have Y1 ⊂ Y2 ⊂ · · · ⊂ YM ⊂ YM+1.

Proposition 4.27. Let Ẑ
(n)
k be central elements in the algebra αBMWk, αBMWk ⊂

αBMWk+2, defined by the relations

κk+1y
n
k+1κk+1 = Ẑ

(n)
k κk+1 ∈ αBMWk+2 (Ẑ

(n)
0 ≡ ẑ(n), Ẑ

(0)
k ≡ ẑ(0) = µ). (4.4.42)

Then the generating function for the elements Ẑ(n)
k is

∞∑
n=0

Ẑ
(n)
k tn = − ν

(q − q−1)
+

1

(1− c t2)
+

(
∞∑
n=0

tn ẑ(n) +
ν

(q − q−1)
− 1

(1− c t2)

)
×

×
k∏

r=1

(1− yrt)
2(q2 − c y−1r t)(q−2 − c y−1r t)

(1− c y−1r t)2(q2 − yrt)(q−2 − yrt)
.

(4.4.43)

Proof. We define the following function of central elements in αBMWk:

Qk(t) =
∞∑
n=0

Ẑ
(n)
k tn +

ν

(q − q−1)
− 1

(1− c t2)
.

Then one can deduce (see the method in [246]) the recursive formula

Qk(t) =
(1− ykt)

2(q2 − c y−1k t)(q−2 − c y−1k t)

(1− c y−1k t)2(q2 − ykt)(q−2 − ykt)
Qk−1(t), (4.4.44)

where Qk−1(t) ∈ αBMWk−1 ⊂ αBMWk. From (4.4.44) we immediately obtain (4.4.43).
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Remark 2. The evaluation map αBMWM → BMWM is defined by

y1 7→ 1 ⇒ c 7→ ν2, ẑ(n) 7→ 1 +
ν−1 − ν

q − q−1
≡ µ. (4.4.45)

Under this map the function (4.4.43) transforms into the generating function presented in [246],
where it is used for a proof of the Wenzl formula for the quantum dimensions of the BMWM

primitive idempotents.

Remark 3. The homomorphisms of the periodic BMW
M+1

algebra to the algebra BMW
M+1

and to the affine algebra αBMW
M+1

are defined by the same Eqs. (4.3.62) and (4.3.72) as in
the case of the group algebra of the braid group. Indeed, for the periodic BMW

M+1
algebra the

characteristic identity for σM is the same as for σ1, while the relations

κ1σ
±1
M κ1 = ν∓1κ1, κM−1σ

±1
M κM−1 = ν∓1κM−1

can be checked directly.

Remark 4. We redefine the Baxterized elements in (4.4.17), (4.4.21) as follows:

σ
(a)
i (x) = (σi − x σ−1i ) +

λ(ν − a)

(ν − a x−1)
κi = (a−1 − ax−1)

σi − a x

σi − a x−1
, (4.4.46)

where we change the spectral parameter x2 → x and denote by a the solution of the equation
a−1 − a = λ ≡ q − q−1. It was discovered in [211] that the element of the affine BMW algebra

yj(u) = f(u)
yj − ξa u

yj − ξa u−1
(4.4.47)

(here ξ2a := a c/ν and f(u) is any numerical function) solves the reflection equation (cf. (4.3.66),
(5.2.3)):

yj(u)σj
(
u v
)
yj(v)σj

(
v u−1

)
= σj

(
v u−1

)
yj(v)σj

(
u v
)
yj(u). (4.4.48)

This fact is important in the study of the evaluation homomorphisms for the quantum universal
enveloping algebras; see [102] for the classical counterpart. The main ingredients of the fusion
procedure [243] — the elements

Yj(u1, . . . , uj−1, u) := σj−1(uuj−1)Yj−1(u1, . . . , uj−2, u)σj−1(uu
−1
j−1), Y1(u) := y1(u)

(j = 1, . . . , n− 1), also satisfy the reflection equation

Yj(u1, . . . , uj−1, u)σj
(
u v
)
Yj(u1, . . . , uj−1, v)σj

(
v u−1

)
=

= σj
(
v u−1

)
Yj(u1, . . . , uj−1, v)σj

(
u v
)
Yj(u1, . . . , uj−1, u).

(4.4.49)

This is shown by induction in j.

4.4.4. Intertwining operators in αBMWM+1 algebra

Introduce the intertwining elements Uk+1 ∈ αBMWM+1 (k = 1, . . . ,M) (cf. (4.3.17)):

Uk+1 = [σk, yk − c y−1k+1]. (4.4.50)
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Proposition 4.28. The elements Uk satisfy (cf. (4.3.19)–(4.3.21)):

Uk+1yk = yk+1 Uk+1, Uk+1yk+1 = yk Uk+1, Uk+1yi = yi Uk+1 for i ̸= k, k + 1,

Uk+1 [σk, yk] = (qyk − q−1yk+1)(qyk+1 − q−1yk)
(
1− c

yk yk+1

)
, (4.4.51)

Uk+1 Uk Uk+1 = Uk Uk+1 Uk,

κk Uk+1 = Uk+1 κk = 0.

The elements Uk provide an important information about the spectrum of the affine elements
{yj} defined in (4.4.40).
Lemma 3 (cf. Proposition 4.19). The spectrum of the elements yj ∈ αBMWM+1 satisfies

Spec(yj) ⊂ {q2Z · Spec(y1), c q2Z · Spec(y−11 )}, (4.4.52)

where Z is the set of integer numbers.
Proof. We prove it by induction in j. Equation (4.4.52) obviously holds for y1. Assume that

Spec(yj−1) ⊂ {q2Z · Spec(y1), c q2Z · Spec(y−11 )}, j > 1.

Let f be the characteristic polynomial of yj−1, f(yj−1) = 0. Then

0 = Ujf(yj−1)[σj−1, yj−1] = f(yj)Uj[σj−1, yj−1] =

= f(yj)(q
2yj−1 − yj)(yj − q−2yj−1)

(
yj − c y−1j−1

)
y−1j .

Here we used (4.4.51). Thus, Spec(yj) ⊂ Spec(yj−1) ∪ q±2 · Spec(yj−1) ∪ c · Spec(y−1j−1).

We denote the image of w ∈ αBMWM under the evaluation map (4.4.45) by w̃, e.g., yj 7→ ỹj.
The Jucys–Murphy (JM) elements ỹj (j = 2, . . . ,M) defined in (4.4.28) are the images of yj:

ỹj = σj−1 . . . σ2 σ
2
1 σ2 . . . σj−1 ∈ BMWM .

Lemma 3 provides the information about the spectrum of JM elements ỹ’s.
Corollary. Since ỹ1 = 1 and c̃ = ν2, it follows from (4.4.52) that

Spec(ỹj) ⊂ {q2Z, ν2q2Z}. (4.4.53)

4.5. Representation theory of BMWM+1 algebras

The representation theory for the Birman–Murakami–Wenzl algebra was constructed in [244]
(see also [247, 248]). The approach considered in this subsection (the colored Young graph,
the analog of Proposition 4.20, the explicit formulas for all primitive idempotents in terms of
the Jucys–Murphy elements, intertwiner operators Uk (4.3.19)–(4.3.21), etc.) similar to that
presented for the Hecke algebra case in Subsection 4.3 was developed in [242].
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4.5.1. Representations of affine algebra αBMW2

A. αBMW2 algebra and its modules VD
The elements {yi, yi+1, σi, κi} ∈ αBMWM (for fixed i < M) satisfy

(q − q−1)κi = σ−1i − σi + (q − q−1), (4.5.1)

yi+1 = σiyiσi, yiyi+1 = yi+1yi, κiy
n
i κi = Ẑ

(n)
i−1κi, (4.5.2)

yiyi+1κi = c κi = κiyi+1yi. (4.5.3)

The elements c and Ẑ
(n)
i−1 commute with {yi, yi+1, σi, κi}. The elements {yi, yi+1, σi, κi} ∈

αBMWM generate a subalgebra isomorphic to αBMW2.
Below we investigate representations ρ of αBMW2 for which the generators ρ(yi) and ρ(yi+1)

are diagonalizable and ρ(c) = ν2 · Id. Let ψ be a common eigenvector of ρ(yi) and ρ(yi+1) with
some eigenvalues a and b:

ρ(yi)ψ = aψ, ρ(yi+1)ψ = b ψ.

The element ẑ = yiyi+1 is central in αBMW2. There are two possibilities:

1. ρ(κi) ̸= 0
Eq. (4.5.3)
=⇒ ρ(yiyi+1) = ν2 · Id ⇒ a b = ν2;

2. ρ(κi) = 0, the product a b is not fixed.
(4.5.4)

Further for brevity we often omit the symbol ρ and denote the operator ρ(x) for x ∈ αBMW
by the same letter x; this should not lead to a confusion.

Applying the operators from αBMW2 to the vector ψ, we produce, in general, infinite-
dimensional αBMW2-module V∞ spanned by

e2 = ψ,
e1 = κiψ, e3 = σiψ,
e4 = yiκiψ, e5 = σiyiκiψ,
e6 = y2i κiψ, e7 = σiy

2
i κiψ,

. . . . . . . . . , . . . . . . . . . ,
e2k+2 = yki κiψ, e2k+3 = σiy

k
i κiψ (k ⩾ 1), . . . . . . .

Using relations (4.5.1)–(4.5.3) for αBMW2, one can write down the left action of elements
{yi, yi+1, σi, κi} on V∞. Our aim is to understand when the sequence ej can terminate giving
therefore rise to a finite-dimensional module VD (of dimension D) of αBMW2 and to investigate
the (ir)reducibility of VD.

We distinguish three cases for the module VD:

(i) κiVD = 0 (i.e., κi e = 0 ∀ e ∈ VD) and, in particular, κi ψ = 0. Therefore, ej = 0 for all
j ̸= 2, 3 and V∞ reduces to a 2-dimensional module with the basis {e2, e3}. In view of
(4.5.4), the product a b is not fixed and the irreps coincide with the irreps of the affine
Hecke algebra αH2 considered in Subsection 4.3.3 and in [208, 209].

(ii) κiVD ̸= 0 (i.e., ∃ e ∈ VD: κie ̸= 0). The module VD is extracted from V∞ by constraints

e2k+4 =
2k+3∑
m=1

αm em (k ⩾ −1), ab = ν2, (4.5.5)

with some parameters αm. The independent basis vectors are (e1, e2, . . . , e2k+3). The
module VD has odd dimension.
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(iii) κiVD ̸= 0 and additional constraints are

e2k+3 =
2k+2∑
m=1

αm em (k ⩾ 0), ab = ν2. (4.5.6)

The independent basis vectors are (e1, e2, . . . , e2k+2). The module VD has even dimension.

Below we consider a version α′BMW2 of the affine BMW algebra. The additional requirement
for this algebra concerns the spectrum of yi, yi+1 ∈ α′BMW2:

Spec(yj) ⊂ {q2Z, ν2q2Z}.

The evaluation map (4.4.45) descends to the algebra α′BMW (cf. Corollary after Lemma 3).
In particular, for the cases (ii) and (iii) we have

a = ν2q2z, b = q−2z or a = q2z, b = ν2q−2z

for some z ∈ Z.

B. The case κiVD = 0: Hecke algebra case [208, 209] (see also Subsection 4.3.3).
Representations of αBMW2 with κiVD = 0 reduce to representations of the affine Hecke

algebra αH2. In the basis of two vectors (e2, e3) = (ψ, σiψ), the matrices of the generators are
(cf. (4.3.32)):

σi =

(
0 1
1 q − q−1

)
, yi =

(
a −(q − q−1)b
0 b

)
, yi+1 =

(
b (q − q−1)b
0 a

)
, (4.5.7)

where a ̸= b (otherwise yi, yi+1 are not diagonalizable). By Lemma 3, we have for yi, yi+1 ∈
α′BMW2 the eigenvalues a, b ∈ {q2Z, ν2q2Z}. The 2-dimensional representation (4.5.7) contains
a 1-dimensional subrepresentation iff a = q±2b. Graphically these 1- and 2-dimensional irreps of
α′BMW2 are visualized by the same pictures as in Figures 4.2 and 4.3 in Subsection 4.3.3. Dif-
ferent paths going from the upper vertex to the lower vertex correspond to different eigenvectors
of yi, yi+1. The indices on the edges are eigenvalues of yi, yi+1.

C. κiVD ̸= 0: odd-dimensional representations for α′BMW2

Using condition (4.5.5) for the reduction V∞ to V2m+1, one can describe odd-dimensional
representations of α′BMW2, determine matrices for the action of yi, yi+1 on V2m+1 and calculate

det(yi) =
2m+1∏
r=1

y
(r)
i = ν2m, det(yi+1) =

2m+1∏
r=1

y
(r)
i+1 = ν2m+2. (4.5.8)

Here for eigenvalues y(r)i , y(r)i+1 (r = 1, 2, . . . , 2m+ 1) of yi and yi+1 we have constraints

y
(r)
i y

(r)
i+1 = ν2, r = 1, . . . , 2m+ 1

and (see Eq. (4.4.53))
y
(r)
i ∈ {q2Z, ν2q2Z}, r = 1, . . . , 2m+ 1.

These odd-dimensional irreps are visualized as graphs:
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ν2q2z2

ν2q2z1

ν2q2zm q
2zm+1 q2z2m q

2z2m+1

ν2q
−2z2m+1

ν2q−2z2m

ν2q
−2zm+1q−2zm

q−2z2

q−2z1

⋆

⋆ ⋆⋆. . . . . . . . . . . . . . . . .⋆⋆⋆

⋆

,
,

,
,

,
,

,
,

,,

%
%

%
%

%
%

%
%

l
l

l
l

l
l
l

l
ll

\
\
\
\
\
\
\
\

�
�
�
�
�
�
��

l
l
l
l
l
l
l
l

ll

e
e
e
e
e
e
e
ee

B
B
B
B
B
B
B
B

�
�

�
�

�
�

�
�

,
,

,
,

,
,

,
,

,,

⋆

⋆

⋆

yi = 1

yi+1 = ν2

Figure 4.4

where zr ∈ Z and
∑2m+1

r=1 zr = 0, as it follows from (4.5.8). Different paths going from the top
vertex to the bottom vertex correspond to different common eigenvectors of yi, yi+1. Indices on
upper and lower edges of these paths are the eigenvalues of yi and yi+1, respectively.
Remark. In view of the braid relations σiσi±1σi = σi±1σiσi±1 and possible eigenvalues of σ’s
for 1-dimensional representations (described in Subsections 3.2 and 3.3), we conclude that the
following chains of 1-dimensional representations are forbidden:

⋆

⋆

⋆

⋆

a

aq±2

a

⋆

⋆

⋆

⋆

ν2q±2

ν2

1

⋆

⋆

⋆

⋆

ν2

1

q±2

where a = q2z or a = ν2q2z (z ∈ Z).
D. κiVD ̸= 0: even-dimensional representations of α′BMW2

With the help of conditions (4.5.6) we reduce V∞ to V2m, then explicitly construct (2m)×
(2m) matrices for the operators yi, yi+1 and calculate their determinants

det(yi) =
2m∏
r=1

y
(r)
i = ϵqϵ ν2m−1, det(yi+1) =

2m∏
r=1

y
(r)
i+1 = −ϵqϵ ν2m+1, (4.5.9)

where y(r)i , y(r)i+1 are eigenvalues of yi, yi+1 (we have two possibilities: ϵ = ±1). We see from
(4.5.9) that all (2m) eigenvalues of yi, yi+1 cannot belong to the spectrum (4.4.53). More
precisely, there is at least one eigenvalue y(r)i of yi (and the eigenvalue y(r)i+1 of yi+1) such that

y
(r)
i , y

(r)
i+1 /∈ {q2Z, ν2q2Z}.

Thus, even-dimensional irreps of αBMW2 subject to the conditions (4.5.6) are not admissible
for α′BMW2.
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4.5.2. Spec(y1, . . . , yn) and rules for strings of eigenvalues

Now we reconstruct the representation theory of BMW algebras using an approach which
generalizes the approach of Okounkov–Vershik [231] for symmetric groups.

The JM elements {ỹ1, . . . , ỹn} generate a commutative subalgebra in BMWn. The basis in
the space of an irrep of BMWn can be chosen to be the common eigenbasis of all ỹi. Each
common eigenvector v of ỹi,

ỹi v = ai v, i = 1, . . . , n,

defines a string (a1, . . . , an) ∈ Cn. Denote by Spec(ỹ1, . . . , ỹn) the set of such strings.
We summarize our results about representations of α′BMW2 and the spectrum of the JM

elements ỹi in the following Proposition.

Proposition 4.29. Consider the string

α = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec(ỹ1, . . . , ỹi, ỹi+1, . . . , ỹn).

Let vα be the corresponding eigenvector of ỹi: ỹi vα = ai vα. Then

(1) ai ∈ {q2Z, ν2q2Z} ;
(2) ai ̸= ai+1, i = 1, . . . , n− 1 ;
(3a) aiai+1 ̸= ν2, ai+1 = q±2 ai ⇒ σi · vα = ±q±1vα, κi · vα = 0 ;

(3b) aiai+1 ̸= ν2, ai+1 ̸= q±2 ai ⇒
α ′ = (a1, . . . , ai+1, ai, . . . , an) ∈ Spec(ỹ1, . . . , ỹi, ỹi+1, . . . , ỹn), κi · vα = 0, κi · vα ′ = 0 ;

(4) aiai+1=ν
2 ⇒ ∃ odd number of strings α(k) (k = 1, 2, . . . , 2m+ 1) :

α(k) = (a1, . . . , ai−1, a
(k)
i , a

(k)
i+1, ai+2, . . . , an) ∈ Spec(ỹ1, . . . , ỹn) ∀k,

α ∈ {α(k)}, a
(k)
i a

(k)
i+1=ν

2,
2m+1∏
k=1

a
(k)
i = ν2m,

2m+1∏
k=1

a
(k)
i+1 = ν2m+2.

The necessary and sufficient conditions for a string to belong to the common spectrum of
ỹi are formulated in the following way.

Proposition 4.30. The string α = (a1, a2, . . . , an), where ai ∈ (q2Z, ν2q2Z), belongs to the set
Spec(ỹ1, ỹ2, . . . , ỹn) iff α satisfies the following conditions (z ∈ Z):

(1) a1 = 1 ; (2) ai = ν2q−2z ⇒ q2z ∈ {a1, . . . , ai−1} ;

(3) ai = q2z ⇒ {aiq2, aiq−2} ∩ {a1, . . . , ai−1} ≠ Ø, z ̸= 0;

(4a) ai=aj=q
2z (i < j)⇒

{
either {q2(z+1)

, q
2(z−1)}⊂{a

i+1
, . . . , a

j−1
},

or ν2q−2z ∈ {a
i+1
, . . . , a

j−1
} ;

(4b) ai=aj=ν
2q2z (i < j) ⇒

{
either {ν2q2(z+1)

, ν2q
2(z−1)}⊂{a

i+1
, . . . , a

j−1
},

or q−2z ∈ {a
i+1
, . . . , a

j−1
} ;

(5a) ai = ν2q−2z, aj = q2z
′
(i < j) ⇒ q2z or ν2q−2z

′ ∈ {a
i+1
, . . . , a

j−1
} ;

(5b) ai = q2z, aj = ν2q−2z
′
(i < j) ⇒ ν2q−2z or q2z

′ ∈ {a
i+1
, . . . , a

j−1
}.

where in (5a) and (5b) we set z′ = z ± 1.
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4.5.3. Colored Young graph for BMW algebras

We illustrate the above considerations on the example of the colored (in the sense of [208,
209]) Young graph for the algebra BMW5. This graph contains the whole information about
the irreps of BMW5 and the branching rules BMW5 ↓ BMW4.
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Figure 4.5

A vertex {λ; 5} on the lowest level of this graph is labeled by some Young diagram λ; this
vertex corresponds to the irrep W{λ;5} of BMW5 (the notation {λ; 5} is designed to encode
the diagram λ and the level on which this diagram is located; the levels are counted starting
from 0). Paths going down from the top vertex ∅ to the lowest level (that is, paths of length 5)
correspond to common eigenvectors of the JM elements ỹ1, . . . , ỹ5. Paths ending at {λ; 5} label
the basis in W{λ;5}. In particular, the number of different paths going down from the top ∅ to
{λ; 5} is equal to the dimension of the irrep W{λ;5}.

Note that the colored Young graph in Figure 4.5 contains subgraphs presented in Figures 4.2,
4.3 and 4.4. For example, in Figure 4.5 one recognizes rhombic subgraphs (the vertices on the
subgraphs are obtained from one another by a rotation)
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of the type presented in Figure 4.3.
Let (s, t) be coordinates of a node in the Young diagram λ. To the node (s, t) of the diagram

λ we associate a number q2(s−t) which is called “content”:
-

?

s

t

1 q2 q4 q6

q−2 1 q2

q−4

Then, according to the colored Young graph in Figure 4.5, at each step down along the path
one can add or remove one node (therefore, this graph is called the “oscillating” Young graph)
and the eigenvalue of the corresponding JM element is determined by the content of the node:

1 q2 q4 q6

q−2 1 q2

q−4

�
�

�	

@
@

@
@@R

y9 = ν2q−2 q8

1 q2 q4 q6

q−2 1

q−4

1 q2 q4 q6 q8

q−2 1 q2

q−4

The eigenvalue corresponding to the addition or removal of the (s, t) node is q2(s−t) or ν2q−2(s−t),
respectively.

Let X(n) be the set of paths of length n starting from the top vertex ∅ and going down in
the Young graph of oscillating Young diagrams. Now we formulate the following Proposition.

Proposition 4.31. There is a bijection between the set Spec(ỹ1, . . . , ỹn) and the set X(n).

4.5.4. Primitive idempotents

The colored Young graph (as in Figure 4.5) gives also the rule of construction of a complete
set of orthogonal primitive idempotents for the BMW algebra. The completeness of the set of
orthogonal primitive idempotents is equivalent to the maximality of the commutative set of JM
elements. Let {Λ;n} be a vertex in the Young graph with
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Λ =

. . .

λ
(1)

n1
n1 ,λ(1)

n2 ,λ(2)

n3 ,λ(3)

n
k
,λ

(k)

(ni, λ(i)) are coordinates of the nodes
which are in the corners of the diagram
Λ = [λn1

(1), λ
n2−n1

(2) , . . . , λ
nk−nk−1

(k) ] . (4.5.10)

Consider any path T{Λ;n} going down from the top ∅ to this vertex. Let ET{Λ;n} ∈ BMWn be the
primitive idempotent corresponding to T{Λ;n}. Using the branching rule implied by the Young
graph for BMWn+1, we know all possible eigenvalues of the element ỹn+1 and, therefore, obtain
the identity

ET{Λ;n} ·
k+1∏
r=1

(
ỹn+1 − q2(λ(r)−nr−1)

) k∏
r=1

(
ỹn+1 − ν2q2(nr−λ(r))

)
= 0,

where λ(k+1) = n0 = 0. So, for a new diagram Λ′ obtained by adding to Λ a new node with
coordinates (nj−1 + 1, λ(j) + 1) the corresponding primitive idempotent (after an appropriate
normalization) reads

ET{Λ′;n+1}
= ET{Λ;n} ·

k+1∏
r=1
r ̸=j

(
ỹn+1 − q2(λ(r)−nr−1)

)(
q2(λ(j)−nj−1) − q2(λ(r)−nr−1)

) k∏
r=1

(
ỹn+1 − ν2q2(nr−λ(r))

)(
q2(λ(j)−nj−1) − ν2q2(nr−λ(r))

) .
For a new diagram Λ′′ which is obtained from Λ by removing a node with coordinates (nj, λ(j))
we construct the primitive idempotent

ET{Λ′′;n+1}
= ET{Λ;n} ·

k+1∏
r=1

(
ỹn+1 − q2(λ(r)−nr−1)

)(
ν2q2(nj−λ(j)) − q2(λ(r)−nr−1)

) k∏
r=1
r ̸=j

(
ỹn+1 − ν2q2(nr−λ(r))

)(
ν2q2(nj−λ(j)) − ν2q2(nr−λ(r))

) .
Using these formulas and the “initial data” ET{∅;0} = 1, one can deduce step by step explicit
expressions for the primitive orthogonal idempotents related to the paths in the BMW Young
graph.
Remark. In this subsection, we reconstructed the representation theory of the tower of the
BMW algebras using the properties of the commutative subalgebras generated by the Jucys–
Murphy elements in the BMW algebras. This representation theory is of use in the representa-
tion theory of the quantum groups Uq(osp(N |K)) due to the Brauer–Schur–Weyl duality, but
also finds applications in physical models. Recently [211], we have formulated integrable chain
models with nontrivial boundary conditions in terms of the affine Hecke algebras Ĥn and the
affine BMW algebras αBMWn. The Hamiltonians for these models are special elements of
the algebras Ĥn and αBMWn. For example, for the αBMWn algebra we deduced [211] the
Hamiltonians

H =
n−1∑
m=1

(
σm +

(q − q−1)ν

ν + a
κm

)
+

(q − q−1)ξ

y1 − ξ
, (4.5.11)

where ξ2 = −a c/ν and the parameter a can take one of two values a = ±q±1. Now differ-
ent representations ρ of the algebra αBMWn give different integrable spin chain models with
Hamiltonians ρ(H) which, in particular, possess Uq(osp(N |K)) symmetries for some N and K.
So, the representations ρ of the algebra αBMWn are related to the spin chain models of osp
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type with n sites and nontrivial boundary conditions. The BMW chains (chains based on the
BMW algebras in the R-matrix representations) describe in a unified way spin chains with
Uq(osp(N |K)) symmetries.

The Hamiltonians for the Hecke chain models are obtained from the Hamiltonians for the
BMW chain models by taking the quotient κj = 0. These models were considered in [212, 213].
The Hecke chains (chain models based on the Hecke algebras) describe in a unified way spin
chains with Uq(sl(N |K)) symmetries. In [212–214], we investigated the integrable open chain
models formulated in terms of the generators of the Hecke algebra (non-affine case, y1 = 1).
For the open Hecke chains of a finite size, the spectrum of the Hamiltonians with free boundary
conditions is determined [213] for special (corner type) irreducible representations of the Hecke
algebra. In [212], we investigated the functional equations for the transfer matrix type elements
of the Hecke algebra appearing in the theory of Hecke chains.

4.5.5. q-Dimensions of idempotents in the BMW algebra

Consider the following inclusions of the subalgebras αBMW1 ⊂ αBMW2 ⊂ · · · ⊂ αBMWn+1:

{y1;σ1, . . . , σk−1} ∈ αBMWk ⊂ αBMWk+1 ∋ {y1;σ1, . . . , σk−1, σk}.

For the subalgebras αBMWk+1 we introduce linear mapping (quantum trace)

Tr(k+1) : αBMWk+1 → αBMWk, (k = 1, 2, . . . , n),

which is defined by the formula (cf. (3.10.39))

κk+1Xk+1 κk+1 =
1

ν
Tr(k+1)(Xk+1)κk+1, ∀Xk+1 ∈ αBMWk+1. (4.5.12)

Proposition 4.32 (see [187]). For the map Tr(k+1): αBMWk+1 → αBMWk we have the
following properties (∀Xk, X

′
k ∈ αBMWk, ∀Yk+1 ∈ αBMWk+1):

Tr(k+1)(σk) = 1, Tr(k+1)(σ
−1
k ) = ν2, Tr(k+1)(Xk) = ν µXk,

Tr(k+1)(κk) = ν, Tr(1)(y
k
1) = ν ẑ(k), Tr(1)(1) = ν µ = (1 + λν − ν2)λ−1,

(4.5.13)

Tr(k+1)(σkXk σ
−1
k ) = Tr(k)(Xk) = Tr(k+1)(σ

−1
k Xk σk), (4.5.14)

Tr(k+1)(σkXk κk) = Tr(k+1)(κkXk σk), (4.5.15)

Tr(k+1)(Xk · Yk+1 ·X ′k) = Xk · Tr(k+1)(Yk+1) ·X ′k ,

Tr(k)Tr(k+1)(σk · Yk+1) = Tr(k)Tr(k+1)(Yk+1 · σk).
(4.5.16)

By using the mapping (4.5.12), definitions (4.4.42), (4.4.39) and evaluation (4.4.45), we
write relation (4.4.43) in the form (cf. (4.3.75))

λTr
(M+1)

( yM+1

t− yM+1

)
+ 1− λν3

(t2 − ν2)
=

=
(t− ν2)(t− q−1ν)(t+ qν)

(t− 1)(t− ν)(t+ ν)
·

M∏
r=1

(t− yr)
2(q2t− ν2 y−1r )(q−2t− ν2 y−1r )

(t− ν2 y−1r )2(q2t− yr)(q−2t− yr)
,

(4.5.17)

where we change variable t → t−1, index k → M and for simplicity denote yr = ỹr. Then we
act to both sides of (4.5.17) by the idempotent ET{Λ,M} , where T{Λ,M} is the path of length M
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in the colored Young graph (of the type presented in Figure 4.5) with the final vertex labeled
by the Young diagram Λ (4.5.10). According to the branching rule, which is implied by the
colored Young graph for BMWM+1, we use the expansion

ET{Λ,M} =
k+1∑
j=1

ET{Λ′
j
,M+1}

+
k∑

j=1

ET{Λ′′
j
,M+1}

,

where the Young diagram Λ′j is obtained by adding a node to the outer corners (nj−1+1, λ(j)+
1)|j=1,...,k+1 of the diagram Λ and the diagram Λ′′j is obtained by removing a node from inner
corners (nj, λ(j))|j=1,...,k of Λ. As a result, we obtain

Tr
(M+1)

(
λ

yM+1

t− yM+1

(k+1∑
j=1

ET{Λ′
j
,M+1}

+
k∑

j=1

ET{Λ′′
j
,M+1}

))
=

=
((t− ν2)(t− q−1ν)(t+ qν)

(t− 1)(t− ν)(t+ ν)
·

M∏
r=1

(t− yr)
2(t− q−2ν2 y−1r )(t− q2ν2 y−1r )

(t− q−2yr)(t− q2yr)(t− ν2 y−1r )2
− c(t)

)
ET{Λ,M} ,

(4.5.18)
where c(t) := 1− λν3

(t2−ν2) . Now we note that, if a cell with content q2a was added on the step i
in the path T{Λ,M} and further this cell was removed on the step j > i (it means that yi = q2a

and yj = ν2q−2a), then the factors with r = i and r = j are canceled in the product in the
r.h.s. of (4.5.18). Thus, the only factors contribute in this product that correspond to adding
cells to form the diagram Λ . In this case, we can substitute the eigenvalues (4.3.81) of yr and
consider M as a number of cells in the diagram Λ ⊢M . After a cancelation of many factors in
the r.h.s. of (4.5.18) (see the derivation of (4.3.82)) we write (4.5.18) in the form

k+1∑
j=1

( λq2(λ(j)−nj−1)

t− q2(λ(j)−nj−1)

)
Tr

(M+1)
ET{Λ′

j
,M+1}

+
k∑

j=1

( λν2q2(nj−λ(j))

t− ν2q2(nj−λ(j))

)
Tr

(M+1)
ET{Λ′′

j
,M+1}

=

=
((t− ν2q2n)(t− q−1ν)(t+ qν)

(t− q−2n)(t− ν)(t+ ν)
·

k∏
r=1

(t− q2(λ(r)−nr))(t− ν2 q2(nr−1−λ(r)))

(t− q2(λ(r)−nr−1))(t− ν2 q2(nr−λ(r)))
− c(t)

)
ET{Λ,M} ,

(4.5.19)
where k is a number of blocks in the diagram Λ (4.5.10) and n0 = 0. In the l.h.s. of (4.5.19)
we take into account that yM+1 = q2(λ(j)−nj−1), if we add a new cell in the outer corner
(nj−1 + 1, λ(j) + 1)|j=1,...,k+1 of Λ, and yM+1 = ν2q2(nj−λ(j)), if we remove the cell in the in-
ner corner (nj, λ(j))|j=1,...,k of Λ. Now we compare the residues at t = q2(λ(j)−nj−1) =: µj and
t = ν2q2(nj−λ(j)) =: ν2µ̄j in both sides of Eq. (4.5.19) and deduce

Tr
D(M+1)

(
ET{Λ′

j
,M+1}

)
= ET{Λ,M}

1− (µjµ̄j)
−1

λ
f(µj, q, ν)

k∏
r ̸=j
r=1

µj − µ̄−1r

µj − µr

k∏
r=1

µj − ν2µ−1r

µj − ν2µ̄r

, (4.5.20)

Tr
D(M+1)

(
ET{Λ′′

j
,M+1}

)
= ET{Λ,M}

1− (µjµ̄j)
−1

λ
f(ν2µ̄j, q, ν)

k∏
r=1

ν2µ̄j − µ̄−1r

ν2µ̄j − µr

k∏
r ̸=j
r=1

µ̄j − µ−1r

µ̄j − µ̄r

, (4.5.21)

where f(t, q, ν) := (t−ν2q2n)(t−q−1ν)(t+qν)
(t−q−2n)(t−ν)(t+ν)

. We apply the Ocneanu’s (Markov) trace Tr
(1)

· · ·Tr
(M)

to both sides of Eq. (4.5.20) and find the recurrence relation:

qdim(Λ′j) = qdim(Λ)
(1− (µjµ̄j)

−1)

λ
f(µj, q, ν)

k∏
r ̸=j
r=1

µj − µ̄−1r

µj − µr

k∏
r=1

µj − ν2µ−1r

µj − ν2µ̄r

, (4.5.22)
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where the diagram Λ′j is obtained by adding one cell in the outer corner (nj−1 + 1, λ(j) + 1) of
the diagram Λ. Note that applying the Ocneanu’s (Markov) trace to both sides of the second
equation (4.5.21), we deduce the recurrence relation that is equivalent to the relation (4.5.22).
It was shown in [246] that the solution of the recurrence relation (4.5.22) is given (up to some
factor) by the Wenzl formula [229, 246]:

qdim(Λ) =
∏

(i,j)∈Λ

q
1
2
dΛ(i,j) − νq−

1
2
dΛ(i,j)

q
1
2
hi,j − q−

1
2
hi,j

∏
(i,j)∈Λ

ν−1q
1
2
d′Λ(i,j) + q−

1
2
d′Λ(i,j)

q
1
2
hi,j + q−

1
2
hi,j

, (4.5.23)

where hi,j = (λi + λ∨j − i − j + 1) is a hook length (here Λ∨ = [λ∨1 , λ
∨
2 , . . .] is the transpose

partition of the partition Λ) and

dΛ(i, j) =

{
fi,j if i ⩽ j
f∨i,j if i > j

, d′Λ(i, j) =

{
fi,j if i < j
f∨i,j if i ⩾ j

,

where fi,j = λi + λj − i− j + 1 and f∨i,j = −λ∨i − λ∨j + i+ j − 1.
Remark 1. In the R-matrix representation of the the BMWM(ν) algebras, the generators
σi are given by the SOq(N), Spq(2n) R-matrices (3.10.2) (by the R-matrices (3.11.52) in the
Ospq(N, 2m) case). For these representations the parameter ν is fixed (see (3.10.4) and Re-
mark 2 in Subsection 4.4.2) and we have ν = ϵqϵ−N , where ϵ = +1 and ϵ = −1 correspond to
SOq and Spq cases, respectively. In particular, the formula (4.5.23) is written, for the SOq(N)
R-matrix representation of BMWM , in more explicit form (cf. (4.3.92)):

qdim(Λ) =
k∏

i=1

[N+2(i−1)]q !
[λ∨

i +k−i]q ![N−λ∨
i +k−2+i]q !

·
∏
i<j

[λ∨i − λ∨j + j − i]q [N − λ∨i − λ∨j + i+ j − 2]q ,

(4.5.24)
where Λ∨ = [λ∨1 , λ

∨
2 , . . . , λ

∨
k ] ⊢M is the transpose partition of Λ and [h]q :=

qh−q−h

q−q−1 .
Remark 2. The analogs of the statements (4.3.79) and (4.3.95) for the Hecke algebras are
fairly easy to reformulate and prove for the case of the BMWM algebras.

5. Applications and conclusions

In the previous sections of the paper, we have presented the fundamentals of the theory of
quantum groups. We have also considered how to obtain trigonometric and rational (Yangian)
solutions of the Yang–Baxter equation on the basis of the theory of quantum Lie groups. Un-
fortunately, in the previous sections it was not possible for us to discuss in detail the numerous
applications of the theory of quantum groups and the Yang–Baxter equation in both theoret-
ical and mathematical physics. In this final section, we shall merely give a brief list of such
applications that, in the author’s opinion, have some interest.

Before we do this, we recall that in the physics of condensed matter, exactly solvable two-
dimensional models are used to describe various layered structures, contact surfaces in elec-
tronics, surfaces of superconducting liquids like He II, etc. Two-dimensional integrable field
theories are used to describe dynamical effects in one-dimensional spatial systems (such as
light tubes, nerve fibers, etc.). In addition, such field theories (and also integrable systems
on one-dimensional chains) can also arise on reductions of multidimensional field theories (see,
for example, [249]). Quite recently it has been argued that the one-loop dilatation operator
(anomalous dimension operator) of the N = 4 Super Yang–Mills theory may be identified,
in some restricted cases, with the Hamiltonians of various integrable quantum (super) spin
chains [250, 251]. Similar spin chain models (related to the noncompact Lie groups) have
previously appeared in the QCD context [252–255].
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5.1. Quantum periodic spin chains

We have already mentioned that the quantum inverse scattering method [7–9] (an intro-
duction to this method, including the algebraic Bethe ansatz method, that can be readily
understood by a wide range of readers, can be found in [256–258]) is designed as a constructive
procedure for solving quantum two-dimensional integrable systems. In addition, the quantum
inverse scattering method makes it possible to construct quantum integrable systems on one-
dimensional chains (see, for example, [103, 162] and [259]). Here we discuss the case of periodic
chains. The generalization to the case of open chains will be mentioned in the next Subsec-
tion 5.2. The initial point is the relation (3.9.13) for the L-operators, which can be written in
the form27

R12(θ − θ′)LK2(θ)LK1(θ
′) = LK1(θ

′)LK2(θ)R12(θ − θ′). (5.1.1)

Here LKi(θ) are the N×N matrices in the auxiliary vector space Vi, with the matrix coefficients
that are the operators in the space of states of the Kth site of a chain consisting of M sites:

LKi(θ) = I⊗̂(K−1)⊗̂Li(θ)⊗̂I⊗̂(M−K) → [LKi, LK′i′ ] = 0 (K ̸= K ′). (5.1.2)

In (5.1.2), the symbol ⊗̂ denotes a direct product of operator spaces.
To construct an integrable system, we introduce the monodromy matrix

Ti(θ) = D
(1)
i L1i(θ)D

(2)
i L2i . . . D

(M)
i LMi(θ). (5.1.3)

If the matrices D(K) (1 ⩽ K ⩽M) satisfy the relations

Rij(θ)D
(K)
j D

(K)
i = D

(K)
j D

(K)
i Rij(θ), (5.1.4)

[D
(K)
i , D

(J)
j ] = [D

(J)
i , LKj] = 0,

then it follows from (5.1.1) that

Rij(θ − θ′)Tj(θ)Ti(θ
′) = Ti(θ

′)Tj(θ)Rij(θ − θ′). (5.1.5)

The trace of the monodromy matrix (5.1.3) over the auxiliary space i forms the transfer
matrix

t(θ) = Tr(i) (Ti(θ)) (5.1.6)

which gives a commuting family of operators: [t(θ), t(θ′)] = 0. The commutativity of the
transfer matrices follows directly from Eq. (5.1.5) if we multiply it by the matrix (Rij(θ−θ′))−1
from the right and take the trace Tr(i,j) (. . . ). Using the family of commuting operators t(θ)
a certain local operator H can be constructed, which is interpreted as the Hamiltonian of the
system. The locality of the Hamiltonian is a natural physical requirement and means that H
describes the interaction of only nearest-neighbor sites of the chain. The remaining operators
in the commuting set t(θ) give an infinite set of integrals of motion indicating the integrability
of the constructed system. In many well-known cases, the commuting set is associated with

27Usually, this equation is written in the form in which the matrix R12(θ) is substituted by R21(θ). This is not
important, since R21(θ) = R−1

12 (−θ) satisfies, up to the change of spectral parameters, the same Yang–Baxter
equation (3.9.12) as R12(θ) and all formulas below can be easily adapted to the standard case.
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the coefficients in the expansions of t(θ) over the spectral parameter θ. For example, one can
consider logarithmic derivatives of the transfer matrix:

In =
dn

dθn
ln
(
t(θ) t(0)−1

)
|θ=0 (5.1.7)

and identify the local Hamiltonian with the first logarithmic derivative of the transfer matrix:

H ≡ I1 =
d

dθ
ln
(
t(θ) t(0)−1

)
|θ=0, (5.1.8)

where the matrix t(0)−1 is introduced in order to obtain the local charges In [260].
Now we consider explicit examples of integrable periodic spin chains. It is clear that from the

Yang–Baxter equation (3.9.12) there always follow representations for the L-operators (5.1.1)
in the form of R-matrices:

ρVk
(LKi(θ)) = Rki(θ), ρVk

(LKi(θ)) = (Rik(θ))
−1. (5.1.9)

In this case, the representations of LKi(θ) act nontrivially in the space Vk ⊗ Vi. We choose for
L-operators the first representation in (5.1.9) and obtain for Ti(θ) (5.1.3):

Ti(θ) = D
(1)
i R1i(θ)D

(2)
i R2i(θ) . . . D

(M)
i RMi(θ) =

= R̂′i1(θ) R̂
′
12(θ) R̂

′
23(θ) . . . R̂

′
M−1M(θ)PM−1M . . . P23P12P1i,

where Pij are the permutation matrices and R̂′ij(θ) = D
(j)
i R̂ij(θ). Taking the trace Tr(i), we

deduce

t(θ) = Tr(i)

(
R̂′i1(θ) R̂

′
12(θ) R̂

′
23(θ) . . . R̂

′
M−1M(θ)PMi

)
PM−1M . . . P23P12. (5.1.10)

We consider a rather general case of R-matrices which can be normalized so that (see, e.g.,
(3.9.14), (3.9.16), (3.12.21), (3.12.23))

R̂ij(θ) = I + θ hij + θ2 . . . . (5.1.11)

These R-matrices are called regular [154]. For the regular R-matrices, using (5.1.10), we obtain

t(θ) t(0)−1 = I + θ

(
M∑
k=1

h′k k+1

)
+ θ2 . . . , h′k k+1 := D

(k+1)
k hk k+1

(
D

(k+1)
k

)−1
,

where D(M+1)
M := D

(1)
M , hM M+1 := hM 1 and the local Hamiltonian (5.1.8) is

H =
M∑
k=1

h′k k+1. (5.1.12)

If we choose the R-matrix in (5.1.10) in the form of the trigonometric solution (3.12.21), then
we obtain

hj j+1 =
1

2

(
R̂j j+1 + R̂−1j j+1 − λβ±Kj j+1

)
, (5.1.13)

167



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

where β± = α±−1
α±+1

, α± = ±q±1 ν−1 and the parameter ν is fixed for different quantum (su-
per)groups in (3.12.12). We note that the Hamiltonians (5.1.12) with the densities (5.1.13)
(and D(k) = 1) are the R-matrix images of the operators:

H± =
1

2

M∑
j=1

(
σj + σ−1j + λ

ν ∓ q±1

ν ± q±1
κj

)
,

where σi, κi (i = 1, . . . ,M) obey (4.1.1), (4.4.1)–(4.4.3) with periodic identifications: σM+i = σi,
κM+i = κi. It is natural to call the algebra with such generators as the periodic Birman–
Murakami–Wenzl algebra. The case κi = 0 corresponds to the periodic system with the Hamil-
tonian:

H =
M∑
j=1

σj −
λM

2
, (5.1.14)

where σi are the generators of the periodic A-type Hecke algebra AHM+1 (see Subsection 4.2).
In the R-matrix representation: σi → R̂i, σM → R̂M 1, where R̂ is the GLq(2) matrix (3.4.8),
this Hamiltonian describes the periodic XXZ Heisenberg model.

For the Yangian R-matrices (3.12.23) we obtain SO(N) (ϵ = +1) and Sp(N) (N = 2n, ϵ =
−1) invariant spin chain models with local Hamiltonian densities (see, e.g., [103]):

hl l+1 =

(
Pl l+1 +

2

2ϵ−N
K

(0)
l l+1

)
,

where, as usual, Pl l+1 are the transposition matrices, the matricesK(0)
l l+1 were defined in (3.10.9),

and for closed chains we imply OM M+1 = OM 1. The Osp(N |2m) invariant spin chain model
corresponds to the densities hl,l+1 =

(
Pl l+1 +

2
2+2m−N K(0)

l l+1

)
which are deduced from (3.12.24).

These Yangian models are generalizations of theXXX Heisenberg models of magnets. We recall
that the XXX model can be obtained if we take the special limit q → 1 in the XXZ model
or choose the gl(2) Yangian R-matrix (3.9.16) as a representation of L-operators in (5.1.9).

By using (in formulas (5.1.9) and (5.1.10)) the elliptic solution (3.15.3), (3.15.8) of the
Yang–Baxter equation, we recover for N = 2 the XY Z spin chain model [3, 191], while for
N > 2 we obtain its integrable generalizations.

At the end of this subsection, we stress that using the transfer matrix (5.1.6), one can
construct an integrable 2-dimensional statistical model on the (M × L) lattice with periodic
boundary conditions. Namely, one should consider the partition function

Z = Tr(1...M)( t(θ0) · · · t(θ0)︸ ︷︷ ︸
L

) = Tr(1...M)

(
L∏
i=1

Tr(i)(D
(1)
i L1i(θ0) . . . D

(M)
i LMi(θ0))

)
,

where the combination D
(K)
i LKi(θ0) (for a special value of the spectral parameter θ = θ0)

defines the weight of the statistical system in the site (K, i) and Tr(1...M) are the traces over the
operator spaces.

5.2. Factorizable scattering: S-matrix and boundary K-matrix

The Yang–Baxter equation (3.9.11):

S23(θ − θ′)S13(θ)S12(θ
′) = S12(θ

′)S13(θ)S23(θ − θ′) (5.2.1)

168



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

together with the subsidiary relations of unitarity and crossing symmetry

S12(θ)S21(−θ) = I12, S12(θ) = (S21(iπ − θ))t1 (5.2.2)

uniquely determine factorizable S-matrices (with a minimal set of poles) describing the scatter-
ing of particle-like excitations in (1+1)-dimensional integrable relativistic models [4, 5]. Equa-
tions (5.2.2) guarantee that the S-matrix S12(θ) is invertible and skew-invertible (see (3.1.17)).
The matrix Si1i2

j1j2
(θ) is interpreted as the S-matrix for the scattering of two neutral particles

with isotopic spins i1 and i2 to two particles with spins j1 and j2, and the spectral parameter
θ is none other than the difference of the rapidities of these particles. For charged particles,
the crossing symmetry relation (5.2.2) should be written in the form S12(θ) = (S21(iπ − θ))t1 ,
where the S-matrix S21 = Si2 ī1

k2k̄1
describes particle–antiparticle scattering. The many-particle

S-matrices decompose into products of two-particle matrices (factorization). In this sense, the
Yang–Baxter equation (5.2.1) is the condition for the uniqueness of the determination of the
many-particle S-matrices.

The reflection equation [261–266], which depends on the spectral parameters,

S12(θ − θ′)K1(θ)S21(θ + θ′)K2(θ
′) = K2(θ

′)S12(θ + θ′)K1(θ)S21(θ − θ′) (5.2.3)

determines, together with the unitarity condition

Ki
j(θ)K

j
m(−θ) = δim (5.2.4)

and relations (5.2.1) and (5.2.2), the factorizable scattering of particles (solitons) on a half-line
(see, e.g., [261, 262, 267, 268]). In this case, the operator matrix Ki

j(θ) describes reflection of a
particle with rapidity θ at a boundary point of the half-line. Graphically, relation (5.2.3) can
be represented in the form

B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�

N

K1

1

θ′θ

θ - θ′

θ + θ′

HHH
HHH

HHHj

���
���

���

K2

2

= B
B
B
B
B
B
B
B

�
�
�
�
�
�
�
�

N

K1

1

θ′ θ

θ - θ′

θ + θ′

HHH
HHH

HHHHj

���
���

��

K2

2

We recall [262] that factorizable scattering on a half-line can be described by a Zamolod-
chikov algebra with generators {Ai(θ)} (i = 1, . . . , N) and boundary operator B that satisfy
the defining relations

Ai(θ)Aj(θ′) = Sij
kl(θ − θ′)Al(θ′)Ak(θ), Ai(θ)B = Ki

j(θ)A
j(−θ)B ⇒

A1⟩(θ)A2⟩(θ
′) = S12(θ − θ′)A2⟩(θ

′)A1⟩(θ), A1⟩(θ)B = K1(θ)A1⟩(−θ)B.
(5.2.5)

The consistence conditions for this algebra give rise to the Yang–Baxter equation (5.2.1),
the unitarity conditions (5.2.2), (5.2.4) and the reflection equation (5.2.3) for the matrices S
and K.

The reflection equation (5.2.3) can be used [263–266, 269–271] for construction of quantum
group invariant integrable spin systems (see, e.g., [12]) on the chains with nonperiodic boundary
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conditions. Indeed, let T (θ) be a solution of (5.1.5) (for Rij(θ) ≡ Sji(θ)) and K(θ) satisfies
(5.2.3). Then the matrix

T (θ) = T (θ)K(θ) [T (−θ)]−1 (5.2.6)

is also a solution of (5.2.3). It can be checked directly, but it also follows from the symmetry
transformation

A(θ) → [T (θ)]−1A(θ), B → B,

for the algebra (5.2.5) (relations (5.2.5) are obviously invariant under this transformation if we
simultaneously substitute K(θ) → T (θ)K(θ)[T (−θ)]−1).

The matrix T (θ) (5.2.6) is called the Sklyanin monodromy matrix. By means of this matrix
one can construct a partition function for the integrable lattice model with nontrivial boundary
conditions defined by the reflection matrix K(θ). The set of commuting integrals (including
the Hamiltonian of the model) is given by the transfer matrix t(θ) which is constructed as a
special trace of T (θ):

t(θ) = Tr
(
T (θ)K(θ)

)
= Tr

(
T (θ)K(θ) [T (−θ)]−1K(θ)

)
, (5.2.7)

where the matrix K(θ) is any solution of the conjugated reflection equation [263–266, 269–271]:

St
12(θ − θ′)K

t

2(θ
′)Ψt

12(θ + θ′)K
t

1(θ) = K
t

1(θ)Ψ
t
21(θ + θ′)K

t

2(θ
′)St

21(θ − θ′). (5.2.8)

Here we require that K(θ) has commutative entries: [K
i

j(θ), K
m

n (θ
′)] = 0,

[K
i

j(θ), K
m
n (θ′)] = 0 = [K

i

j(θ), T
m
n (θ′)] ⇒ [K

i

j(θ), T m
n (θ′)] = 0.

In (5.2.8), we have used the notation St
12 := St1t2

12 , and the matrix Ψ12 is the skew-inverse matrix
for S12 (cf. (3.1.17)):

Ψt1
12(θ)S

t1
12(θ) = I12 = St1

12(θ)Ψ
t1
12(θ), Ψ12(θ) = (St1

12(θ)
−1)t1 . (5.2.9)

We also assume (see, e.g., [262]) that the matrix S12(θ) satisfies the cross-unitarity condition
(cf. (3.8.9), (3.12.20))

St1
12(θ)

(
D−11 S21(b− θ)D1

)t1 = η(θ, b)I12, (5.2.10)

where η(θ, b) is the scalar function, b is the special parameter which depends on the form of
the matrix S12, and D is the constant matrix such that: [D1D2, S12(θ)] = 0. Comparing
Eqs. (5.2.9) and (5.2.10), one can identify

Ψ12(θ) =
1

η(θ, b)
D−11 S21(b− θ)D1,

and then rewrite the conjugated reflection equation (5.2.8) in the form

St
12(θ − θ′) K̃t

2(θ
′)St

21(b− θ − θ′) K̃t
1(θ) = K̃t

1(θ)S
t
12(b− θ − θ′) K̃t

2(θ
′)St

21(θ − θ′), (5.2.11)

where K̃(θ) = D−1K(θ). Note that Eq. (5.2.11) is also one of the consistence conditions but
for the “left-boundary” Zamolodchikov algebra (cf. (5.2.5)):

B̃ Ã1⟩(θ) = B̃ K̃1(θ) Ã1⟩(b− θ), Ã1⟩(θ) Ã2⟩(θ
′) = S21(θ − θ′)Ã2⟩(θ

′)Ã1⟩(θ), (5.2.12)
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with generators Ãi (i = 1, . . . , N) and left boundary operator B̃ (we need to consider the
condition for the unique reordering of the third-order monomial B̃ Ã1⟩(θ) Ã2⟩(θ

′)).
The proof of the identity [t(θ), t(θ′)] = 0 for the transfer matrix t(θ) (5.2.7) is straightfor-

ward [263] (θ± = θ ± θ′):

t(θ′) t(θ) = Tr12

(
T2(θ

′) T t
1 (θ)K2(θ

′)K
t

1(θ)
)
=

= Tr12

(
T2(θ

′) T t
1 (θ)S

t1
12(θ

+)Ψt1
12(θ

+)K2(θ
′)K

t

1(θ)
)
=

= Tr12

((
T2(θ

′)S12(θ
+) T1(θ)

)t1 (Kt

2(θ
′)Ψt

12(θ
+)K

t

1(θ)
)t2)

=

using Eq. (5.2.3) for K(θ) → T (θ), we deduce

= Tr12

(
T1(θ)S21(θ

+) T2(θ
′)S−121 (θ

−)
(
K

t

2(θ
′)Ψt

12(θ
+)K

t

1(θ)
)t
S12(θ

−)

)
=

and applying here the conjugated reflection equation (5.2.8) and transpositions, we finally
obtain

= Tr12

((
T1(θ)S21(θ

+) T2(θ
′)
)t2 (Kt

1(θ)Ψ
t
21(θ

+)K
t

2(θ
′)
)t1)

=

= Tr12

(
T1(θ) T t

2 (θ
′)St2

21(θ
+)Ψt2

21(θ
+)K1(θ)K

t

2(θ
′)
)
= t(θ) t(θ′).

Now we take in (5.2.3) the limit θ, θ′ → ±∞ in such a way that θ − θ′ → ±∞, and at the
same time we set

K(θ)|θ→∞ = L, S12(θ)|θ→∞ = R12.

K(θ)|θ→−∞ = L−1, S12(θ)|θ→−∞ = (R21)
−1.

Then (5.2.3) goes over into (3.2.31), and this is the reason why all algebras with defining
relations of type (3.2.31) are called the reflection equation algebras [264–266].

Note that each solution of the Yang–Baxter equation (5.2.1) with the conditions (5.2.2)
determines an equivalence class of quantum integrable systems with the given factorizable S-
matrix. Thus, each classification of solutions to the Yang–Baxter equation is, to some extent,
a classification of integrable systems with the properties indicated above.

The 3D analog of the Yang–Baxter (triangle) equation (3.9.15), (5.2.1) is called the tetrahe-
dron equation [272, 273] (see also [289]) and defines the consistence condition for 3D factorizable
scattering of strings. The 3-dimensional model of such factorizable scattering was first proposed
by A. Zamolodchikov in [272, 273]. Then this 3D model was generalized in [274–277]. New so-
lutions of the tetrahedron equation were also considered in [278]. A 3-dimensional version of
the 2D reflection equation (5.2.3) (the tetrahedron reflection equation) was proposed in [279].
Combinatorial and algebraic aspects of the 3D reflection equation were considered in [280, 281].
Special solutions of the tetrahedron reflection equation were found in [282].

From a mathematical point of view, higher dimensional generalizations of the Yang–Baxter
equations are related to the Manin–Schechtman higher braid groups [283–285], n-categories [286–
288], and also appeared in the theory of quasitriangular Hopf algebras (see Remark 4 at the
end of Subsection 2.5).

171



A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

5.3. Yang–Baxter equations and calculations of multiloop Feynman diagrams

We mention the application of the Yang–Baxter equation in multiloop calculations in quan-
tum field theory. There is a form of the Yang–Baxter equation (see [1, 290] and [289]) that can
also be represented in the form of the triangle equation (3.9.15), but the indices x, xi, yi are
ascribed not to the “lines” but to the “faces”:

y1

x3

y2

x2θ

y3θ′x

?

Q
Q
Q
Q
Q
Q
Q

QQs

x1

�
�
�
�
�
�
�

��3

=

?

Q
Q
Q

Q
Q
Q

QQs

�
�
�

�
�
�

��3

xθ′x3 y3

x2

x1

θ

y1

y2

(5.3.1)

where θ, θ′ are angles (spectral parameters), summation is over the index x, and

Rxy
uz(θ) =

y

zx

u

θ

�
�
���

@
@

@@I

The analytical form of (5.3.1) is∑
x

Rx1 x
y2 x3

(θ − θ′)Rxx2
x3 y1

(θ)Rx1y3
xx2

(θ′) =
∑
x

Ry2 x
x3 y1

(θ′)Rx1 y3
y2 x

(θ)Ry3 x2
x y1

(θ − θ′). (5.3.2)

We have already considered the solution of this equation in Subsection 3.13. Indeed, one can
show that Eq. (3.15.10) is equivalent to Eq. (5.3.2) if we put (for the notation see Subsec-
tion 3.13):

Rx1 x
x2 x3

(θ) = ω
1
2
<x−x2, x1+x3>+<x2,x>Wx+x2−x1−x3(θ), (5.3.3)

where the indices x, xi are 2-dimensional vectors, e.g., x = (α1, α2) ∈ Z2
N . Thus, (5.3.3),

(3.15.8), and (3.15.9) solve the face-type Yang–Baxter equation (5.3.2).
There is a transformation from the vertex-type Yang–Baxter equation (3.9.12) to the face-

type (5.3.2) using intertwining vectors ψx1x2
i (see, e.g., [266] and references therein), where i is

a vertex index, while x1, x2 are face indices. The vectors ψx1x2
i satisfy the intertwining relations

ψx2x1

⟨2 (θ − θ′)ψx3x2

⟨1 (θ)R12(θ
′) =

∑
x

Rx1 x
x2x3

(θ′)ψxx1

⟨1 (θ)ψx3x
⟨2 (θ − θ′) (5.3.4)

which are represented graphically in the form (here the angles are the same as in (5.3.1)):

x3

x2

x1

2
??

Q
Q
Q
Q
QQs

1

�
�
�
�
��3 =

??

Q
Q
Q
Q

QQs
�
�
�
�

��3

xx2

2

1

x3

x1

, ψx1x2
i (θ) :=

i
θ

x1 x2

?

��

Then the face-type Yang–Baxter equation (5.3.2) is obtained from the vertex equation (3.9.12)
if we act on it by (ψy2x1

⟨3 ψx3y2
⟨2 ψy1x3

⟨1 ) from the left.
Relations (5.3.1) and (5.3.2), like (3.9.15), give the conditions of integrability of two-

dimensional lattice statistical systems (interaction-round face models) with weights determined
by the R-matrices Rxy

uz(θ). In this case, the transfer matrix has the form

ty1y2...yMx1x2...xM
(θ) = Ry1y2

x1x2
(θ)Ry2y3

x2x3
(θ)Ry3y4

x3x4
(θ) . . . RyMy1

xMx1
(θ),
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and its graphical representation is

-

y1 y2 y3

x1 x2 x3

6 6 6 6 6

. . .

. . .

xM

yM�
�

�
��

θ θ θ θ θ

while the partition function for the periodic system on the (M × K) lattice is given by the
standard formula: Z = Tr1...M(t(θ))K .

We now note that the Yang–Baxter equation (5.3.1), (5.3.2) has a solution in the form
Rxy

uz(θ) = Gy
u(θ) Ḡ

x
z(π − θ), where the matrices Gy

u, Ḡx
z = Ḡz

x satisfy the star-triangle relation
(see, for example, [1] and [290]):

f(θ, θ′)Ḡx1
x3
(π − θ + θ′)Gx2

x3
(θ) Ḡx1

x2
(π − θ′) =

∑
x

Gx
x3
(θ′) Ḡx1

x (π − θ)Gx2
x (θ − θ′), (5.3.5)

and f(., .) is an arbitrary function such that f(θ, θ′) = f(θ, θ − θ′). The relations (5.3.5) for
f = 1 can be represented graphically in the form:

x3
π-θ′

π- θ+θ′

x2
θ

?

�
�����

Q
Q
Q
Q
Q
Q
Q
QQs

��
��
�

��
x1

�
�
�
�
�
�
�
��3��

��
�
��

�
�� �

��
�
��
����

=

?

�
��

�
��

�
��

�
��

�
����

Q
Q
Q

Q
Q
Q

QQs
�

���
���

���
���
���
��

�
�

�
�

�
�

��3

�
�

��
�

�
��

�
�

�
��

�
�

�
��

xx3 θ′

x2

θ-θ′

π-θ

x1

The Feynman diagrams, which will be considered here, are graphs with vertices connected
by lines labeled by numbers (indices). With each vertex we associate the point in the D-
dimensional space RD, while the lines of the graph (with index α) are associated with the
massless Feynman propagator

αx x′ = Γ(α)
(x−x′)2α

(which is a function of two points x, x′ in D-dimensional space–time):

GD(x− x′|α) = Γ(α)

(x− x′)2α
=

Γ(α)

(
∑

µ(x− x′)µ(x− x′)µ)α
, (5.3.6)

where Γ(α) is the Euler gamma-function, D = 4 − 2ϵ is the dimension of space–time, (x)µ
(µ = 1, 2, . . . , D) are its coordinates, α = D/2 − 1 + η, and ϵ and η are, respectively, the
parameters of the dimensional and analytic regularizations. The boldface vertices • denote
that the corresponding points x are integrated over RD: 1

πD/2

∫
dDx. These diagrams are called

the Feynman diagrams in the configuration space.
The propagator (5.3.6) satisfies the relation

∫
dDx
πD/2

3∏
i=1

GD(x− xi|αi)
∑

αi=D
= GD(x1 − x2|α′3)GD(x2 − x3|α′1)GD(x3 − x1|α′2), (5.3.7)

which is represented as the star-triangle identity for the Feynman diagrams:
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x2

x1 x3
�
�
�
�
��

α′
3

α′
2

α′
1

A
A
A

A
AA

=

��
��H

HHH

• α3α1

α2

x

x2

x1 x3

where α1 +α2 +α3 = D and α′i := D/2−αi. Equation (5.3.7) can be readily derived if we put
(x3)

µ = 0 ∀µ and make in the right-hand side of (5.3.7) a simultaneous inversion transformation
of the variables of integration, (x)µ → (x)µ/x

2 and the coordinates (x1,2)
µ. Relations (5.3.5)

and (5.3.7) are equivalent if we set

Gx
x′(θ) = Ḡx

x′(θ) = GD(x− x′|D
2
(1− θ

π
)), f(θ, θ′) = 1,

∑
x

=

∫
dDx

πD/2
. (5.3.8)

Thus, the analytically and dimensionally regularized massless propagator (5.3.6) satisfies the
infinite-dimensional star-triangle relation (5.3.5) and accordingly, on the basis of (5.3.6) and
(5.3.8), we can construct solutions of the Yang–Baxter equation (5.3.1), (5.3.2). This remark
was made in [290], in which calculations were carried out of vacuum diagrams with an infinite
number (in the thermodynamical limit) of vertices corresponding to a planar square lattice (ϕ4

theory, D = 4), a planar triangular lattice (ϕ6 theory, D = 3), and a honeycomb lattice (ϕ3

theory, D = 6). The star-triangle relation (5.3.7) (known also as the uniqueness relation) was
used in addition for analytic calculation of the diagrams that contribute to the 5-loop β-function
of the ϕ4

D=4 theory [291] and of massless ladder diagrams [292–294, 297]. By means of identity
(5.3.7) the symmetry groups of dimensionally and analytically regularized massless diagrams
were investigated [295, 297], [302]28. We emphasize that an extremely interesting problem is that
of massive deformation of the propagator function (5.3.6) and the corresponding deformation
of the star-triangle relation (5.3.7).

There is an elegant operator interpretation [297, 298] of the star-triangle identity (5.3.7).
Indeed, consider the D-dimensional Heisenberg algebra HD as the algebra of functions of the
generators q̂µ = q̂†µ and p̂µ = p̂†µ (µ = 1, . . . , D) subject to the defining relations

[q̂µ, p̂ν ] = i δµν , (µ, ν = 1, 2, . . . , D), (5.3.9)

where q̂µ and p̂µ are the operators of the coordinate and momentum, respectively. Consider a
representation of the algebra (5.3.9) in the linear vector space of complex functions ψ(x) :=
ψ(xµ) on RD:

q̂µ ψ(x) = xµ ψ(x), p̂µ ψ(x) = −i ∂µ ψ(x).

It is convenient to realize the action of elements Â ∈ HD as the action of integral operators:
Â ψ(x) =

∫
dDy ⟨x|Â|y⟩ψ(y). The integral kernels ⟨x|Â|y⟩ can be considered as matrix elements

of Â for the states |x⟩ := |{xµ}⟩ and ⟨y| = |y⟩† such that

⟨y|x⟩ = δD(y − x), q̂µ|x⟩ = xµ |x⟩,
∫
dDx |x⟩ ⟨x| = 1̂. (5.3.10)

We extend the algebra HD by the elements q̂2α := (q̂µq̂µ)
α and pseudo-differential operators

p̂−2β := (p̂µp̂µ)
−β (∀α, β ∈ C). The corresponding integral kernels are

⟨x|q̂2α|y⟩ = x2α δD(x− y), ⟨x| 1

p̂2β
|y⟩ = a(β)

1

(x− y)2β′ , (5.3.11)

28Here the symmetry of diagrams means the symmetry of the corresponding perturbative integrals.
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where a(β) = Γ(β′)

πD/2 22β Γ(β)
, β′ = D/2− β and β′ ̸= 0,−1,−2, . . . .

For the extended Heisenberg algebra one can prove [297, 298] that the operators Hα :=
p̂2α q̂2α (∀α ∈ C) form a commutative family. The commutativity condition [Hα, H−β] = 0 is
represented in the form

p̂2αq̂2γ p̂2β = q̂2β p̂2γ q̂2α, (γ = α + β). (5.3.12)

Then it is not hard to see that this identity, written for integral kernels by means of (5.3.11), is
equivalent to the star-triangle relation (5.3.7). One should act on (5.3.12) by vectors ⟨x1 − x3|
and |x2 − x3⟩ from the left and right, respectively, and insert, in the l.h.s. of (5.3.12), the unit
1̂ (5.3.10):

⟨x1 − x3|p̂2α
(∫

dDx |x⟩ ⟨x|
)
q̂2γ p̂2β|x2 − x3⟩ = ⟨x1 − x3|q̂2β p̂2γ q̂2α|x2 − x3⟩ ⇒∫

dDx ⟨x1 − x3|p̂2α|x⟩x2γ ⟨x|p̂2β|x2 − x3⟩ = (x1 − x3)
2β⟨x1 − x3|p̂2γ|x2 − x3⟩(x2 − x3)

2α.

Applying here the second equation in (5.3.11), we obtain (5.3.7) for α = −α′1, β = −α′2 and
γ = −α3.

Consider the set of Heisenberg algebras HD with the generators {q̂µ(a), p̂ν(b)} (a, b = 1, 2, . . . , N)

such that: [q̂µ(a), p̂
ν
(b)] = i δµν δab. Then the star-triangle identity (5.3.12) is obviously generalized

as
(q̂(ab))

2α(p̂(b))
2(α+β)(q̂(ab))

2β = (p̂(b))
2β(q̂(ab))

2(α+β)(p̂(b))
2α, (5.3.13)

where q̂µ(ab) = q̂µ(a) − q̂µ(b). Taking into account (5.3.13), one can directly check that for an
arbitrary parameter ξ the operator

Rab(α; ξ) := (q̂(ab))
2(α+ξ)(p̂(a))

2α(p̂(b))
2α(q̂(ab))

2(α−ξ) = 1 + αh(ab)(ξ) + α2 . . . (5.3.14)

is a regular (see (5.1.11)) solution of the Yang–Baxter equation:

Rab(α; ξ)Rbc(α + β; ξ)Rab(β; ξ) = Rbc(β; ξ)Rab(α + β; ξ)Rbc(α; ξ). (5.3.15)

The solution (5.3.14) for arbitrary D and ξ = 1 was found in [298] and for any ξ in [299]. The
factorized form of the solution (5.3.14) (for D = 1) reminds the factorization of R-matrices
observed in [300, 301].

Using the standard procedure (see Eqs. (5.1.11), (5.1.12)), one can construct an integrable
system with a Hamiltonian that is related to the R-matrix (5.3.14):

H(ξ) =
N−1∑
a=1

h(a,a+1)(ξ), (5.3.16)

where the Hamiltonian densities h(ab)(x) are derived from (5.3.14)

h(ab)(ξ) = 2 ln(q̂(ab))
2 + (q̂(ab))

2ξ ln(p̂ 2
(a) p̂

2
(b)) (q̂(ab))

−2ξ =

= p̂−2ξ(a) ln(q̂(ab))
2 p̂ 2ξ

(a) + p̂−2ξ(b) ln(q̂(ab))
2 p̂ 2ξ

(b) + ln(p̂ 2
(a) p̂

2
(b)).

(5.3.17)

For D = 1 and ξ = 1/2 the Hamiltonian (5.3.16) reproduces the Hamiltonian for the Lipatov
integrable model [252, 253].

A remarkable fact is that for the algebra with the generators {q̂µ(a), p̂ν(b)} one can define a
trace. In particular, we need to define correctly the D-dimensional integral:∫

d
D

x ⟨x|q̂2α1 p̂2β1 q̂2α2 p̂2β2 . . . q̂2αn p̂2βn|x⟩ = c(αi, βj)

∫
d

D
x

x2γ
≡ Tr(q̂2α1 p̂2β1 . . . q̂2αn p̂2βn), (5.3.18)
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where γ = D/2+
∑

i(βi−αi) and c(αi, βj) is the coefficient function. Recall that the dimension
regularization scheme requires the identity [303]:∫

d
D
x

x2(D/2+α)
= 0 ∀α ̸= 0, (5.3.19)

and the integral (5.3.18) looks meaningless. However, we can extend the definition for (5.3.19)
at the point α = 0 and, thus, define the formal expression (5.3.18). The definition is [295]:∫

d
D
x

x2(D/2+α)
= πΩ

D
δ(|α|), (5.3.20)

where Ω
D
= 2π

D/2

Γ(D/2)
is the area of the unit hypersphere in RD, α = |α|ei arg(α) and δ(.) is the one-

dimensional delta-function. The cyclic property Tr(AB) = Tr(BA) for the trace (5.3.18) can
be checked directly. The trace operation (5.3.18) permits one to reduce [295] the evaluation of
propagator-type perturbative integrals (and searching for their symmetries) to the evaluation
of vacuum perturbative integrals. Further, breaking any of the propagators in the vacuum
diagram, one can obtain many remarkable nontrivial relations between the propagator-type
D-dimensional integrals. Sometimes these relations are called “glue-and-cut” symmetry (for
details see [295, 296])).

One can deduce another star-triangle relation [304] (xi ∈ RD):(
2ᾱ1ᾱ3

α2

)D/2

W (x3 − x1|α1)W (x1 − x2|α2)W (x2 − x3|α3) =

=

∫
dDx

πD/2
W (x1 − x|ᾱ3)W (x3 − x|ᾱ2)W (x2 − x|ᾱ1), (5.3.21)

where W (x|α) = exp (−x2/(2α)) and the map

ᾱi =
α1α2α3

(α1 + α2 + α3)

1

αi

, αi =
ᾱ1ᾱ3 + ᾱ2ᾱ3 + ᾱ1ᾱ2

ᾱi

, (5.3.22)

is the well known star-triangle transformation for resistances in electric networks. The identity
(5.3.21) is related to the local Yang–Baxter equation [305] and is also rewritten in the operator
form [304]

W (q̂ |α1)W (p̂ |α−12 )W (q̂ |α3) = W (p̂ | ᾱ−13 )W (q̂ | ᾱ2)W (p̂ | ᾱ−11 ). (5.3.23)

To obtain (5.3.21) from (5.3.23), we have used the representations

⟨x|e
1
α
q̂2|y⟩ = e

1
α
(x)2 δD(x− y), ⟨x|e−

1
2
αp̂2|y⟩ = (2πα)−D/2 e−

1
2α

(x−y)2 .

It is tempting to apply identities (5.3.21)–(5.3.23) for investigation of symmetries and analyt-
ical calculations of massive perturbative multiloop integrals written in the α-representation.
Besides, we hope that the local star-triangle relations (5.3.21), (5.3.23) will help in construct-
ing a massive deformation of the star-triangle relations (5.3.7), (5.3.12). The generalizations
of the star-triangle relations (5.3.7), (5.3.12) for spinorial and tensor particles were considered
in [297, 306–308].
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Remark 1. It is also necessary to note the possible applications of the above methods to
the calculations of planar multiloop Feynman integrals arising in the fishnet conformal field
theories [309] (in particular, see [310–316] and references therein).

Remark 2. Note that we have not considered at all the numerous applications of quantum
Lie groups and algebras with deformation parameters q satisfying the conditions qN = 1, i.e.,
when the parameters q are equal to the roots of unity. These applications (see, for exam-
ple, [317–326] and references therein) appear mostly in the context of the topological and 2D
conformal field theories and are associated with the specific theory of representations of such
quantum groups that, generally speaking, can no longer be regarded as the deformation of the
classical Lie groups and algebras.
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[180] P. Cvitanović, Birdtracks, Lie’s, and Exceptional Groups, Princeton; Oxford: Princeton Univer-

sity Press, 2008. http://cns.physics.gatech.edu/grouptheory/chapters/draft.pdf.
[181] M. Jimbo and T. Miwa, q-KZ equation with |q| = 1 and correlation functions of the XXZ model

in the gapless regime, J. Phys. A 29 (1996) 2923. hep-th/9601135.
[182] H. E. Boos, V. E. Korepin, F. A. Smirnov, Connecting lattice and relativistic models via confor-

mal field theory, Progress in Mathematics, Vol. 237, “Infinite Dimensional Algebras and Quantum
Integrable Systems”, 2005, p. 157. math-ph/0311020.

[183] H. E. Boos, V. E. Korepin, F. A. Smirnov, New formulae for solutions of quantum Knizhnik–
Zamolodchikov equations on level-4, J. Phys. A 37 (2004) 323. hep-th/0304077.

[184] I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equa-
tions, Comm. Math. Phys. 146 (1992) 1.

[185] V. Tarasov and A. Varchenko, Geometry of q-hypergeometric functions as a bridge between
Yangians and quantum affine algebras, Invent. Math. 128 (1997) 501. q-alg/9604011.

[186] F. A. Smirnov, Dynamical symmetries of massive integrable models, 1. Form-factor bootstrap
equations as a special case of deformed Knizhnik–Zamolodchikov equations, Int. J. Mod. Phys.
A 7 (1992) S813.

[187] A. P. Isaev, A. N. Kirillov, and V. O. Tarasov, Bethe subalgebras in affine Birman–Murakami–
Wenzl algebras and flat connections for q-KZ equations, J. Phys. A: Math. Theor. 49 (2016)
204002. arXiv:1510.05374.

[188] I. Cherednik, Difference elliptic operators and root systems, Int. Math. Res. Not. (1995) 44–59.
arXiv:hep-th/9410188.

[189] A. N. Kirillov, On Some Quadratic Algebras: Jucys–Murphy and Dunkl Elements, in: “Calogero–
Moser–Sutherland Models”, Springer, New York, 2000, pp. 231–248. arXiv:q-alg/9705003.

[190] A. A. Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B 180[FS2]
(1981) 189.

[191] R. J. Baxter, One-dimensional anisotropic Heisenberg chain, Ann. Phys. 70 (1972) 323.
[192] I. V. Cherednik, On the properties of factorized S matrices in elliptic functions, Sov. J. Nucl.

Phys. 36 (1982) 320 [Yad. Fiz. 36 (1982) 549].
[193] C. A. Tracy, Embedded elliptic curves and the Yang–Baxter equations, Physica (Utrecht) D 16

(1985) 203.
[194] A. Bovier, Factorized S matrices and generalized Baxter models, J. Math. Phys. 24 (1983) 631.
[195] G. Felder and V. Pasquier, A simple construction of elliptic R matrices, Lett. Math. Phys. 32

(1994) 167.
[196] L. A. Takhtajan, Solutions of the triangle equations with Zn×Zn-symmetry and matrix analogues

of the Weierstrass zeta and sigma functions, Zap. Nauchn. Semin. LOMI 133 (1984) 258–276.
[197] V. V. Bazhanov, Quantum R matrices and matrix generalizations of trigonometric functions,

Theor. Math. Phys. 73 (1) (1987) 1035–1039 [Teor. Mat. Fiz. 73 (1) (1987) 26–32].
[198] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998) 133.
[199] A. P. Isaev and O. V. Ogievetsky, Braids, shuffles and symmetrizers, J. Phys. A: Math. Theor.

42 (2009) 304017. arXiv:0812.3974 [math.QA].
[200] V. F. R. Jones, Baxterization, Int. J. Mod. Phys. B 4 (5) (1990) 701.
[201] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math.

126 (1987) 335.

186

https://arxiv.org/abs/2106.04470
https://arxiv.org/abs/1511.08771
http://cns.physics.gatech.edu/grouptheory/chapters/draft.pdf
https://arxiv.org/abs/hep-th/9601135
https://arxiv.org/abs/math-ph/0311020
https://arxiv.org/abs/hep-th/0304077
https://arxiv.org/abs/q-alg/9604011
https://arxiv.org/abs/1510.05374
https://arxiv.org/abs/hep-th/9410188
https://arxiv.org/abs/q-alg/9705003
https://arxiv.org/abs/0812.3974


A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

[202] G. E. Murphy, On the representation theory of the symmetric groups and associated Hecke
algebras, J. Algebra 152 (1992) 287.

[203] H. Wenzl, Hecke algebras of type An and subfactors, Invent. Math. 92 (1988) 349.
[204] I. V. Cherednik, A new interpretation of Gelfand–Tzetlin bases, Duke Math. J. 54 (2) (1987)

563.
[205] O. V. Ogievetsky and P. N. Pyatov, Lecture on Hecke Algebras, Preprint MPIM (Bonn), MPI

2001-40. http://www.mpim-bonn.mpg.de/html/preprints/preprints.html.
[206] P. Martin, Potts Models and Related Problems in Statistical Mechanics, World Scientific, Sin-

gapore, 1991.
[207] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambrige University Press, 1994.
[208] A. P. Isaev and O. V. Ogievetsky, On representations of Hecke algebras, Czech. J. Phys. 55 (11)

(2005) 1433.
[209] A. P. Isaev and O. V. Ogievetsky, Representations of A-type Hecke algebras, in: Proceedings

of International Workshop “Supersymmetries and Quantum Symmetries”, Dubna, 2006. arXiv:
0912.3701[math.QA].

[210] D. Levy, Algebraic structure of translation-invariant spin-1/2 XXZ and q-Potts quantum chains,
Phys. Rev. Lett. 67 (15) (1991) 1971–1974.

[211] A. P. Isaev and O. V. Ogievetsky, On Baxterized solutions of reflection equation and integrable
chain models, Nucl. Phys. B 760 (2007) 167. math-ph/0510078.

[212] A. P. Isaev, Functional equations for transfer-matrix operators in open Hecke chain models,
Theor. Math. Phys. 150 (2) (2007) 187. arXive:1003.3385 [math-ph].

[213] A. P. Isaev, O. V. Ogievetsky, and A. F. Os’kin, Chain models on Hecke algebra for corner type
representations, Rep. Math. Phys. 61 (2) (2008) 309. arXiv: 0710.0261[math.QA].

[214] C. Burdik, J. Fuksa, A. P. Isaev, S. O. Krivonos, and O. Navratil, Remarks towards the spectrum
of the Heisenberg spin chain type models, Phys. Part. Nucl. 46 (3) (2015) 277. arXiv: 1412.3999
[math-ph].

[215] Y. K. Zhou, Row transfer matrix functional relations for Baxter’s eight-vertex and six-vertex
models with open boundaries via more general reflection matrices, Nucl. Phys. B 458 (1996) 504.
hep-th/9510095 (1995).

[216] W. L. Yang, R. I. Nepomechie, and Y. Z. Zhang, Q-operator and T–Q relation from the fusion
hierarchy, Phys. Lett. B 633 (2006) 664. hep-th/0511134 (2005).

[217] D. Levy and P. Martin, Hecke algebra solutions to the reflection equation, J. Phys. A 27 (1994)
L521.

[218] P. Martin, D. Woodcock, and D. Levy, A diagrammatic approach to Hecke algebras of the
reflection equation, J. Phys. A 33 (2000) 1265.

[219] A. Doikou and P. Martin, Hecke algebraic approach to the reflection equation for spin chains, J.
Phys. A 36 (2003) 2203.

[220] P. P. Kulish and A. I. Mudrov, Baxterization of solutions to reflection equation with Hecke
R-matrix, Lett. Math. Phys. 75 (2) (2006) 151–170. arXive:math/0508289 [math.QA].

[221] M. Rosso and V. F. R. Jones, On the invariants of torus knots derived from quantum groups, J.
Knot Theory Ramifications 2 (1993) 97.

[222] A. Mironov, R. Mkrtchyan, and A. Morozov, On universal knot polynomials, J. High Energy
Phys. 2016 (2) (2016) 1. arXiv:1510.05884.

[223] A. Morozov, Differential expansion and rectangular HOMFLY for the figure eight knot, Nucl.
Phys. B 911 (2016) 582. arXiv:1605.09728 [hep-th].

[224] Ya. Kononov and A. Morozov, On rectangular HOMFLY for twist knots, Mod. Phys. Lett. A 31
(38) (2016) 1650223. arXiv:1610.04778 [hep-th].

187

http://www.mpim-bonn.mpg.de/html/preprints/preprints.html
https://arxiv.org/abs/0912.3701
https://arxiv.org/abs/0912.3701
https://arxiv.org/abs/math-ph/0510078
https://arxiv.org/abs/1003.3385
https://arxiv.org/abs/0710.0261
https://arxiv.org/abs/1412.3999
https://arxiv.org/abs/1412.3999
https://arxiv.org/abs/hep-th/9510095
https://arxiv.org/abs/hep-th/0511134
https://arxiv.org/abs/math/0508289
https://arxiv.org/abs/1510.05884
https://arxiv.org/abs/1605.09728
https://arxiv.org/abs/1610.04778


A. P. Isaev Natural Sci. Rev. 2 100204 (2025)

[225] H. Itoyama, A. Mironov, A. Morozov, and An. Morozov, Character expansion for HOMFLY
polynomials. III. All 3-strand braids in the first symmetric representation, Int. J. Mod. Phys. A
27 (2012) 1250099. arXiv:1204.4785 [hep-th].

[226] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, Superpolynomials
for toric knots from evolution induced by cut-and-join operators, J. High Energy Phys. 03 (2013)
021. arXiv:1106.4305.

[227] A. Anokhina and A. Morozov, Towards R-matrix construction of Khovanov–Rozansky poly-
nomials. I. Primary T-deformation of HOMFLY, J. High Energy Phys. 07 (2014) 063.
arXiv:1403.8087 [hep-th].

[228] J. S. Birman and H. Wenzl, Braids, link polynomials and new algebra, Trans. Amer. Math. Soc.
313 (1) (1989) 249.

[229] H. Wenzl, Quantum Groups and Subfactors of Type B, C and D, Comm. Math. Phys. 133 (1990)
383.

[230] A. P. Isaev, A. I. Molev, and A. F. Os’kin, On the idempotents of Hecke algebras, Lett. Math.
Phys. 85 (2008) 79. arXiv:0804.4214 [math.QA].

[231] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups,
Selecta Math. New Ser. 2 (4) (1996) 581–605.

[232] L. K. Hadjiivanov, A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, and I. T. Todorov, Hecke algebraic
properties of dynamical R-matrices: Application to related quantum matrix algebras, J. Math.
Phys. 40 (1999) 427. arXiv:q-alg/9712026.

[233] J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville string
field theory, Nucl. Phys. B 238 (1984) 125.

[234] G. Felder, Elliptic quantum groups, in: Proceedings of the International Congress of Mathemat-
ical Physics, 1994. arXiv:hep-th/9412207.

[235] A. G. Bytsko and L. D. Faddeev, (TB)q, q-analog of model space and the Clebsch–Gordan
coefficients generating matrices, J. Math. Phys. 37 (1996) 6324. arXiv:q-alg/9508022.

[236] P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang–Baxter equation and
dynamical quantum groups, Comm. Math. Phys. 196 (3) (1998) 591. arXiv:q-alg/9708015.

[237] Y. Cheng, M. L. Ge, and K. Xue, Yang–Baxterization of braid group representations, Comm.
Math. Phys. 136 (1) (1991) 195–208.

[238] V. F. R. Jones, On a certain value of the Kauffman polynomial, Comm. Math. Phys. 125 (1989)
459.

[239] J. Murakami, Solvable lattice models and algebras of face operators, Adv. Stud. Pure Math. 19
(1989) 399.
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