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E. Kh. Alpomishev1,2, G. G. Adamian∗1, and N. V. Antonenko1

1Joint Institute for Nuclear Research, Dubna, Russia
2Institute of Nuclear Physics, Tashkent, Uzbekistan

Abstract

The non-Markovian two-dimensional dynamics of charge carriers in a dissipative non-magnetic medium
is studied. The possibility of observing a new classical Hall-type effect in the absence of a magnetic
field is predicted.
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1. Introduction

The classical Hall effect is the occurrence of a potential difference (Hall voltage) at the edges
of a sample placed in a transverse magnetic field when a current flows perpendicular to the
field. The Hall voltage is proportional to the magnetic field and current strength [1, 2]. The
Hall effect is related to the nature and number of charge carriers in materials. Quantitatively,
the classical Hall effect can be characterized using the Hall coefficient, which is defined as
the ratio of the induced electric field to the product of the current density and perpendicular
magnetic field applied. In the absence of magnetic field in non-magnetic materials, a deviation
of current carriers with opposite spins in different directions perpendicular to the electric field
was also predicted and observed. This phenomenon, called the spin Hall effect, is related
to the external spin-dependent scattering or the internal spin-orbital interaction [1, 2]. In
this article, we present another possibility of observing the classical Hall-type effect in the
absence of magnetic field in non-magnetic two-dimensional (2D) materials. In this case, the
non-diagonal dissipative kernels effectively play the same role as the magnetic field. Note that
2D materials have remained an important research topic in the field of solid state physics and
their applications for decades.

The paper is organized as follows. In Subsection 2.1, we give the Hamiltonian of 2D system
(the quantum particle plus the heat bath) in the external magnetic and electric fields and derive
the non-Markovian Langevin equations for the quantum particle which describes the center of
mass of the charge carriers. We consider the linear coupling between the quantum particle and
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the heat bath through particle–phonon interaction. Note that the quantum Langevin approach
or density matrix formalism is widely applied to find the effects of fluctuations and dissipations
in the macroscopic systems [3–7]. In Subsection 2.2, the solution of the Langevin equations
is presented. The analytical expressions for the time-dependent transport coefficients and
components of the electric field are derived in Subsection 2.3. As shown, the cross component
of the electric field (which is absent at the initial time) appears due to the dissipative effect.
In Section 3, the main conclusions are given.

2. Charged carriers in external magnetic field and heat bath

2.1. Non-Markovian quantum Langevin equations

In order to investigate the influence of external fields on the dynamics of an open quantum
system, we consider the motion of a charged particle (collective subsystem) with effective mass
tensor (mx, my, 0) and positive charge e in the neutral bosonic heat bath in the presence of
the perpendicular axisymmetric magnetic field along the z axis and the time-dependent electric
field acting in the xy plane. In the case of linear coupling in coordinates between the particle
and the heat bath, the total Hamiltonian of the collective subsystem plus the heat bath is as
follows:

H =
1

2mx

(px − eAx(x, y))
2 +

1

2my

(py − eAy(x, y))
2 + exEx(t) +

∑
ν

ℏωνb
+
ν bν +

+
∑
ν

(ανx+ gνy)(b
+
ν + bν) +

∑
ν

1

ℏων

(ανx+ gνy)
2, (1)

where q = (x, y, 0) is the collective coordinate of a charged particle and p = (px, py, 0) its
canonically conjugated momentum, A = (−1

2
yB, 1

2
xB, 0) is the vector potential of the per-

pendicular axisymmetric magnetic field with the strength B = |B|, and E(t) = (Ex(t), 0, 0)
is the time-dependent electric field acting along the x axis. The heat bath is an assembly of
noninteracting harmonic oscillators with frequencies ων . The coupling to the heat bath is linear
in the phonon creation b+ν and annihilation bν operators and corresponds to the energy being
transferred to and from the thermal reservoir by absorption or emission of bath quanta [3–7].
The strength of interaction of the heat bath with the collective subsystem is defined by the
coupling parameters αν and gν . The last term in Eq. (1), known as the counter-term, is nec-
essary to cancel a renormalization of the free-particle Hamiltonian induced by the interaction
with the heat bath [3, 5]. This renormalization should be avoided because it creates an external
2D potential which breaks the translational invariance. As seen, Eq. (1) is set in the classical
Hall geometry.

For convenience, we introduce the new definitions for momenta

πx = px +
1

2
mxωcxy, πy = py −

1

2
myωcyx, (2)

where ωcx = eB/mx, ωcy = eB/my, and ωc =
√
ωcxωcy = eB√

mxmy
is the cyclotron frequency.

Therefore, the Hamiltonian (1) is transformed into the form

H =
π2
x

2mx

+
π2
y

2my

+ exEx(t) +
∑
ν

ℏωνb
+
ν bν +

+
∑
ν

(ανx+ gνy)(b
+
ν + bν) +

∑
ν

1

ℏων

(ανx+ gνy)
2. (3)
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The system of Heisenberg equations for the collective operators x, y, πx, πy and the bath
phonon operators bν , b+ν is obtained by commuting them with H:

ẋ(t) =
πx(t)

mx

,

ẏ(t) =
πy(t)

my

, (4)

π̇x(t) = πy(t)ωcy − eEx(t)−
∑
ν

αν(b
+
ν (t) + bν(t))− 2

∑
ν

αν

ℏων

(ανx(t) + gνy(t)) ,

π̇y(t) = −πx(t)ωcx −
∑
ν

gν(b
+
ν (t) + bν(t))− 2

∑
ν

gν
ℏων

(ανx(t) + gνy(t)) ,

and

ḃ+ν (t) = iωνb
+
ν (t) +

i

ℏ
(ανx(t) + gνy(t)),

ḃν(t) = −iωνbν(t)−
i

ℏ
(ανx(t) + gνy(t)).

(5)

The solutions of Eqs. (5) are

b+ν (t) = f+
ν (t)−

ανx(t) + gνy(t)

ℏων

+
αν

ℏων

t∫
0

dτẋ(τ)eiων(t−τ) +
gν
ℏων

t∫
0

dτ ẏ(τ)eiων(t−τ),

bν(t) = fν(t)−
ανx(t) + gνy(t)

ℏων

+
αν

ℏων

t∫
0

dτẋ(τ)e−iων(t−τ) +
gν
ℏων

t∫
0

dτ ẏ(τ)e−iων(t−τ),

(6)

where
fν(t) =

[
bν(0) +

ανx(0) + gνy(0)

ℏων

]
e−iωνt. (7)

Substituting (6) into (4), we eliminate the bath variables from the equations of motion for
the collective subsystem and obtain the system of integro-differential stochastic dissipative
equations:

ẋ(t) =
πx(t)

mx

,

ẏ(t) =
πy(t)

my

, (8)

π̇x(t) = πy(t)ωcy − eEx(t)−
1

mx

t∫
0

dτKα(t− τ)πx(τ)−
1

my

t∫
0

dτKαg(t− τ)πy(τ) + Fα(t),

π̇y(t) = −πx(t)ωcx −
1

my

t∫
0

dτKg(t− τ)πy(τ)−
1

mx

t∫
0

dτKgα(t− τ)πx(τ) + Fg(t),
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where

Kα(t− τ) =
∑
ν

2α2
ν

ℏων

cos [ων(t− τ)] , Kg(t− τ) =
∑
ν

2g2ν
ℏων

cos [ων(t− τ)] ,

Kαg(t− τ) = Kgα(t− τ) =
∑
ν

2ανgν
ℏων

cos [ων(t− τ)]

(9)

are the dissipative kernels and

Fα(t) = −
∑
ν

F ν
α (t) = −

∑
ν

αν(f
+
ν (t) + fν(t)),

Fg(t) = −
∑
ν

F ν
g (t) = −

∑
ν

gν(f
+
ν (t) + fν(t))

(10)

are the random forces. The presence of the integral parts in Eqs. (8) indicates non-Markovian
dynamics of the collective subsystem. The dissipative kernels have the form of memory functions
since they make the equations of motion at time t dependent on the values of ẋ and ẏ at previous
times.

The random force operators F ν
α (t) and F ν

g (t) are identified as fluctuations due to the un-
certainty of initial conditions for the bath operators. We consider an ensemble of initial
states in which the operators of the collective subsystem are fixed at the values x(0) and
y(0), and the initial bath operators are drawn from an ensemble that is canonical relative to
the collective subsystem [4, 6]. The initial distribution is then the conditional density ma-
trix ρ0({b+ν (0), bν(0)}|q(0)) = exp (−

∑
ν ℏων [b

+
ν + ανx+gνy

ℏων
][bν +

ανx+gνy
ℏων

]/kBT0)/Z(kBT0), where
Z(kBT0) is a conditional partition function. In an ensemble of initial states for the bath oper-
ators, the fluctuations F ν

α (t) and F ν
g (t) have Gaussian distributions with

⟨⟨F ν
α (t)⟩⟩ = ⟨⟨F ν

g (t)⟩⟩ = 0, (11)

where the symbol ⟨⟨. . .⟩⟩ denotes the averaging over the bath. The temperature T0 of the heat
bath is included in the analysis through the distribution of initial conditions. The Bose–Einstein
statistics is employed for the heat bath:

⟨⟨f+
ν (t)f

+
ν′ (t

′)⟩⟩ = ⟨⟨fν(t)fν′(t′)⟩⟩ = 0,

⟨⟨f+
ν (t)fν′(t

′)⟩⟩ = δν,ν′nνe
iων(t−t′), (12)

⟨⟨fν(t)f+
ν′ (t

′)⟩⟩ = δν,ν′(nν + 1)e−iων(t−t′),

where nν = [exp(ℏων/(kBT0)) − 1]−1 are the occupation numbers for phonons. By employ-
ing (12), the quantum fluctuation–dissipation relations are obtained:

∑
ν

φν
αα(t, t

′)
tanh[ ℏων

2kBT0
]

ℏων

= Kα(t− t′),
∑
ν

φν
gg(t, t

′)
tanh[ ℏων

2kBT0
]

ℏων

= Kg(t− t′),

∑
ν

φν
αg(t, t

′)
tanh[ ℏων

2kBT0
]

ℏων

= Kαg(t− t′),
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where

φν
αα(t, t

′) = 2α2
ν [2nν + 1] cos(ων [t− t′]), φν

gg(t, t
′) = 2g2ν [2nν + 1] cos(ων [t− t′]),

φν
αg(t, t

′) = 2ανgν [2nν + 1] cos(ων [t− t′])

are the symmetrized correlation functions φν
kk′(t, t

′) = ⟨⟨F ν
k (t)F

ν
k′(t

′) + F ν
k′(t

′)F ν
k (t)⟩⟩, k, k′ =

α, g. The quantum fluctuation–dissipation relations are reduced to the classical ones in the high-
temperature limit (or ℏ → 0):

∑
ν φ

ν
αα(t, t

′) = 2kBT0Kα(t− t′),
∑

ν φ
ν
gg(t, t

′) = 2kBT0Kg(t− t′),
and

∑
ν φ

ν
αg(t, t

′) = 2kBT0Kαg(t− t′).

2.2. Solution of Langevin equations

The Laplace transform L̂ of Eqs. (8) leads to the system of linear equations:

x(s)s = x(0) +
πx(s)

mx

,

y(s)s = y(0) +
πy(s)

my

, (13)

πx(s)s = πx(0) + ωcyπy(s)− eEx(s)−Kα(s)
πx(s)

mx

−Kαg(s)
πy(s)

my

+ Fα(s),

πy(s)s = πy(0)− ωcxπx(s)−Kg(s)
πy(s)

my

−Kαg(s)
πx(s)

mx

+ Fg(s).

Here, Kα(s), Kg(s), Kαg(s), and Fα(s), Fg(s) are the Laplace transforms of the dissipative ker-
nels and random forces, respectively. The system of Eqs. (13) is easy to solve by performing the
inverse Laplace transform L̂−1 and using the residue theorem and the roots of the determinant

D(s) = s2 + ωcxωcy + s
Kα(s)

mx

+ s
Kg(s)

my

+
1

mxmy

[
Kα(s)Kg(s)−K2

αg(s)
]
= 0. (14)

Finally, the explicit solutions for the originals are

x(t) = x(0) + A1(t)πx(0) + A2(t)πy(0) + Ix(t) + I ′x(t)− Iex(t),

y(t) = y(0) +B1(t)πx(0) +B2(t)πy(0) + Iy(t) + I ′y(t)− Iey(t),

πx(t) = C1(t)πx(0) + C2(t)πy(0) + Iπx(t) + I ′πx
(t)− Ieπx(t), (15)

πy(t) = D1(t)πx(0) +D2(t)πy(0) + Iπy(t) + I ′πy
(t)− Ieπy(t).

In Eqs. (15),

Ix(t) =

t∫
0

A1(τ)Fα(t− τ)dτ, I ′x(t) =

t∫
0

A2(τ)Fg(t− τ)dτ,

Iex(t) = e

t∫
0

A1(τ)Ex(t− τ)dτ,
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Iy(t) =

t∫
0

B1(τ)Fα(t− τ)dτ, I ′y(t) =

t∫
0

B2(τ)Fg(t− τ)dτ,

Iey(t) = e

t∫
0

B1(τ)Ex(t− τ)dτ,

Iπx(t) =

t∫
0

C1(τ)Fα(t− τ)dτ, I ′πx
(t) =

t∫
0

C2(τ)Fg(t− τ)dτ,

Ieπx(t) = e

t∫
0

C1(τ)Ex(t− τ)dτ,

Iπy(t) =

t∫
0

D1(τ)Fα(t− τ)dτ, I ′πy
(t) =

t∫
0

D2(τ)Fg(t− τ)dτ,

Ieπy(t) = e

t∫
0

D1(τ)Ex(t− τ)dτ,

and

A1(t) = L̂−1

[
mys+Kg(s)

mxmysD(s)

]
= B2(t)|x,α↔y,g, A2(t) = L̂−1

[
myωcy −Kαg(s)

mxmysD(s)

]
,

B1(t) = L̂−1

[
−mxωcx +Kαg(s)

mxmysD(s)

]
, C1(t) = L̂−1

[
mys+Kg(s)

myD(s)

]
= D2(t)|x,α↔y,g,

C2(t) = L̂−1

[
myωcy −Kαg(s)

myD(s)

]
, D1(t) = L̂−1

[
−mxωcx +Kαg(s)

mxD(s)

]
are the time-dependent coefficients.

We introduce the spectral density Dω of the heat bath excitations to replace the sum over ν

by the integral over frequency ω:
∑

ν . . . →
∞∫
0

dωDω . . . , αν → αω, gν → gω, ων → ω, and

nν → nω. The well-known spectral functions are [4]

Dω
α2
ω

ℏω
=

λxmx

π

γ2

γ2 + ω2
, Dω

g2ω
ℏω

=
λymy

π

γ2

γ2 + ω2
,

Dω
αωgω
ℏω

=
κη

π

γ2

γ2 + ω2
,

(16)

where the memory time γ−1 of dissipation is inverse to the phonon bandwidth of the heat bath
excitations which are coupled with the collective subsystem. The coefficients

λx =
1

mx

∞∫
0

dτKα(t− τ),

λy =
1

my

∞∫
0

dτKg(t− τ)

(17)
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are the friction coefficients in the Markovian limit. This Ohmic dissipation with the Lorentzian
cutoff (Drude dissipation) results in the dissipative kernels

Kα(t− τ) = mxλxγe
−γ|t−τ |, Kg(t− τ) = myλyγe

−γ|t−τ |,

Kαg(t− τ) = κηγe−γ|t−τ |.
(18)

Here, η =
√
mxmyλxλy and KαKg −K2

αg > 0; i.e., |κ| < 1. So, employing (18), we obtain from
Eqs. (16) the following time-dependent coefficients:

A1(t) =
1

mx

(
λy

ωcxωcy + (1− κ2)λxλy

+
4∑

i=1

βi(si + γ) (γλy + si(si + γ)) esit

si

)
= B2(t)|x↔y,

A2(t) =
1

mxmy

(
myωcy − κη

ωcxωcy + (1− κ2)λxλy

+
4∑
1

βi(si + γ)(myωcy(si + γ)− κγη)esit

si

)
,

B1(t) = − 1

mxmy

(
mxωcx + κη

ωcxωcy + (1− κ2)λxλy

+
4∑
1

βi(si + γ)(mxωcx(si + γ) + κγη)esit

si

)
,

C1(t) =
4∑

i=1

βi(si + γ)(γλy + si(si + γ))esit = D2(t)|x↔y, (19)

C2(t) =
4∑

i=1

βi(si + γ)

my

(myωcy(si + γ)− κγη) esit,

D1(t) = −
4∑

i=1

βi(si + γ)

mx

(mxωcx(si + γ) + κγη) esit,

where βi = [
∏

j ̸=i(si − sj)]
−1 (i, j = 1− 4) and si are the roots of the equation

D(s) = (s+ γ)
[
(s2 + ωcxωcy)(s+ γ) + sγλx

]
+

+ γλy

[
s(s+ γ) + (1− κ2)γλx

]
= 0. (20)

2.3. Derivation of time-dependent transport coefficients and components of electric field

In order to determine the friction coefficients, the renormalized cyclotron frequencies and
components of the electric field, we select the electric field as follows: Ex(t) = Ex0e

iωet, where
ωe is the frequency of the electric field. Averaging Eqs. (15) over the whole system, the heat
bath plus the collective subsystem, using ⟨Ix,y(t)⟩ = ⟨I ′x,y(t)⟩ = ⟨Iπx,πy(t)⟩ = ⟨I ′πx,πy

(t)⟩ = 0 (the
symbol ⟨. . .⟩ denotes averaging over the whole system), and differentiating them in t, we obtain
the system of equations for the first moments

⟨ẋ(t)⟩ = ⟨πx(t)⟩
mx

, ⟨ẏ(t)⟩ =
⟨πy(t)⟩
my

,

⟨π̇x(t)⟩ = −λπx(t)⟨πx(t)⟩+ ω̃cy(t)⟨πy(t)⟩ − eExx(t),

⟨π̇y(t)⟩ = −λπy(t)⟨πy(t)⟩ − ω̃cx(t)⟨πx(t)⟩ − eExy(t)

(21)

with the renormalized friction coefficients

λπx(t) = −D1(t)Ċ2(t)−D2(t)Ċ1(t)

C2(t)D1(t)− C1(t)D2(t)
, λπy(t) = −C2(t)Ḋ1(t)− C1(t)Ḋ2(t)

C2(t)D1(t)− C1(t)D2(t)
, (22)

7
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the renormalized cyclotron frequencies

ω̃cx(t) =
D2(t)Ḋ1(t)−D1(t)Ḋ2(t)

C2(t)D1(t)− C1(t)D2(t)
, ω̃cy(t) =

C2(t)Ċ1(t)− C1(t)Ċ2(t)

C2(t)D1(t)− C1(t)D2(t)
, (23)

and the renormalized components of the electric field

Exx(t) =
1

e

[
λπx(t)Ieπx(t)− ω̃cy(t)Ieπy(t) + İeπx(t)

]
,

Exy(t) =
1

e

[
λπy(t)Ieπy(t) + ω̃cx(t)Ieπx(t) + İeπy(t)

]
.

(24)

Employing Eqs. (19), we obtain

Exx(t) = Ex0

4∑
i=1

(Wi[λπx(t)ai(t) + ȧi(t)] + Viω̃cy(t)ai(t)) ,

Exy(t) = Ex0

4∑
i=1

(
Wiω̃cx(t)ai(t)− Vi[λπy(t)ai(t) + ȧi(t)]

)
.

(25)

Here Ċi(t) = dCi(t)/dt, Ḋi(t) = dDi(t)/dt, İeπx(t) = dIeπx(t)/dt, İeπy(t) = dIeπy(t)/dt, İ ′eπx
(t) =

dI ′eπx
(t)/dt, İ ′eπy

(t) = dI ′eπy
(t)/dt, ȧi(t) = dai(t)/dt, and

Wi = βi (γλy + si(si + γ)) (si + γ) , Vi = βi

(
ωcx(si + γ) +

κγη

mx

)
(si + γ) ,

ai(t) =
esit − eiωet

si − iωe

.

As seen, the dynamics is governed by the time-dependent friction coefficients (22), the renor-
malized cyclotron frequencies (23), and the renormalized components of the electric field (25).
The external magnetic field generates a flow of charge carriers and the cross component Exy(t)
of the electric field. This component is initially absent and appears during the non-Markovian
evolution of the collective subsystem. In addition, the correlation between the random forces
Fα(t) and Fg(t) generates an electric field in the cross direction even at zero magnetic field.

In the axially symmetric case (mx = my = m, ωcx = ωcy = ωc, and λx = λy = λ) and
at κ = 0, Eq. (20) takes the following form:

D(s) =
(
s2 + ω2

c

)
(γ + s)2 + 2γλs (γ + s) + λ2γ2 = 0. (26)

The roots of Eq. (26) are

s1 = −1

2

(
γ + iωc −

√
(γ − iωc)

2 − 4γλ

)
, s2 = s∗1,

s3 = −1

2

(
γ + iωc +

√
(γ − iωc)

2 − 4γλ

)
, s4 = s∗3.

Expanding these roots up to the first order in λ/γ, we obtain

s1 = s∗2 = − λγ2

γ2 + ω2
c

− i
ω2
c + γ2 + γλ

γ2 + ω2
c

ωc,

s3 = s∗4 = −γ
ω2
c + γ2 − γλ

γ2 + ω2
c

+ i
λγωc

γ2 + ω2
c

.

(27)

8
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Using the roots (27), Eqs. (22), (23) and ωe = 0 (the constant electric field), we derive the
asymptotic renormalized friction coefficients and cyclotron frequencies:

λπx(∞) =
γλ(γ + κωc)

γ2 + ω2
c

,

λπy(∞) =
γλ(γ − κωc)

γ2 + ω2
c

(28)

and

ω̃cx(∞) = ωc +
γλ(ωc + κγ)

γ2 + ω2
c

,

ω̃cy(∞) = ωc +
γλ(ωc − κγ)

γ2 + ω2
c

,

(29)

respectively. The asymptotic values of the renormalized components of the electric field (25)
are

Exx

Ex

= 1 +
λ(γ + κωc)

(γ2 + ω2
c )

,

Exy

Ex

=
λ(ωc + κγ)

(γ2 + ω2
c )

.

As seen from these formulas, at zero magnetic field (ωc = 0) the classical Hall effect is expected
to be observed due to the nonzero correlations between the random forces Fg and Fα (i.e.,
κ ̸= 0). In the formula for Exy/Ex, the non-diagonal dissipative kernels effectively play the
role of magnetic field (ω̃cx,cy(∞) ∼ ±κ). In the Markovian limit, λpx(∞) = λx, λpy(∞) = λy,
ω̃cx(∞) = κη/mx, ω̃cy(∞) = −κη/my, and Exx = Ex, Exy/Ex = 0. So, the cross electric field
and, correspondingly, new classical Hall-type effect does not appear in the Markovian limit:
Exx = Ex and Exy/Ex = 0.

3. Conclusion

Using the non-Markovian quantum Langevin approach and taking into account the coupling
of 2D charge carriers to the environment and the correlations between random forces in the
collective coordinates x and y or the mixed non-diagonal dissipative kernels, we predicted the
classical Hall-type effect in the 2D non-magnetic materials in the absence of external magnetic
field and non-Markovian limit. Similarly, we can predict the classical Nernst–Ettingshausen-
type and Righi–Leduc-type effects [1, 2] at zero magnetic field in a non-magnetic material.
Thus, along with thermomagnetic and galvanomagnetic phenomena, we predict the existence
of thermodissipative and galvanodissipative phenomena.
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