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Abstract

We calculate three-loop photon spectral density in QED with N different species of electrons. The ob-
tained results were expressed in terms of iterated integrals, which can be either reduced to Goncharov’s
polylogarithms or written in terms of one-fold integrals of harmonic polylogarithms and complete ellip-
tic integrals. In addition, we provide threshold and high-energy asymptotics of the calculated spectral
density. It is shown that the use of the obtained spectral density correctly reproduces separately
calculated moments of corresponding photon polarization operator.
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1. Introduction

Recent advances in the precision of low-energy e+e− experiments (VEPP-2M, DAFNE,
BEPC, PEP-II and KEKB colliders) call for a comparable precision of theoretical predictions.
In particular, one has to compute complete NNLO corrections to both leptonic (for example,
µ+µ−) and hadronic (for example, π+π−) production. In the present paper we take a first
step towards calculation of NNLO QED corrections to the e+e− → µ+µ− total production
cross section, which is a key process for the center-of-mass energy calibration at present and
future e+e− colliders. Specifically, we will be interested in contribution related to photon
vacuum polarization. At three loops the photon spectral density contains NNLO contribution
to e+e− → µ+µ−, NLO contribution to e+e− → µ+µ− + γ, and LO contributions to e+e− →
µ+µ−+2γ and e+e− → µ+µ−µ+µ− total production cross sections. All these contributions can
be separated from each other, but in the present paper we will restrict ourselves only to their
sum. Such a restricted setup nevertheless allows us to test different approximate threshold
and high-energy expansions of photon spectral density by comparing them with exact results
and make conclusions on the applicability of similar expansions for the calculation of full cross
sections1. The latter should greatly reduce the complexity of future full calculations. Moreover,
the provided techniques can be further used for the calculation of NNLO corrections to the
e+e− → π+π− production cross section in the framework of scalar QED.

∗Corresponding author e-mail address: onish@theor.jinr.ru
1There we should also account for double box contributions and initial state radiation.
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The photon spectral density can be conveniently defined as a discontinuity of photon po-
larization operator Π(s). The latter is given by an extra factor (1 + Π(s)) in the denominator
of renormalized photon propagator and is one of the several fundamental quantities arising in
a study of quantum electrodynamics. At present we have exact results for one- and two-loop
contributions [1, 2]. However, starting from three loops there are only approximate results
[3–6]. For example, the derivation of Baikov and Broadhurst [3] employs a simple Padè ap-
proximation for three-loop contribution using a few terms of the asymptotic expansions near
3 special points: s = 0, 4m2,∞ (m is the electron mass).

In the present paper we will provide for the first time exact as well as approximate threshold
and high-energy results for three-loop photon spectral density. To check the obtained exact
and asymptotic expressions for spectral density, the latter are used for the calculation of the
moments of photon polarization operator. The comparison is performed with similar moments
calculated from generalized Frobenius power series expansion of photon polarization operator
at s = 0. Also, the knowledge of exact photon spectral density already allows us to check the
importance of the missed threshold (s = 16m2) in the reconstruction analysis of three-loop
photon polarization operator performed by Baikov and Broadhurst.

2. Spectral density calculation

To calculate three-loop QED photon spectral density ρ(s), we followed standard procedure:
• generation of Feynman diagrams2 for photon self-energy (see Fig. 1);

• application of projector to extract photon polarization operator Π(s) and subsequent
mapping of scalar integrals to the minimal set of prototype integrals;

• IBP reduction [8, 9] of prototype integrals to the set of master integrals and application
of bipartite cuts with Cutkosky rules for the latter;

• substitution of expressions for cut master integrals3 [10, 11] and renormalization.

Figure 1. Diagrams contributing to three-loop photon self-energy in QED.

This way, considering QED with N electron flavors4 and using on-shell renormalization scheme5,
we get

ρ(s) = ρ(1)(s)
( α

4π

)
+ ρ(2)(s)

( α

4π

)2
+ ρ(3)(s)

( α

4π

)3
+ . . . , (1)

2For this purpose we used FeynArts package [7].
3The calculation of one- and two-loop cut master integrals is similar to that done in [10].
4The masses of all electrons are assumed to be equal.
5See Appendix A for results of calculation of required renormalization constants.
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where6

(
s̄ =

s

m2
, β =

√
1− 4

s̄

)

ρ(1)(s) =
4Nπ(2 + s̄)β

3s̄
, (2)

ρ(2)(s) =
16Nπ

3

{
β2 (2IIl1,l2 + 2IIl2,l1 + IIl1,l0 + IIl0,l1)−

β(2 + s̄)

s̄
(IIl0 + 2IIl2)

− 7 + 8 log 2 + s̄(2− (3 + log 4)s̄)

s̄2
IIl1 +

4π2(s̄2 − 4)− βs̄(8(2 + s̄) log 2− 3(6 + s̄))

4s̄2

}
.

(3)

The three-loop contribution ρ(3)(s) can be naturally separated into two pieces corresponding to
2m and 4m cuts, so that we have

ρ(3)(s) = ρ
(3)
2m(s) + θ(s− 16m2)ρ

(3)
4m(s) , (4)

where

ρ
(3)
2m(s) =

16πN2

3

{
− 4c25

27
+

2

27
c30IIl1 +

4

9
c27IIl1,l1 −

2

3
c9IIl1,l1,l1

}
+

16πN

3

{c45
12

+
1

2
c36IIl0

− 1

24
c46IIl1 − c35IIl2 +

1

6
c37IIl0,l1 −

1

4
c39IIl1,l0 − c34IIl1,l1 +

1

2
c38IIl1,l2 + 4c43IIl2,l1

+ 8c2 (IIl0,l0 + 2 (IIl0,l2 + IIl2,l0 + 2IIl2,l2)) + 2c15IIl0,l0,l1 − 2c5IIl0,l1,l1
+ 4c3 (IIl0,l1,l0 + 2IIl0,l1,l2)− 2c42IIl1,l0,l1 + c44IIl1,l1,l1 + 4c40 (IIl1,l1,l0 + 2IIl1,l1,l2)
− 4c41IIl1,l2,l1 − 4c6IIl2,l1,l1 − 8c12 (IIl1,l0,l0 + 2IIl1,l0,l2 + 2IIl1,l2,l0 + 4IIl1,l2,l2
+ IIl2,l0,l1 − IIl2,l1,l0 − 2IIl2,l1,l2 − 2IIl2,l2,l1)− 8c17 (IIl0,l2,l1 + IIl0,l1,l1,l1)
+ c21IIl1,l1,l0,l1 + c11 (3 (2 log(2)IIl4,l1 + IIl4,l1,l0 + 2IIl4,l1,l2)− IIl4,l0,l1)

+ c10(3 log(2)IIl0,l4,l1 −
1

2
IIl0,l4,l0,l1 +

3

2
IIl0,l4,l1,l0 + 3IIl0,l4,l1,l2)− 2c22IIl1,l2,l1,l1

+ 2c4 (IIl1,l1,l1,l0 + 2IIl1,l1,l1,l2) + c26 (−18 log(2)IIl1,l4,l1 − IIl1,l0,l0,l1 − 2IIl1,l0,l1,l0
− 4IIl1,l0,l1,l2 + 4IIl1,l0,l2,l1 + 4IIl1,l1,l0,l0 + 8IIl1,l1,l0,l2 + 4IIl1,l1,l1,l1 + 8IIl1,l1,l2,l0
+ 16IIl1,l1,l2,l2 + 4IIl1,l2,l0,l1 − 4IIl1,l2,l1,l0 − 8IIl1,l2,l1,l2 − 8IIl1,l2,l2,l1 + 3IIl1,l4,l0,l1

− 9IIl1,l4,l1,l0 − 18IIl1,l4,l1,l2)− c23IIl1,l0,l1,l1 + 2c20IIl1,l1,l2,l1
}

(5)

and

ρ
(3)
4m(s) =

2πN2

9

{
− 32

27
c24f

′′ (s̄) +
4

27
c32f

′ (s̄)− 1

9
c33f (s̄) +

1

3
c9 (2IIr2 − IIl1,r̃3)−

2

9
c28IIr̃3

}
+

2πN

9

{
− 48c1f

′′ (s̄) + 2c29f
′ (s̄)− 1

2
c31f (s̄) + 2c7 (IIr1 − IIl0,r̃3) + 3c14IIr̃3

+ c19

(
3

2
IIl1,r̃3 − 3IIr2

)
+ c8 (2IIl2,r̃3 − 4IIr3) + c13 (2IIl0,l1,r̃3 − 4IIl0,r2) + 2c16IIr0

+ c26 (−2IIl1,l1,r̃3 − IIl1,r0 + 4IIl1,r2) + 2c18 (−IIl1,l0,r̃3 + IIl1,l2,r̃3 + IIl1,r1 − 2IIl1,r3)
}
.

(6)

6See Appendix B for the description of notation used for iterated integrals IIi1,...,ik .
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Here, f(s̄) is the function given in Appendix B and defined in terms of products of complete
elliptic integrals of first kind. The expressions for ci coefficients can be found in Appendix C. The
iterated integrals with li weights only can be straightforwardly rewritten in terms of Goncharov’s
multiple polylogarithms, while those with elliptic kernels (ri or r̃i weights) in terms of one-fold
integrals of harmonic polylogarithms and complete elliptic integrals as shown in [10]. The latter
representations are already well suited for numerical evaluations. However, as we will see in the
next section, much more faster numerics in the whole range of s values can be obtained with
threshold and high-energy expansions of spectral densities.

3. Asymptotics and checks

The asymptotic expansions of obtained spectral densities can be done through the asymp-
totic expansions of iterated integrals as described in [10]. While it is straightforward to do
asymptotic expansions in the threshold cases, the high-energy expansions are more involved
and may require finding PLSQ relations [12] for polylogarithmic constants at unity argument.
To avoid this, one can obtain required asymptotic expansions for master integrals themselves
through the Frobenius solution of corresponding differential equations7. The calculation of
spectral densities with the asymptotic expressions for cut master integrals then gives

ρ
(1)
thr(s) =

2

3
Nπβ(3− β2) , (7)

ρ
(1)
high(s) =

4Nπ

3

{
1− 6

s̄2
− 8

s̄3
− 18

s̄4

}
+O

(
1

s̄5

)
, (8)

ρ
(2)
thr(s) = 4Nπ

{
π2 − 8β +

2π2β2

3
− π2β4

3
+

4

9
β3(−37 + 36 log 2 + 24 log β)

}
+O

(
β5
)
, (9)

ρ
(2)
high(s) = 4Nπ

{
1 +

12

s̄
+

2(5 + 12 log s̄)

s̄2

+
16(−47 + 87 log s̄)

27s̄3
+

−983 + 1218 log s̄

9s̄4

}
+O

(
1

s̄5

)
, (10)

ρ
(3)
2m,thr(s) =

32N2π

9

{
4(11− π2)β − 1

9
(245− 24π2)β3

}
+

8Nπ

9

{3π4

β
− 72π2 + (351− 70π2 + 5π4 + 48π2 log 2− 24π2 log β − 36ζ3)β

+ 2(−43π2 + 24π2 log 2 + 48π2 log β)β2

+ (1411 + 51π2 + π4 − 1152 log 2− 42π2 log 2− (768− 20π2) log β + 117ζ3)β
3

+
8

75
(−947π2 + 480π2 log 2 + 960π2 log β)β4

}
+O

(
β5
)
, (11)

ρ
(3)
4m,thr(s) =

π2N2(s̄− 16)9/2

516096

{
1− 629(s̄− 16)

2640
+

10243(s̄− 16)2

274560
− 7973(s̄− 16)3

1647360

}
+

π2N(s̄− 16)9/2

5160960

{
1− 7(s̄− 16)

48
+

307(s̄− 16)2

27456
− 193(s̄− 16)3

658944

}
+O (s̄− 16)17/2 , (12)

7It is simpler than the asymptotic expansion of iterated integrals performed in [10].
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ρ
(3)
2m,high(s) =

16N2π

81

{
766− 66π2 − 265 log s̄+ 12π2 log s̄+ 57 log2 s̄− 6 log3 s̄

+
2

s̄
(−65 + 24π2 − 216 log s̄+ 108 log2 s̄)

}
+

2Nπ

135

{
16065− 900π2 + 76π4

− 1440π2 log 2− 1440ζ3 + log s̄(−2340 + 360π2 − 1440ζ3) +
1

s̄
(−35100 + 3600π2

− 114π4 − 11520ζ3 + log s̄(−7200 + 240π2 + 1440ζ3) + (−7200 + 60π2) log2 s̄

+ 240 log3 s̄− 30 log4 s̄)
}
+O

(
1

s̄2

)
, (13)

ρ
(3)
4m,high(s) =

8N2π

81

{
− 1829 + 132π2 + 216ζ3 + (584− 24π2) log s̄− 114 log2 s̄+ 12 log3 s̄

+
1

s̄
(−1144− 96π2 + 1512 log s̄− 432 log2 s̄)

}
+

4Nπ

135

{
− 8100 + 450π2

− 38π4 + 720π2 log 2 + 720ζ3 + (1170− 180π2 + 720ζ3) log s̄+
1

s̄
(18360

− 1800π2 + 57π4 + 5760ζ3 − (6120 + 120π2 + 720ζ3) log s̄

+ (3600− 30π2) log2 s̄− 120 log3 s̄+ 15 log4 s̄)
}
+O

(
1

s̄2

)
, (14)

and results with more terms in the expansions can be found in accompanying Mathematica
notebook. Using the latter, it is easy to get a very accurate representation of the above spectral
densities for the whole range of s̄ values. The corresponding plot of different contributions can
be found in Fig. 2. It is also interesting to compare the ratio of 4m and 2m cuts contributions to
three-loop spectral density in the region of s̄ values where mass effects become important. The
corresponding plot can be found in Fig. 3. From the latter we may conclude that the account of
second threshold s̄ = 16 missed in the reconstruction of photon polarization operator performed
in [3] is not actually important.

Figure 2. Values of one-, two- and three-loop spectral densities. Here ρ(i),N and ρ(i),N
2 are coefficients

in front of N and N2 contributions to full spectral density ρ(i) = ρ(i),NN + ρ(i),N
2
N2.

To check the obtained results for the spectral densities, we first performed the whole cal-
culation in an arbitrary gauge and made sure that the gauge dependence of spectral densities
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Figure 3. Ratio of 4m and 2m cuts contributions to three-loop spectral density. Here ρ
(i),N
∗ and

ρ
(i),N2

∗ denote N and N2 contributions to spectral density ρ
(i)
∗ : ρ

(i)
∗ = ρ

(i),N
∗ N + ρ

(i),N2

∗ N2.

cancels. Second, we have numerically checked that the first three moments8 Mn of polarization
operator computed in [3] agree with a very high precision (at least 15 digits) with moments
obtained with the use of our spectral densities and dispersion relation

Π(s) =
1

π

∞∫
4m2

ρ(s′)

s′ − s
. (15)

Moreover, we performed a comparison with additionally calculated 97 moments, see Appendix D
and accompanying Mathematica notebook. This latter calculation is similar to the one we did
for spectral densities except that in this case we used uncut master integrals. The Frobenius
solutions for the latter can be easily obtained from corresponding differential equations using
standard techniques. Next, with the computed spectral densities, we can deduce approximate
analytical expressions for moments with large n values. Indeed, making variable change in the
dispersion relation from s′ to β′ =

√
1− 4m2/s′, it is easy to see that

M (i)
n ≃

1∫
0

dβ′2β
′

π
(1− β′2)n−1ρ

(i)
thr(β

′) , (16)

where for large n values the largest contribution to the integral comes from small β′ values and
for three-loop spectral density it is sufficient to consider only 2m cut contribution. At one loop
due to finite β′ expansion of spectral density, this expression is actually exact and we have

M (1)
n =

(1 + n)
√
πΓ(n)

Γ(5
2
+ n)

N . (17)

8See Appendix D for their definition.
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At two and three loops the formulae are approximate and are given by

M (2)
n ≃

orderβ∑
i=0

Γ(1+i
2
)Γ(n)

4Γ(1+i+2n
2

)

{
2d

(2)
1,i + d

(2)
2,i

[
Ψ(0)

(1 + i

2

)
−Ψ(0)

(1 + i+ 2n

2

)]}
, (18)

M (3)
n ≃

orderβ∑
i=0

Γ(1+i
2
)Γ(n)

8Γ(1+i+2n
2

)

{
4d

(3)
1,i + 2d

(3)
2,i

[
Ψ(0)

(
1 + i

2

)
−Ψ(0)

(
1 + i+ 2n

2

)]
+ d

(3)
3,i

[(
Ψ(0)

(1 + i

2

)
−Ψ(0)

(1 + i+ 2n

2

))2
+Ψ(1)

(1 + i

2

)
−Ψ(1)

(1 + i+ 2n

2

)]}
,

(19)

where d coefficients are defined as

2β

π
ρ
(2)
thr(β) ≃

orderβ∑
i=0

d
(2)
1,iβ

i + d
(2)
2,iβ

i log β , (20)

2β

π
ρ
(3)
thr(β) ≃

orderβ∑
i=0

d
(3)
1,iβ

i + d
(3)
2,iβ

i log β + d
(3)
3,iβ

i log2 β . (21)

Here, orderβ is the expansion order in β of corresponding spectral densities, and

Ψ(ν)(z) =
dν+1 log Γ(z)

dzn+1
(22)

is the usual polygamma function. With orderβ = 80 the approximate expression for M
(2)
1 is

accurate with 0.04 percent level, M (2)
10 with 10−10 percent level and M

(2)
50 with 10−26 percent level.

For orderβ = 10 the corresponding errors are 2, 10−3 and 10−6 percent. With orderβ = 120 the
accuracy for approximate expression of M (3)

1 is 0.4 percent, for M
(3)
10 it is 10−10 percent, and

for M
(3)
50 it is 10−32 percent. For lower value of orderβ = 10 the corresponding values are 13,

10−3 and 10−7 percent. So, we see that for sufficiently large values of moments our approximate
formulae are very accurate except for a few first moments.

4. Conclusion

In the present paper we have performed calculation of three-loop photon spectral density in
the framework of QED with N different electron flavors. The obtained results contain both exact
and asymptotic expressions. The exact results were written in terms of iterated integrals, which
reduce either to Goncharov’s polylogarithms or to one-fold integrals of harmonic polylogarithms
and complete elliptic integrals. The asymptotic expressions, on the other hand, allow us to have
very accurate expressions for the spectral density in the whole s range. It is shown that the
obtained spectral density correctly reproduces first hundred moments of the photon polarization
operator. In addition, we supply approximate analytical formulae for the moments of the photon
polarization operator. The latter are very accurate for almost all moments except maybe the
first few.

Finally, we would like to note that the performed calculation showed that for practical pur-
poses it is sufficient to know required master integrals in terms of their asymptotic threshold and
high-energy expansions. The latter can be easily obtained from generalized Frobenius solutions
to corresponding differential equations. This gives us a hope that similar approximate solutions
will also be applicable to other master integrals required to obtain full NNLO contribution for
e+e− → µ+µ− total production cross section.
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Appendix A. On-shell renormalization constants

The required on-shell renormalization constants for QED with N similar electron species can
be extracted from renormalization of two-loop photon and electron self-energies. For photon

wave function renormalization (A0 = ZAA) we have
(
α =

e2

4π

)
ZA = 1 + Z

(1)
A

(
αµ2ϵe−ϵγE

(4π)1−ϵm2ϵ

)
+ Z

(2)
A

(
αµ2ϵe−ϵγE

(4π)1−ϵm2ϵ

)2

+ . . . , (A.1)

where

Z
(1)
A = N

{
− 4

3ϵ
− π2ϵ

9
+

4

9
ϵ2ζ3 −

π4ϵ3

120
+

ϵ4

135
(5π2ζ3 + 36ζ5)

}
+ . . . , (A.2)

Z
(2)
A = N

{
−2

ϵ
− 15− 1

6
(93 + 2π2)ϵ+ ϵ2

(
−223

4
− 5π2

2
+

4ζ3
3

)}
+ . . . (A.3)

Here m is the electron pole mass, µ is the dimensional parameter entering dimensional regu-
larization, and e is the on-shell electron charge at q2 = 0. The charge renormalization constant
(α0 = Zααµ

2ϵ) is then obtained using Ward identity as
Zα = Z−1

A . (A.4)
Similarly, from electron self-energy for on-shell mass renormalization constant (m0 = Zmm) we
get

Zm = 1 + Z(1)
m

(
αµ2ϵe−ϵγE

(4π)1−ϵm2ϵ

)
+ Z(2)

m

(
αµ2ϵe−ϵγE

(4π)1−ϵm2ϵ

)2

+ . . . , (A.5)

where

Z(1)
m = −3

ϵ
− 4−

(
8 +

π2

4

)
ϵ+ ϵ2

(
−16− π2

3
+ ζ3

)
+ ϵ3

(
−32− 2π2

3
− 3π4

160
+

4ζ3
3

)
+ ϵ4

(
−64− 4π2

3
− π4

40
+

8ζ3
3

+
1

12
π2ζ3 +

3ζ5
5

)
+ . . . , (A.6)

Z(2)
m =

9

2ϵ2
+

45

4ϵ
+

199

8
− 17π2

4
+ 8π2 log 2− 12ζ3 + ϵ

(
677

16
− 205π2

8
+

14π4

5

+ 48π2 log 2− 16π2 log2 2− 8 log4 2− 192a4 − 135ζ3

)
+ ϵ2

(
− 110857

128

+
7039π2

192
+

209π4

64
− 54π2 log 2 + 8π2 log2 2 + 4 log4 2 + 96a4 +

4915

24
ζ3

+
443

36
π2ζ3 +

575

2
ζ5

)
+N

{
− 2

ϵ2
+

5

3ϵ
+

143

6
− 3π2 + ϵ

(
1133

12
− 235π2

18

+ 16π2 log 2− 164

3
ζ3

)
+ ϵ2

(
8135

24
− 1585π2

36
+

827π4

360
+ 80π2 log 2

− 32π2 log2 2− 16 log4 2− 384a4 −
2530

9
ζ3

)}
+ . . . (A.7)
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and a4 = Li4
(1
2

)
=

∞∑
n=1

1

2nn4
. Note that at N = 1 these renormalization constants reduce to

already known QED values [13–15].

Appendix B. Notation for iterated integrals

The iterated integrals present in the current paper involve the following set of integration
kernels or weights:

l0(s̄) =
1

s̄
, l1(s̄) =

1

s̄β
, l2(s̄) =

1

s̄− 4
, l4(s̄) =

1

s̄− 1
, (B.1)

rk(s̄) =
f(s̄)

s̄βk
θ(s̄− 16) (k = 0, 1, 2, 3), (B.2)

r̃3(s̄) =
8β(s̄+ 2)f(s̄)

(s̄− 16)(s̄− 4)2
θ(s̄− 16) , (B.3)

where

f(s̄) =
16(s̄− 16)

s̄
[K(1− k−)K(k+)−K(k−)K(1− k+)] , (B.4)

k± =
1

2

[
1±

(
1− 8

s̄

)√
1− 16

s̄
+

16

s̄

√
1− 4

s̄

]
, (B.5)

and K is complete elliptic integral of first kind. The required iterated integrals are then defined
as

IIwn,...w1 = I(wn, . . . w1|s̄) =
∫

s̄>sn>...>s1>4

n∏
k=1

dskwk(sk) , (B.6)

where weights wk(s) take values from the set above.

Appendix C. Expressions for ci coefficients

For ci coefficients present in the expression for three-loop photon spectral density, we have
the following expressions:

c1 = − 29

8(β + 1)
+

15

4(β + 1)2
+

29

8(β − 1)
+

15

4(β − 1)2
− 1

4
, c2 =

3β

4
− β3

4
, (C.1)

c3 = −β4

4
+

β2

2
− 1

4
, c4 = −3β4

4
+

7β2

2
− 11

4
, c5 = −69β3

4
+

113β

4
+

3

β
, (C.2)

c6 = −15β3

2
+

35β

4
+

3

4β
, c7 = −15β3

4
+ 8β +

3

4β
, c8 = −9β3

4
+

7β

2
+

3

4β
, (C.3)

c9 = −5β4

4
+

5β2

2
+

3

4
, c10 = −3β4

4
+

β2

2
+

17

4
, c11 = −β4

2
+

11β2

4
+

23

4
, (C.4)

c12 = −β4

4
+

β2

2
+

3

4
, c13 = −β4

4
+

β2

2
+

7

4
, c14 = −β3

4
+

3β

4
+

2

β
, (C.5)
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c15 = −β4

4
+ β2 +

5

4
, c16 =

9

4
− β4

4
, c17 =

5

4
− β4

4
, c18 = −β4

4
+

3β2

4
− 3

2
, (C.6)

c19 = −5β4

4
+

9β2

2
− 5

4
, c20 = −7β4

4
+

13β2

2
− 35

4
, c21 = −9β4

4
+ 8β2 − 47

4
, (C.7)

c22 = −11β4

4
+ 12β2 − 45

4
, c23 = −17β4

4
+

33β2

2
− 81

4
, (C.8)

c24 = − 407

16(β + 1)
+

1829

16(β + 1)2
+

407

16(β − 1)
+

1829

16(β − 1)2
− 771

4
, (C.9)

c25 = −1

4

(
15π2 − 236

)
β3 +

3

4

(
27π2 − 340

)
β +

9

2β
, c26 = −β5

4
+

β3

4
+

5β

4
+

3

4β
, (C.10)

c27 = −15β3

4
− 3

4β3
+ 4β +

10

β
, c28 = −39β3

4
− 3

4β3
− 19β

2
− 7

2β
, (C.11)

c29 = −39β2

2
+

6507

16 (4β2 − 3)
+

77

2(β − 1)
− 77

2(β + 1)
+

1997

16
, (C.12)

c30 = −1

4

(
15π2 − 236

)
β4 +

1

2

(
15π2 − 167

)
β2 +

9

β2
+

9

4

(
π2 − 52

)
, (C.13)

c31 = −2β4 − 5β2

8
− 567

4 (4β2 − 3)
+

6507

64 (4β2 − 3)2
+

24

β2
+

1197

64
, (C.14)

c32 = −967β2

2
+

72063

16 (4β2 − 3)
+

18

β2
+

1245

4(β − 1)
− 1245

4(β + 1)
+

21117

16
, (C.15)

c33 = −4β4 +
3

β4
+

481β2

8
− 1693

4 (4β2 − 3)
+

24021

64 (4β2 − 3)2
+

11

β2
+

1011

64
, (C.16)

c34 = −1

2
β5
(
−6 + 3π2 − 4 log2(2)

)
− 7π2β4

4
+

1

4
β3
(
191 + 6π2 − 8 log2(2) + 24 log(2)

)
+

13π2β2

2
+

β

2

(
−306 + 15π2 − 20 log2(2) + 20 log(2)

)
+

3
(
1 + 6π2 − 8 log2(2)

)
4β

− 35π2

4
, (C.17)

c35 = −2π2β4 +
1

4
β3
(
9 + 14π2 + 32 log(2)

)
+ 4π2β2

+
24β

β2 + 3
− 32β

(β2 + 3)2
− 1

4
β
(
−9 + 14π2 + 96 log(2)

)
+ 6π2 , (C.18)

c36 = −2π2β4 − 1

4
β3
(
9 + 66π2 + 32 log(2)

)
− 24β

β2 + 3
+

32β

(β2 + 3)2

+
3π2

β
+

1

4
β
(
−9 + 118π2 + 96 log(2)

)
+ 10π2 , (C.19)

c37 = −1

4
β4
(
−213 + 4π2 + 48 log(2)

)
− 132

β2 + 3
+

432

(β2 + 3)2

− 384

(β2 + 3)3
− 2β2

(
39 + π2 − 12 log(2)

)
+

3

4

(
−295 + 4π2 − 16 log(2)

)
, (C.20)

10
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c38 = −2π2β5 − 1

4
β4
(
−41 + 6π2 − 64 log(2)

)
+ 2π2β3 +

264

β2 + 3
− 864

(β2 + 3)2
+

768

(β2 + 3)3

+
1

2
β2
(
3 + 14π2 − 64 log(2)

)
+ 10π2β +

6π2

β
+

1

4

(
−247− 22π2 − 192 log(2)

)
, (C.21)

c39 = −2π2β5 +
1

4
β4
(
−41 + 14π2 − 64 log(2)

)
+ 2π2β3 − 264

β2 + 3
+

864

(β2 + 3)2
− 768

(β2 + 3)3

− 1

2
β2
(
3 + 26π2 − 64 log(2)

)
+ 10π2β +

6π2

β
+

1

4

(
247 + 70π2 + 192 log(2)

)
, (C.22)

c40 = −1

2
β5 log(2) +

1

4
β3(2 log(2)− 3) +

5

4
β(2 log(2)− 1) +

3 log(2)

2β
, (C.23)

c41 = −1

2
β5 log(2) +

1

4
β3(33 + 2 log(2)) +

1

4
β(10 log(2)− 59) +

6 log(2)− 6

4β
, (C.24)

c42 = −1

2
β5 log(2) +

1

4
β3(48 + 2 log(2)) +

1

4
β(10 log(2)− 91) +

6 log(2)− 9

4β
, (C.25)

c43 = −1

2
β4(2 log(2)− 19) +

1

4
β2(8 log(2)− 101)− 3 + 3 log(2) , (C.26)

c44 = −1

4
β4(31 + 12 log(2)) +

7

2
β2(1 + 4 log(2))− 11

4
(5 + 4 log(2)) , (C.27)

c45 = −2π2
(
π2 − 3

)
β5 − 12π2β4(19 + 2 log(2)) + 6π2β2(101 + 8 log(2))

− 288β log(2)

β2 + 3
+

384β log(2)

(β2 + 3)2
+

6π4

β
+

1

4
β3
(
−1764ζ(3)− 615 + 628π2 + 8π4

− 192 log2(2)− 108 log(2)− 840π2 log(2)
)
+

1

4
β
(
1764ζ(3) + 2757− 1872π2

+ 40π4 + 576 log2(2)− 108 log(2) + 1416π2 log(2)
)
+ 72π2(1 + log(2)) , (C.28)

c46 = −24π2β5 log(2) + 12π2β3(2 log(2)− 33)− 96(33 log(2)− 4)

β2 + 3
+

384(27 log(2)− 1)

(β2 + 3)2

− 9216 log(2)

(β2 + 3)3
+ 12π2β(59 + 10 log(2)) +

72π2(1 + log(2))

β
+

1

4
β4 (756ζ(3) + 597

+ 104π2 − 384 log2(2)− 492 log(2) + 168π2 log(2)
)
− 1

2
β2
(
1692ζ(3) + 621 + 152π2

− 384 log2(2) + 36 log(2) + 312π2 log(2)
)
+

1

4

(
2052ζ(3)− 243− 1144π2

+ 1152 log2(2) + 2964 log(2) + 840π2 log(2)
)
. (C.29)

Appendix D. Moments of photon correlation function

The moments of photon correlation function are given by

Π(s̄) =
∑
n>0

Mn

( s̄
4

)n
, (D.1)

where
Mn = M (1)

n

( α

4π

)
+M (2)

n

( α

4π

)2
+M (3)

n

( α

4π

)3
+ . . . (D.2)
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and the first five moments at one, two and three loops are given by

M
(1)
1 =

16N

15
, M

(2)
1 =

1312N

81
, (D.3)

M
(1)
2 =

16N

35
, M

(2)
2 =

7184N

675
, (D.4)

M
(1)
3 =

256N

945
, M

(2)
3 =

3998656N

496125
, (D.5)

M
(1)
4 =

128N

693
, M

(2)
4 =

831776N

127575
, (D.6)

M
(1)
5 =

2048N

15015
, M

(2)
5 =

6918163456N

1260653625
. (D.7)

M
(3)
1 = N2

(
406ζ3
27

− 45628

729
+

256π2

45

)
+N

(
22781ζ3
108

− 8687

54
+

32π2

3
− 256

15
π2 log(2)

)
,

(D.8)

M
(3)
2 = N2

(
14203ζ3
1152

− 1520789

25920
+

512π2

105

)
+N

(
4857587ζ3

2880
− 223404289

116640
+

64π2

7
− 512

35
π2 log(2)

)
, (D.9)

M
(3)
3 = N2

(
12355ζ3
864

− 83936527

1458000
+

4096π2

945

)
+N

(
33067024499ζ3

3225600
− 885937890461

72576000
+

512π2

63
− 4096

315
π2 log(2)

)
, (D.10)

M
(3)
4 = N2

(
2522821ζ3
147456

− 129586264289

2239488000
+

8192π2

2079

)
+N

(
1507351507033ζ3

25804800
− 269240669884818833

3840721920000
+

5120π2

693
− 8192

693
π2 log(2)

)
, (D.11)

M
(3)
5 = N2

(
1239683ζ3
61440

− 512847330943

8692992000
+

32768π2

9009

)
+N

(
939939943788973ζ3

2980454400
− 360248170450504167133

950578675200000
+

20480π2

3003
− 32768π2 log(2)

3003

)
.

(D.12)

The additional moments up to n = 100 can be found in accompanying Mathematica notebook.
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